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Background: There is limited research on the relationship between Systemic 
Oxidative Stress (SOS) status and inflammatory indices. Adding onto existing 
literature, this study aimed to examine the association between dietary Oxidative 
Balance Score (OBS) and lifestyle OBS (which make up the overall OBS), and 
Cardiovascular Disease (CVD) prevalence at different Systemic Immune 
Inflammation Index (SII) and Systemic Inflammatory Response Index (SIRI) levels.

Methods: This study involved 9,451 subjects selected from the National Health 
and Nutrition Examination Survey (NHANES) 2007–2018. The OBS comprised 
20 dietary and lifestyle factors. Statistical methods included Weighted Linear 
Regression Analysis (WLRA), Logistic Regression Analysis (LRA), Sensitivity 
Analysis (SA), and Restricted Cubic Spline (RCS) analysis.

Results: The multivariate WLRA revealed that OBS was significantly negatively 
correlated with both SII (β  =  −5.36, p  <  0.001) and SIRI (β  =  −0.013, p  <  0.001) 
levels. In SA, removing any single OBS component had no significant effect 
on the WLRA results of SII and SIRI. Further subgroup analyses revealed that 
OBS was more impactful in lowering SII in women than in men. Additionally, 
OBS was more significantly negatively correlated with SII and SIRI in the low-
age group than in the high-age group. Moreover, RCS analysis confirmed this 
linear relationship. Compared to dietary OBS, lifestyle OBS exerted a more 
significant effect on Coronary Artery Disease (CAD) (OR: 0.794, p  =  0.002), 
hypertension (OR: 0.738, p  <  0.001), Congestive Heart Failure (CHF) (OR: 
0.736, p  =  0.005), Myocardial Infarction (MI) (OR: 0.785, p  =  0.002), and stroke 
(OR: 0.807, p  =  0.029) prevalence. Furthermore, SIRI exhibited a significant 
interaction in the relationship between overall OBS, dietary OBS, and CHF (P for 
interaction  <  0.001). On the other hand, SII had a significant interaction in the 
relationship between overall OBS, dietary OBS, and MI (P for interaction  <  0.05).

Conclusion: OBS, including lifestyle and dietary OBS, were significantly 
negatively associated with SII and SIRI. Higher lifestyle OBS was associated with 
reduced risks of CAD, hypertension, CHF, MI, and stroke.
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Introduction

Cardiovascular Disease (CVD) encompasses a wide range of 
diseases that affect the heart, blood vessels, or pericardium, including 
but not limited to Coronary Artery Disease (CAD), Angina Pectoris 
(AP), and stroke (1, 2). According to research, CVD is a leading cause 
of death worldwide (3), as well as in European Society of Cardiology 
(ESC) member countries (4). Furthermore, CVD prevalence in China 
has steadily increased over the years, reported to have reached 94 
million in 2016 (5). These findings make CVD treatment and 
prevention a valuable research focus.

Oxidative Stress (OS), an imbalance between Reactive Oxygen 
Species (ROS) production capacity and the antioxidant capacity (6, 7), 
is one of the risk factors for CVD (8, 9). According to research, lifestyle 
and dietary compositions can alter the human body’s OS state (10). In 
this regard, Oxidative Balance Score (OBS), a metric that assesses 
lifestyle and dietary compositions, could be  employed to obtain 
different behavioral scores and determine the degree of antioxidant 
exposure (10, 11). A recent Korean cohort study involving 5,181 
participants found a negative correlation between OBS and the 
likelihood of new-onset hypertension (12). Notably, OS and 
inflammation are often comorbid. Studies in the US general 
population have revealed a U-shaped relationship between the 
inflammation SII level and all-cause mortality in CAD\AP\Myocardial 
Infarction (MI) patients (13, 14). Furthermore, unhealthy sleep 
behaviors and OBS may jointly affect CVD risk via specific pathways 
(15). Systemic Immune-Inflammatory Index (SII) and Systemic 
Inflammatory Response Index (SIRI) are new inflammatory markers 
with a strong relationship with CVD (16). In obese individuals, SIRI 
and SII are independent risk factors for total CVD mortality (17), and 
high SII levels are closely associated with CVD (18).

Although the OBS-CVD association has been reported multiple 
times, the relationship between CVD and both lifestyle OBS and 
dietary OBS remains unclear. It is also unclear whether new findings 
will emerge from these two scoring standards and whether the level 
of SII will affect OBS and CVD. Therefore, this study examined the 
association between OBS and SII/SIRI, as well as the relationship 
between OBS and CVD under high and low SII/SIRI conditions using 
a representative sample of the US population obtained from the 
National Health and Nutrition Examination Survey (NHANES) 
2007–2018.

Materials and methods

Study subjects and data sources

The NHANES project is a nationwide survey designed to assess 
the health and nutritional status of adults and children in the US (19, 
20). Specifically, it integrates questionnaire surveys and physical 
examinations to address health issues among different populations. 
The survey results can be utilized to determine the incidence rates and 

risk factors for major illnesses and evaluate the US population’s 
nutritional status and its relationship with health promotion and 
disease prevention.

Herein, the inclusion and exclusion criteria were implemented as 
follows: (1) First, 51,472 participants with dietary OBS components 
were recruited in six two-year survey cycles (2007 to 2008, 2009 to 
2010, 2011 to 2012, 2013 to 2014, 2015 to 2016, and 2017 to 2018); (2) 
Subsequently, 40,287 participants with missing lifestyle OBS 
components were excluded [comprising 23,379, 12,315, 4,549, and 44 
participants with unavailable physical activity data, missing alcohol 
data, cotinine levels exceeding the detection limit, and unspecified 
Body Mass Index (BMI) data, respectively]; (3) Following that, 45 
participants with missing platelet, neutrophil, monocyte, and 
lymphocyte count data were excluded; and (4) Finally, 83 pregnant 
individuals, 767 cancer patients, and 839 participants with extreme 
energy intake (men, total energy intake <800 or > 4,200 kcal/day; 
women, total energy intake <500 or > 3,500 kcal/day) were excluded. 
As a result, 9,451 participants were included in the final analysis 
(Figure 1).

The National Centre for Health Statistics (NCHS) Ethics Review 
Board approved the NHANES project, and participants gave written 
informed consent. Further details on the NHANES project can 
be found on its official website.

Exposure definition

The OBS was determined based on previous research. Herein, the 
OBS comprised 16 dietary components and 4 lifestyle components, 
further categorized into pro-oxidant (5 factors) and antioxidant (15 
factors) subgroups (21). The scores of each variable were added to 
determine the total OBS, with higher scores indicating greater 
exposure to antioxidants.

For a comprehensive understanding of the US population’s dietary 
intake, trained dietary interviewers assessed the nutritional components 
in NHANES data collected through face-to-face 24 h dietary recall 
interviews with participants of all ages. The interviewers were fluent in 
Spanish and English, and the interviews were conducted in private 
rooms at NHANES’ Mobile Examination Centre (MEC). Each MEC 
dietary interview room contained a standard set of measurement guides. 
These components do not represent any particular food and were used 
to assist respondents in reporting the amount of food consumed 
accurately. This set of measurement guides was developed specifically for 
the current NHANES environment, targeting the non-institutionalized 
US civilian population. The NCHS was consulted for sample design and 
data collection, and the United  States Department of Agriculture 
(USDA) Food Survey Research Group (FSRG) was consulted for dietary 
survey methodology design and subsequent data processing and review.

Alcohol consumption, smoking, BMI, and physical activity were 
included in the analysis of Lifestyle OBS indicators. Alcohol 
consumption was defined as the average number of drinks consumed 
per day over the previous 12 months during the days when participants 
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consumed alcohol, including any alcoholic beverage. Cotinine, the 
primary metabolite of nicotine, can be quantified in serum, urine, or 
saliva and could serve as a marker of active smoking as well as 
exposure to Environmental Tobacco Smoke (ETS) or ‘passive smoking’ 
given its longer half-life in the blood compared to nicotine. 
Furthermore, plasma cotinine levels were previously selected for 
quantitative exposure assessment studies (22). On the other hand, BMI 
was calculated by dividing weight (Kg) by height (m2). Physical activity 
data were obtained from the NHANES Physical Activity Questionnaire 
(PAQ), administered by trained interviewers in participants’ homes 
using the Computer-Assisted Personal Interview (CAPI) system. The 
questionnaire encompassed work-related activities (including 
vigorous- and moderate-intensity activities) and leisure-time physical 
activities (such as walking or cycling and other vigorous land moderate 
leisure-time activities). Physical activity calculations were based on 
methodologies established in previous research. Specifically, physical 
activity was computed as the product of the frequency of each physical 
activity per week, with the duration of each physical activity, and then 
with the Metabolic Equivalent (MET) score (21).

Participants were categorized into two groups based on their SII 
weighted medians: Low and high. All OBS components within each 
group were further classified into three subgroups based on their 
weighted distribution (from the first to the third quartile). 
Antioxidants were assigned scores ranging from 0 to 2, whereas 
oxidants were scored reversely, with 2 and 0 representing the lowest 
and highest activity levels, respectively (Supplementary Table S1). 
Supplementary Table S2 shows the categorization of OBS components 
in mid-subjects based on the SIRI-weighted median.

Definitions of SII and SIRI

The Beckman Coulter DxH 800 instrument was used in the 
NHANES MEC to perform a Complete Blood Count (CBC) on blood 

samples, providing a blood cell count for all participants. Lymphocytes, 
neutrophils, monocytes, and platelets were counted in 103 cells/uL 
units. The SII and SIRI values were calculated using previously 
established formulas (23, 24), which are as follows.

 SII platelet count neutrophil count lymphocyte count= ×( ) /

 SIRI neutrophil count monocyte count lymphocyte count= ×( ) /

Outcome definitions

The diagnosis of AP, CAD, (Congestive Heart Failure) CHF, MI, 
and stroke was confirmed by self-reported physician diagnosis in 
the questionnaire. Hypertension was defined as a self-reported 
physician diagnosis of hypertension, use of antihypertensive 
medication, or meeting the combined Systolic Blood Pressure 
(SBP) ≥ 140 mmHg/Diastolic Blood Pressure (DBP) ≥ 90 mmHg 
criteria (25).

On the other hand, CVD patients were defined as those with a 
confirmed diagnosis of at least one of the following: AP, CAD, 
hypertension, CHF, MI, and stroke.

Other variables of interest

Herein, age, race/ethnicity, sex, and energy intake were included 
as covariates. Education level was also incorporated as a subgroup 
analysis. Race/ethnicity was classified into various categories, 
including non-Hispanic White, non-Hispanic Black, other 
Hispanic, Mexican American, and other race/ethnicity. On the 

FIGURE 1

Flow chart.
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other hand, education level was categorized as high school 
(comprising high school diploma or general equivalency or some 
college/associate’s degree), ≤ high school (including <9th grade, 9th 
through to 11th grades, and 12th grade without a diploma), 
and ≥ high school (comprising a college degree or higher). 
Biochemical parameters were assessed following a rigorous 
approach outlined in the NHANES Laboratory/Medical 
Technologist Procedure Manual (CDC: NHANES Laboratory/
Medical Technologists Procedures Manual, Atlanta, GA, 
CDC, 2001).

Statistical analysis

We first downloaded NHANES data from 2007 to 2018 that were 
relevant to this study. Given the complex sampling design of NHANES 
(i.e., 1/6 ∗ WTDRD1), individual sample weights were determined 
based on the NHANES recommended one-day sample weights for diet 
(WTDRD1) records. During baseline data analysis, the normal 
distribution of the continuous variables was examined, and all were 
non-normal continuous variables. Non-normal continuous variables 
were expressed as medians or Interquartile Ranges (IQR) and 
categorical variables were presented as unweighted numbers 
(weighted %).

Weighted Linear Regression Analysis (WLRA) was used to 
examine the relationship between overall OBS, lifestyle OBS, 
dietary OBS, and SII/SIRI levels. Further subgroup analyses were 
performed according to sex, age, and education. Furthermore, 
Restricted Cubic Spline (RCS) analysis was used to test for 
non-linear trends between variables based on the linear regression 
results (26). Logistic Regression Analysis (LRA) was used to 
compare the associations between OBS and CVD at different SII/
SIRI levels. Three models were used. Model 1, a crude model 
without additional adjustment for covariates; Model 2, which was 
adjusted for age, sex, and race/ethnicity; and Model 3, which was 
adjusted for age, sex, race/ethnicity, and energy intake. All 
regression analyses included survey weights. Sensitivity Analyses 
(SA) involved recalculating the OBS through selective deletion of 
individual OBS components, pooling the remaining OBS 
components, and then analyzing the correlation between the new 
OBS and SII/SIRI levels.

All data cleaning and processing procedures were performed in R 
(version 4.2.1). Furthermore, all analyses were two-tailed, and results 
with p < 0.05 were considered statistically significant.

Results

Baseline characteristics of the study 
population

Table 1 shows the baseline characteristics of individuals grouped 
by OBS quartiles (Median age = 39 years; Males = 57%). 
Furthermore, the majority were non-Hispanic White (66.6%), and 
the weighted CVD prevalence was 31.3%, with a lower prevalence 
in participants in the highest OBS quartile compared to those in the 
lowest OBS quartile (p < 0.001). Additionally, participants in the 
highest OBS quartile had a significantly lower hypertension 

prevalence than those in the lowest OBS quartile (p = 0.001). The 
OBS groups also exhibited statistically significant differences in 
gender and ethnicity. Overall, SII/SIRI levels decreased gradually 
with increasing OBS. The weighted medians of overall OBS, lifestyle 
OBS, and dietary OBS were 20, 4, and 16, respectively 
(Supplementary Table S3).

Lifestyle and dietary OBS associations with 
SII/SIRI levels

Table 2 shows the relationships between lifestyle OBS, dietary 
OBS, and SII/SIRI levels. In Model 1 (without any adjustments), OBS 
was negatively correlated with SII [β = −4.55, 95% Confidence 
Interval (CI): −5.921 to −3.177, p < 0.001], implying that SII decreases 
with increasing OBS. Furthermore, OBS was negatively correlated 
with SIRI levels (β = −0.005, 95%CI: −0.008 to −0.002, p = 0.002). In 
Model 2 (adjusted for age, sex, and race), both the negative 
associations between OBS and SII (β = −3.62, 95%CI: −5.004 to 
−2.232, p < 0.001) and between OBS and SIRI remained significant 
(β = −0.009, 95%CI: −0.012 to −0.005, p < 0.001). Similarly, in Model 
3 (adjusted further for energy intake), the negative OBS-SII 
correlation remained significant (β = −5.36, 95%CI: −6.824 to −3.900, 
p < 0.001). Subgroup analyses of age, sex, and education 
(Supplementary Tables S4, S5) revealed a significantly negative 
correlation between OBS scores and SII/SIRI levels after correction 
using Model III. In SA, excluding any of the OBS components had no 
significant effect on the WLRA results of SII and SIRI 
(Supplementary Tables S6, S7).

Analyses of the correlations of both lifestyle OBS and dietary OBS 
with SII/SIRI yielded similar results. Overall, there was a significant 
negative correlation between OBS and SII levels, and the observed 
improvements in OBS values could be associated with a reduction in the 
immune-inflammatory state. This association remained significant after 
adjusting for covariates, including age, gender, race, and energy intake. 
These findings significantly enhance our understanding of the biological 
associations of oxidative homeostasis, systemic inflammatory responses, 
and immune inflammation.

Correlations of both lifestyle OBS and 
dietary OBS with SII/SIRI levels

The potential non-linear association between OBS and SII/SIRI 
levels was further examined through RCS analysis. Figure 2 shows a 
fully adjusted linear regression model (Model 3), adjusted for age, sex, 
race, and energy intake, and demonstrates a significant linear trend of 
both lifestyle OBS and dietary OBS with SII/SIRI levels (overall 
p < 0.0001). Notably, non-linear trends did not show a significant 
p-value (non-linear p > 0.05) (Figure 3).

Associations of both lifestyle OBS and 
dietary OBS with CVD in the high and low 
SII/SIRI groups

Based on Model 3, the LRA of OBS and participants with CVD 
revealed that in the ungrouped cohort, OBS was associated with a 
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TABLE 1 Baseline characteristics of quartiles from NHANES 2007–2018.

ALL Group 1 (<=15) Group 2 (15–24) Group 3 (>  =  24) p-value

N =  9,451 N =  2,687 N =  4,308 N =  2,456

Gender (%)

Woman 3,961 (43.2) 1,513 (59.4) 1824 (44.9) 624 (25.9) <0.001

Man 5,490 (56.8) 1,174 (40.6) 2,484 (55.1) 1832 (74.1)

Age 39.00 [27.00, 53.00] 38.00 [27.00, 51.33] 40.00 [28.00, 54.00] 38.00 [27.00, 53.00] 0.004

Race (%)

Mexican American 1,269 (8.0) 327 (8.1) 581 (7.7) 361 (8.3) <0.001

Other Hispanic 810 (5.1) 230 (5.3) 385 (5.4) 195 (4.6)

Non-Hispanic White 4,025 (66.6) 1,038 (62.0) 1837 (66.5) 1,150 (70.9)

Non-Hispanic Black 2,231 (12.5) 854 (18.3) 966 (11.9) 411 (8.2)

Other Race 1,116 (7.8) 238 (6.3) 539 (8.6) 339 (8.1)

Education (%)

≤ High school education 3,909 (37.4) 1,312 (48.5) 1727 (35.9) 870 (30.0) <0.001

≥ High school education 5,199 (62.6) 1,250 (51.5) 2,433 (64.1) 1,516 (70.0)

HDL 1.32 [1.09–1.60] 1.29 [1.06–1.58] 1.32 [1.09–1.60] 1.34 [1.09–1.60] 0.184

TC 4.86 [4.22–5.61] 4.89 [4.22–5.61] 4.91 [4.24–5.64] 4.78 [4.19–5.53] 0.056

PLT 238.00 [204.00–279.00] 251.00 [214.00–292.61] 238.00 [204.00–279.00] 229.00 [197.87–267.00] <0.001

NEU 4.10 [3.10–5.20] 4.30 [3.40–5.50] 4.10 [3.20–5.20] 3.80 [3.00–4.90] <0.001

LYM 2.10 [1.70–2.60] 2.20 [1.80–2.70] 2.10 [1.70–2.60] 2.00 [1.70–2.50] <0.001

MONO 0.50 [0.40–0.70] 0.50 [0.40–0.70] 0.50 [0.40–0.70] 0.50 [0.40–0.70] 0.798

WBC 7.10 [5.90–8.50] 7.40 [6.10–9.00] 7.10 [5.90–8.50] 6.80 [5.60–8.10] <0.001

RBC 4.76 [4.43–5.08] 4.68 [4.36–5.03] 4.74 [4.41–5.08] 4.84 [4.52–5.12] <0.001

CVD (%)

No 6,142 (68.7) 1,663 (68.0) 2,783 (66.8) 1,696 (72.4) <0.001

Yes 3,309 (31.3) 1,024 (32.0) 1,525 (33.2) 760 (27.6)

Hypertension (%)

No 6,287 (70.2) 1708 (69.4) 2,853 (68.6) 1726 (73.5) 0.001

Yes 3,164 (29.8) 979 (30.6) 1,455 (31.4) 730 (26.5)

CHF (%)

No 8,951 (98.7) 2,511 (98.6) 4,091 (98.6) 2,349 (99.0) 0.516

Yes 146 (1.3) 48(1.4) 66(1.4) 32(1.0)

CAD (%)

No 8,889 (98.1) 2,493 (98.4) 4,067 (97.9) 2,329 (98.1) 0.591

Yes 200 (1.9) 62 (1.6) 87 (2.1) 51 (1.9)

AP (%)

No 8,941 (98.6) 2,507 (98.5) 4,082 (98.4) 2,352 (98.9) 0.385

Yes 154 (1.4) 53 (1.5) 72 (1.6) 29 (1.1)

MI (%)

No 8,871 (97.8) 2,485 (97.7) 4,060 (97.7) 2,326 (98.1) 0.689

Yes 226 (2.2) 72 (2.3) 99 (2.3) 55 (1.9)

Stroke (%)

No 8,950 (98.7) 2,501 (98.3) 4,089 (98.5) 2,360 (99.2) 0.052

Yes 154 (1.3) 60 (1.7) 70 (1.5) 24 (0.8)

SII 453.52 [333.79, 619.67] 484.43 [351.51, 672.75] 454.91 [335.20, 623.46] 420.12 [318.97, 570.00] <0.001

SIRI 1.02 [0.72–1.47] 1.05 [0.74–1.52] 1.02 [0.71–1.49] 1.00 [0.72–1.41] 0.04
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lower hypertension [Odds Ratio (OR): 0.954, 95%CI: 0.939–0.969, 
p < 0.001] and stroke(OR: 0.946, 95%CI: 0.907–0.987, p = 0.011) 
incidence (Figure 3). On the other hand, compared with dietary OBS, 
CAD (OR: 0.794, 95%CI: 0.685–0.919, p = 0.002), hypertension (OR: 
0.738, 95%CI: 0.703–0.755, p < 0.001), CHF (OR: 0.736, 95%CI: 
0.596–0. 909, p = 0.005), MI (OR: 0.785, 95%CI: 0.674–0.915, 
p = 0.002), and stroke (OR: 0.807, 95%CI: 0.667–0.978, p = 0.029) had 
lower incidences in lifestyle OBS (Figures  4, 5). After grouping 
subjects based on weighted SII/SIRI medians, we found significant 
SIRI and SII interactions in the OBS-CHF (P for interaction < 0.001) 
and OBS-MI (P for interaction = 0.023) relationships, respectively. 

Similar results were found for dietary OBS, except that the p-value 
for the latter interaction was 0.049. No significant interaction was 
observed for SII/SIRI in the relationship between lifestyle OBS and 
CVD (Figures 4, 5).

Discussion

This study revealed that participants with higher OBS scores had 
better health and socioeconomic statuses than those with lower scores. 
Specifically, higher scores were associated with a lower CVD 

TABLE 2 Correlation analysis between lifestyle OBS, dietary OBS, and SII/SIRI levels.

OBS components Model 1 p-value Model 2 p-value Model 3 p-value

β(95%CI) β(95%CI) β(95%CI)

SII

OBS −4.55 (−5.921, −3.177) <0.001 −3.62 (−5.004, −2.232) p < 0.001 −5.36 (−6.824, −3.900) <0.001

Lifestyle OBS −23.53 (−30.21, −16.85) <0.001 −23.57 (−30.25, −16.89) p < 0.001 −23.56 (−30.23, −16.89) <0.001

Dietary OBS −3.87 (−5.272, −2.474) <0.001 −2.79 (−4.240, −1.342) p < 0.001 −4.32 (−5.930, −2.711) <0.001

SIRI

OBS −0.005 (−0.008, −0.002) 0.002 −0.009 (−0.012, −0.005) p < 0.001 −0.013 (−0.017, −0.010) <0.001

Lifestyle OBS −0.074 (−0.091, −0.057) <0.001 −0.070 (−0.087, −0.054) p < 0.001 −0.070 (−0.087, −0.054) <0.001

Dietary OBS −0.002 (−0.005, 0.001) 0.264 −0.006 (−0.009, −0.002) 0.001 −0.010 (−0.013, −0.006) <0.001

Model 1: Crude with no adjustments.
Model 2: Adjusted for age, gender, and race.
Model 3: Adjusted for age, gender, race, and energy intake.

FIGURE 2

The RCS model. Legend: The adjusted RCS model shows the association between lifestyle OBS, dietary OBS, and SII/SIRI levels for all participants. 
Adjustments were made for age, race, sex, and energy intake. The solid blue line and the shaded blue area represent the estimated regression 
coefficient (β) and its 95% CI.
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incidence, confirming the correlation between OBS and CVD risk 
observed in previous research (15).

To the best of our knowledge, this was the first study to examine 
the relationship between OBS and SII/SIRI levels. It has been established 
that OBS reflects the body’s oxidant-antioxidant balance, and disrupting 

this equilibrium could cause inflammation. For instance, Lakkur et al. 
found some correlation between OBS and cardiovascular inflammatory 
markers, particularly C-Reactive Protein (CRP) and White Blood Cell 
(WBC) count (27). Additionally, Lee and Park discovered that the OBS 
was negatively correlated with the levels of inflammatory markers (12). 

FIGURE 3

OBS vs CVD LRA in the SII/SIRI cohort. AP, angina pectoris; CAD, coronary artery disease; CHF, congestive heart failure; MI, myocardial infarction.
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Consistent with these findings, our study revealed that OBS still had a 
significant negative correlation with SII/SIRI levels after adjusting for 
covariates such as age, sex, and ethnicity/race.

Using two novel OBS scoring methods, Hernández-Ruiz et al. 
assessed pro- and antioxidants and their interactions with 
individuals’ oxidative balance based on dietary and lifestyle factors 

(28). A slightly similar approach was employed in this study. 
According to the results, lifestyle OBS and dietary OBS exhibited a 
significant negative correlation with SII. In the crude model (Model 
1), only lifestyle OBS was significantly negatively correlated with 
SIRI, whereas the negative correlation between Dietary OBS and 
SIRI was not significant. After controlling for covariates such as age, 

FIGURE 4

Lifestyle OBS vs. CVD LRA in the SII/SIRI cohort.
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sex, race, and energy intake, the negative correlations of these 
scores with both SII and SIRI became even more significant. This 
phenomenon could be attributed to age and gender, among other 
factors affecting diet. Additionally, the SII levels of participants with 
different sexes, ages, and education levels showed significant 

negative correlations in each model, whereas SIRI showed 
contrasting results in the low-education and high-age groups (16). 
Furthermore, the RCS analysis further verified the association of 
lifestyle and dietary OBS with SII/SIRI, with a significant linear 
correlation between OBS and SII/SIRI levels.

FIGURE 5

Dietary OBS vs. CVD LRA in the SII/SIRI cohort.
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In addition to observing the OBS scores, we also examined the 
effects of dietary and lifestyle OBS on CVD (10). Compared to dietary 
OBS, lifestyle OBS played a more crucial role in CVD. Furthermore, 
previous research linked higher OBS to reduced Ischemic Heart Disease 
(IHD) risk, especially AP and MI (29). Possible explanations are that 
the previous research included 21,867 individuals aged >20 years, 
whereas our study only involved 9,451 individuals and our regression 
analysis was adjusted for weight (30). The previous study also used 
seven cycles of the NHANES data, while we only used six cycles. Our 
findings revealed that overall and lifestyle OBS were negatively 
correlated with hypertension at different inflammatory index levels. 
Furthermore, previous Korean research showed that the incidence of 
new hypertension events correlated negatively with OBS in a dose-
dependent manner (12). Like Type 2 Diabetes Mellitus (T2DM), 
hypertension is also considered a chronic inflammatory disease (31). 
Consistent with previous studies on the relationship between new-onset 
hypertension and OBS, we found that antioxidant exposure in the OBS 
correlated negatively with hypertension incidence. Additionally, cross-
sectional studies on the interaction of SII and the Neutrophil-to-
Lymphocyte Ratio (NLR) with hypertension revealed that SII and NLR 
were positively correlated with hypertension prevalence (13, 32).

Other diseases closely related to inflammation are MI and 
CHF. Consistent with the findings of Chen et al. on the effects of OBS 
and sleep patterns on CVD risk, we  found no direct correlation 
between OBS and MI and CHF risk. Furthermore, Zhao et  al. 
discovered a correlation between SII and Heart Failure (HF) prognosis 
(33). However, we conducted further analysis, revealing a significant 
interaction of SIRI in the relationship between overall OBS, dietary 
OBS, and CHF (P for interaction < 0.001). On the other hand, SII had 
a significant interaction in the relationship between overall OBS, 
dietary OBS, and MI (P for interaction < 0.05).

Previous research has shown that disrupting the pro-oxidant-
antioxidant balance could lead to OS, a mechanism underlying stroke 
occurrence (34). Specifically, brain ischemia induces oxygen-free 
radical damage in tissues, triggering a complex pathological process 
that involves various cytokines and signaling pathways. Therefore, 
developing new drugs and compounds with antioxidant properties for 
stroke treatment is imperative (35). Following prompt administration, 
antioxidants improved various outcome measures in some Ischemic 
Stroke (IS) models, such as transient middle cerebral artery occlusion. 
Herein, OBS, as an indicator of the oxidant-antioxidant exposure 
balance, strongly predicted the likelihood of stroke in different 
oxidative states. On the other hand, the dynamic states of SII and SIRI, 
as systemic inflammation indicators, were significantly associated with 
CVD risk (36). This deduction was not undoubtedly confirmed in our 
study, possibly due to its cross-sectional nature, but previous studies 
had compelling results as they conducted up to 8 years of follow-up 
and calculated Cox Hazard Ratios (HRs).

Using the NHANES data, this study examined the linear correlation 
between overall OBS, lifestyle OBS, dietary OBS, and SII/SIRI levels, as 
well as the protective and ameliorative relationships of OBS with 
CVD. Although this study offers novel insights into correlations 
between OBS and inflammation levels and between OBS and CVD, it 
had some limitations. This study used data from the NHANES project, 
a cross-sectional study. Consequently, it could not determine the causal 
relationships between overall OBS, lifestyle OBS, dietary OBS, and SII/
SIRI levels but only reflected the existing correlations. Therefore, 
we cannot overrule the influence of other potential confounding or 
mediating factors and the long-term effects of overall OBS, lifestyle 

OBS, and dietary OBS on SII/SIRI levels. Consequently, additional 
animal and molecular biology experiments are required to verify the 
mechanism underlying the significant negative correlation of OBS with 
SII/SIRI. Additionally, the participants were only from the US, 
necessitating additional multiregional, large cohort studies that take 
into account the particular circumstances and differences in different 
countries or regions to better elucidate the relationship between overall 
OBS, lifestyle OBS, dietary OBS, and CVD at different inflammation 
levels. Furthermore, the subjects included in the final analysis were only 
about one-fifth of the total population enrolled after implementing the 
selection criteria. Although these exclusion criteria satisfied this study’s 
requirements, it still impacted the statistical validity of our findings.

Conclusion

Our study found that individuals with higher OBS, encompassing 
both lifestyle and dietary OBS, were associated with lower levels of SII 
and SIRI. Specifically, higher lifestyle OBS showed a more significant 
association with a reduced risk of CAD, hypertension, CHF, MI, and 
stroke compared to dietary OBS. These findings underscore the 
importance of maintaining a healthy lifestyle and dietary habits in 
reducing inflammation and lowering the risk of CVD.
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