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Consumers are increasingly interested in food products with high nutritional 
value and health benefits. For instance, fish consumption is linked with diverse 
positive health benefits and the prevention of certain widespread disorders, 
such as obesity, metabolic syndrome, or cardiovascular diseases. These benefits 
have been attributed to its excellent nutritional value (large amounts of high-
quality fatty acids, proteins, vitamins, and minerals) and bioactive compounds, 
while being relatively low-caloric. Atlantic bluefin tuna (Thunnus tynnus) is one 
of the most consumed species worldwide, motivated by its good nutritional 
and organoleptic characteristics. Recently, some organizations have proposed 
limitations on its consumption due to the presence of contaminants, mainly 
heavy metals such as mercury. However, several studies have reported that most 
specimens hold lower levels of contaminants than the established limits and that 
their richness in selenium effectively limits the contaminants’ bioaccessibility in 
the human body. Considering this situation, this study aims to provide baseline 
data about the nutritional composition and the latest evidence regarding the 
beneficial effects of Atlantic bluefin tuna consumption. A review of the risk-
benefit ratio was also conducted to evaluate the safety of its consumption, 
considering the current suggested limitations to this species’ consumption.
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1 Introduction

Nowadays, consumers are increasingly aware of the beneficial effects on health of certain 
foods and the adoption of well-balanced diets. In this sense, most marine products, especially 
fish, are widely appealing for their high nutritional value (1). Fish consumption has been 
traditionally linked to many health benefits due to their high omega-3 polyunsaturated fatty 
acids (PUFAs) content (2), being of particular interest eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA) (3–6). Both compounds are well-known for their positive effects 
on the cardiovascular system and the nervous system, as well as the control of inflammatory 
processes in vertebrates, being beneficial in various human pathologies and disorders like 
obesity or metabolic syndrome (7, 8). More recently, fish proteins, peptides, and amino acids 
have harbored attention as they have shown properties similar to PUFAs (9). In addition, fish 
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FIGURE 1

Schematic representation of bluefin tuna (Thunnus thynnus) distribution and their main health impact derived from their consumption.

is also a significant source of vitamin B12 and vitamin D (10). Vitamin 
B12 is required to form red blood cells and DNA. Deficiency of 
vitamin D leads to rickets, a low bone mineral density and thereby to 
osteoporosis, among other pathologies. Fish is also an important 
source of essential minerals, like copper (Cu), manganese (Mn), zinc 
(Zn), and selenium (Se), which participate in many biological 
processes as part of numerous enzymes (10). Cu plays an important 
role as a catalytic cofactor in numerous critical enzyme reactions in 
metabolism (11). Mn deficiency results in poor reproductive 
performance, congenital malformations, growth retardation in 
offspring, and abnormal function of bone and cartilage (12). Zn is 
required in the stabilization of the structure of many proteins at all 
levels of cellular signal transduction (13). Finally, Se plays a 
fundamental role in reproduction, thyroid function, DNA replication 
and protection against microbes and oxidant compounds (14). 
Therefore, fish is considered one of the healthiest foods on global scale 
and is a fundamental part of a healthy and well-balanced diets.

However, in recent years, some national and international Food 
Safety Agencies, like the Spanish Agency for Consumer Affairs Food 
Safety and Nutrition (AECOSAN) and the US Food and Drug 
Administration (FDA), among others, have recommended limiting the 
consumption of certain species of fish in children and pregnant women 
(15). The reason for this limitation is the level of certain heavy metals, 
like mercury (Hg), found in some blue fish such as Prionace glauca 
(blue shark), Isurus oxyrinchus (blue pointer or bonito shark), Xiphias 
gladius (swordfish) and Thunnus thynnus (Atlantic bluefin tuna) (16–
18). When Hg reaches the sea from soil or chemical industry, it 
accumulates in marine species throughout the food chain; the larger 
and longer predator fish are, the higher the levels found (19, 20). Thus, 
large fish such as swordfish, bluefin tuna, and sharks accumulate these 
compounds in their tissues since they feed on small fish. Despite this, 
some recent studies point out that the risk of Hg intake due to fishery 
products consumption is not as substantial as commonly believed (21, 

22). The European Food Safety Agency (EFSA) has recently stated that 
limiting fish consumption due to Hg’s presence can lead to more 
significant health risks than moderate consumption (23). In fact, the 
European legislation (Commission Regulation (EU) No. 1881/2006) 
established maximum levels of Hg in fish (0.5–1 mg/kg) based on the 
level of consumer exposure (24), but the majority of fishery products 
currently show levels much lower than the limits set in the legislation 
(21, 22). This points to the current limitation on seafood consumption 
being somewhat exaggerated. In addition, several studies show that Se, 
an essential mineral commonly present in seafood, may also protect 
against the toxic effects of Hg, mainly its most dangerous form of 
organic methylmercury (25, 26). Thus, the Hg: Se ratio should also 
be considered when assessing the risk linked to fish intake (11).

The present study will be focused on the Atlantic bluefin tuna 
(ABFT) Thunnus thynnus (L., 1758), a top-level pelagic predator 
distributed throughout the Atlantic Ocean, from the Canary Islands 
to Ireland, with incursions to Norway and the North Sea, the Baltic, 
and the Barents Sea, Mediterranean and Black Sea, also in Canada and 
South America, along the Brazilian coast (27) (Figure 1). The species 
is very voracious and feeds on many other fishes, crustaceans, and 
cephalopods (28). The generic name of bluefin tuna incorporates three 
species: the ABFT Thunnus thynnus, the Pacific bluefin tuna Thunnus 
orientalis, and the southern bluefin tuna Thunnus maccoyii. 
Throughout history, bluefin tuna Thunnus thynnus has been exploited 
in the Mediterranean for thousands of years until the end of the 20th 
century (29). Research on bluefin tuna farming began in the 1970s in 
Japan, and numerous business initiatives for farming have been 
launched since then (30). Several studies have been carried out in 
various field of research such as reproduction, nutrition, genetics, 
pathology, diseases, and engineering, among others (31, 32). In 
addition, numerous projects have been launched to improve the 
captive reproduction of this species, both from the business and 
research sectors. In a recent study, the European Market Observatory 
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for Fisheries and Aquaculture Products (EUMOFA) shows that tuna 
is Europe’s most consumed marine species, followed by cod, salmon, 
and Alaska pollock (33). The consumption of tuna in Europe is around 
3.07 kg per capita, from which 99.2% is wild-caught and only 0.83% is 
farmed (33). There is a growing demand for fresh tuna Thunnus 
thynnus in Europe. Their production is currently limited to the 
Mediterranean Sea, mainly in Spain, France, Italy, and to a lesser 
extent, Portugal, Malta, Croatia, Cyprus, and Greece (34). There has 
been an essential economic contribution from the bluefin tuna fishing 
industry, with a value of sale of more than 875 million euros in the 
Mediterranean Sea since 2018 (35). However, it is necessary to 
improve the fisheries management to make fishing more sustainable 
from an environmental point of view. In this sense, the treatment and 
recovery of the waste originated in such an industry could reduce 
these environmental issues. By-products from bluefin tuna have 
several bioactive compounds of considerable economic value that can 
be extracted and obtained from this discarded biomass following the 
principles of the circular economy (36).

In this context, the present study is focused on the nutritional 
composition and contaminants of ABFT Thunnus thynnus, including 
the latest evidence on human health impact and the assessment of the 
risk-benefit ratio of its consumption. Knowledge about the nutritional 
composition and risk-benefit ratio is valuable for consumers to change 
their diet conscientiously according to their life cycle stages.

2 Nutritional composition

It is well-known that fish consumption has numerous benefits for 
human health (37, 38). ABFT Thunnus thnunnus is valued as an 
excellent food worldwide due to its good nutritional and sensory 
quality, making it a favorite choice in the seafood market. Consequently, 
many organizations have been interested in developing aquaculture 
and processing technology to increase fishing and processing efficiency 
(39). In this section, we will address the nutritional composition of 
ABFT. Different databases were consulted to provide information 
about the approximate composition of fish and shellfish. Among them 
are the global database of FAO/INFOODS, the USDA, the United States 
National Marine Fisheries Service, and the United  Kingdom 
Department of Health. Table 1 shows the composition of macro and 
micronutrients present in 100 g of ABFT meat, which is low in calories 
while providing high-quality proteins and lipids, fat-soluble vitamins, 
and various essential elements. In addition, the consumption of this 
species has been linked to a series of beneficial health effects due to the 
presence of bioactive compounds, including bioactive peptides present 
in proteins and PUFAs, mainly EPA and DHA (28, 44, 45). 
Nevertheless, it is important to underline that the nutritional 
composition of any fish may vary depending on environmental factors, 
age, sex, maturation stage, and the migratory behavior of each species.

2.1 Protein and amino acid profile

According to the data compiled, the protein content in bluefin 
tuna is 23 g/100 g of fresh product (Table 1). Considering that the 
usual protein range provided by fish is between 17–23 g, we find that 
bluefin tuna has a higher protein content when compared to other 
species. Similar results have been reported in farmed and wild bluefin 

tuna samples (21–23 g protein) (46, 47). In 2012, the Spanish Ministry 
of Agriculture, Food, and Environment published a guide on 
nutritional declarations and health properties of food products, where 
ABFT was considered a high-protein food. Additionally, in its health 
declarations, the European Parliament stated that these proteins 
contribute to increasing and conserving muscle mass and maintaining 
bones under normal conditions (40). Experimental studies in animals 
have demonstrated various benefits derived from fish protein intake. 
These benefits include hypocholesterolemic effects attributed to the 
amino acid composition of fish, although the mechanism is not clear 
(48); antihypertensive effects due to the presence of angiotensin-
converting enzyme (ACE) inhibitor peptides (49, 50); and 
antiatherosclerotic effects, which are attributed to the antioxidant 
properties of peptides and fish protein hydrolysates (44). In addition, 
it has also been shown that proteins can improve insulin sensitivity, 
prevent metabolic syndrome, and reduce the risk of type 2 
diabetes (44).

TABLE 1 Nutritional composition of the bluefin tuna Thunnus thynnus 
(g/100  g dry weight) (40–43).

Nutritional component Reference 
daily intake

Nutritional 
declaration

Energy 144 kcal

Macronutrients (g/100 g)

Proteins 23 50 g High content

Carbohydrates 0 — —

Lipid (total) 12

Low in saturated fat

High content of 

omega-3 fatty acids

Vitamins (units/100 g)

Thiamine (B1) 0.241 mg 1.1 mg High content

Riboflavin (B2) 0.22 mg 1.4 mg Font

Pantothenic acid (B5) — 6 mg —

Pyridoxine (B6) 0.46 mg 1.4 mg High content

Cobalamin (B12) 5 μg 2.5 μg High content

Folate (B9) 15 μg 200 μg —

Niacin (B3) 17.8 mg 16 mg High content

Vitamin A (retinol) 655 μg 800 μg High content

Vitamin D 25 μg 5 μg High content

Vitamin C Traces 80 mg —

Vitamin E 1 mg 12 mg Font

Minerals

Calcium (Ca) 38 mg 800 mg —

Iron (Fe) 1.3 mg 14 mg —

Iodine (I) 36.7 μg 150 μg Font

Magnesium (Mg) 28 mg 375 mg High content

Zinc (Zn) 1.5 mg 10 mg Font

Sodium (Na) 43 mg ≤0.12 g Low content

Potassium (K) 40 mg 2,000 mg —

Phosphorus (P) 200 mg 700 mg Font

Selenium (Se) 82 μg 55 μg High content

https://doi.org/10.3389/fnut.2024.1340121
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chamorro et al. 10.3389/fnut.2024.1340121

Frontiers in Nutrition 04 frontiersin.org

FIGURE 2

Fatty acid composition of ABPTF (g/100  g).

Fish proteins are better quality than red meat due to their lower 
collagen content and better digestibility, reported to be over 90% (6, 
51). The nutritional value of a protein depends on the amino acid 
composition (score), the content of essential amino acids, and its 
susceptibility to digestion (52–54). Currently, the suggested method 
for assessing protein quality is a chemical score, or a protein 
digestibility corrected amino acid score (PDCAAS) (52–54). The 
amino acid profile of ABFT shows a high amount of histidine, 
isoleucine, leucine, lysine, threonine, tryptophan, valine, 
phenylalanine, and methionine (6). They are considered essential 
amino acids since humans do not have the ability to synthesize them, 
and must be incorporated into the diet (Table 1). Table 1 presents the 
contribution of ABFT regarding the reference daily intake. Just 100 g 
of ABTF cover between 44% and 69% of the requirements for all 
essential amino acids (55–58). Due to their amino acid profile, fish 
proteins can also benefit health, mainly through antioxidant and anti-
inflammatory effects. For example, an adequate supply of histidine 
through the diet provides benefits against age-related 
neurodegenerative and cognitive disorders, metabolic syndrome, 
rheumatoid arthritis, and inflammatory bowel disease (59). The three 
branched-chain amino acids, leucine, isoleucine, and valine, also play 
a fundamental role in regulating energy homeostasis, metabolism, 
innate and adaptive immunity, and glucose metabolism, lipid and 
protein synthesis. Therefore, current evidence indicates that the 
adequate supply of these amino acids through the diet could positively 
affect the parameters associated with metabolic diseases (60). Another 
aspect to highlight in the amino acid content of bluefin tuna is the 
contribution of phenylalanine and tryptophan, as both amino acids 
are considered natural antidepressants (61). Tryptophan is additionally 

vital for the correct functionality of the brain–brain axis, gut, and 
immune system (62).

On the other hand, the protein content is essential from an 
organoleptic point of view since fish species containing small amounts 
of protein tend to lose a considerable amount of water during cooking, 
which ruins the texture of the meat (47). Thus, the high protein 
content of this species also contributes to its good 
organoleptic properties.

2.2 Lipid content: fatty acids profile and 
w-3/w-6 relation

Lipids are macronutrients needed in the human diet and can affect 
health depending on the type and proportion of the dietary fatty acids 
consumed. It has been stated that monosaturated fatty acids (MUFAs) 
and PUFAs exert beneficial properties in human health (63). The lipid 
content of ABFT corresponds to 12 g/100 g in both wild and farmed 
specimens (Table 1) (64). Due to its high lipidic content, this species 
is considered a bluefish (64). The guidelines published in 2012 by the 
Spanish Ministry of Agriculture, Food and Environment declared that 
ABFT is low in saturated fats and high in PUFAs and that the latest 
contribute to the functioning of a normal heart (40). The fatty acid 
profile of ABFT is shown in Figure  2. PUFAs represent the main 
contribution to the total content of fatty acids (3.58 g/100 g) in Atlantic 
bluefin tuna. Within this group, DHA (2.18 g/100 g), EPA 
(0.693 g/100 g), and DPA (0.306 g/100 g) are the most abundant. 
Regarding MUFAs, oleic acid (2.263 g/100 g) and palmitic acid 
(0.397 g/100 g) stand out (Figure 2). Several studies have reported 
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similar results in farmed ABFT, with 3.6 g/100 g of PUFA (47, 64). One 
minor difference was that the leading group of fatty acids corresponded 
to MUFAs, accounting for 42% of the total lipid profile (1.2 g/100 g of 
oleic acid and 1.1 g/100 g of erucic acid). These differences could 
be due to the diet received by the species in cultivation, sex, or the size 
of the animals under study. Other factors that may influence the 
lipidic composition of fish include environmental factors, age, state of 
maturation, and migratory behavior (41). The lipids present in ABFT 
have exceptional quality indices: an excellent omega 3/omega 6 ratio 
(9/1), an adequate polyunsaturated/saturated fatty acids ratio (1.16), 
and an adequate polyunsaturated/monounsaturated/saturated fatty 
acids ratio (2.03) (41, 47, 64). Furthermore, low levels of atherogenicity 
indices (AI), thrombogenicity indices (TI), and a high ratio of 
hypocholesterolemic to hypercholesterolemic fatty acids (HH) have 
been reported, indicating that the intake of this fish may exert 
hypocholesterolemic effects (4, 64, 65). Therefore, the consumption of 
ABFT could be beneficial in preventing cardiovascular diseases (66).

Various organizations such as FAO (Food and Agriculture 
Organization), the Academy of Nutrition and Dietetics, and the 
European Association for Cardiovascular recommend a minimum 
intake of EPA and DHA of 250 mg for adults and, in the case of 
pregnant and lactating women, the amount of DHA should increase 
between 100–200 mg (67–70). In this sense, ABFT guarantees a good 
quantity of fatty acids. Hundred grams of tuna meat provides 0.693 
and 2.18 g of EPA and DHA, respectively, contributing to more than 
100% of the reference daily intake. Consumption of these fatty acids 
has essential roles in human health, including promoting 
cardiovascular health and protection against neurological and 
inflammatory conditions (68, 71). Observational studies demonstrated 
a protective effect of fish intake on cardiovascular disease risk. In 
agreement, various scientific organizations affirm that the 
consumption of at least two servings of fish per week, where at least 1 
is an oily fish, is associated with a decreased risk of death from 
coronary heart disease of at least 25% compared to those who do not 
eat fish (67–70, 72).

2.3 Carbohydrates

Bluefin tuna tissue comprises lipids and proteins, so the 
proportions of carbohydrates are minor, almost insignificant. In 
Table 1 it is shown that the carbohydrate content is 0 g/100 g (73).

2.4 Vitamins

ABFT stands out for containing significant amounts of B complex 
vitamins, including thiamine (B1) 0.241 mg/100 g, niacin (B3) 
17.8 mg/100 g, pyridoxine (B6) 0.46 mg/100 g and cobalamin (B12) 
5 μg/100 g. Thus, 100 g of bluefin tuna provides between 25% and 50% 
of the reference daily intake of these vitamins (Table 1). The report 
published by the Spanish Ministry of Agriculture, Food and 
Environment in 2012 established that bluefin tuna is a good source of 
vitamins. Within the nutritional declaration, it is also indicated that 
thiamine contributes to the normal functioning of energy metabolism, 
the nervous system, the heart, and psychological functions; niacin 
contributes to the maintenance of the skin and mucosa and reduces 
fatigue; and pyridoxine and cobalamin vitamins contribute to the 

normal functioning of the immune system, formation of red blood 
cells, and the process of cell division (40).

Additionally, bluefin tuna is rich in fat-soluble vitamins such as 
vitamins A, D, and E, and its consumption can contribute between 
25% and 80% of the reference daily intake. Consumption of these 
vitamins is important because they contribute to normal iron 
metabolism, immune system functioning, and cell differentiation 
process. In the particular case of vitamin D, it contributes to the 
maintenance of normal bones and teeth, the maintenance of normal 
calcium levels in the blood, and the normal absorption and utilization 
of calcium and phosphorus (74–76). On the other hand, although to 
a lesser extent, ABFT is also a source of vitamin E, which stands out 
for its powerful antioxidant role and free radical scavenger (77).

2.5 Minerals

Minerals have a crucial role in human health and metabolism, 
with intake through the diet being essential (78). In this context, 
ABFT constitutes an excellent food source of minerals. Table 1 reports 
the contribution of minerals in 100 g of tuna, highlighting 28 mg of 
Mg, and 82 mg of Se. According to the nutritional declarations 
published in 2012 by the Spanish Ministry of Agriculture, Food and 
Environment (40), ABFT is an excellent source of these minerals. 
Regarding human health, Mg contributes to normal energy 
metabolism, electrolyte balance, normal muscle and nervous system 
function, normal protein synthesis, and cell division (40, 79, 80). Se is 
attributed to different health benefits; among them is the contribution 
to the normal functioning of the immune system, normal thyroid 
function, and the protection of cells against oxidative damage since it 
is part of many selenoproteins, which are responsible for biological 
reactions of reduction-oxidation type, antioxidant defense, 
metabolism of thyroid hormone and immune responses (81, 82). 
Furthermore, various studies report that Se can protect against 
environmental contaminants, such as mercury (Hg), commonly found 
in some fish species (83–87), but this will be  discussed later (see 
Table 2).

Regarding the reference daily intake, it has been observed that 
100 g of bluefin tuna can contribute 149% of Se recommendation. 
Additionally, ABFT also contains iodine (36.7 μg/100 g), zinc 
(1.5 mg/100 g), and phosphorus (200 mg/100 g), being considered as a 
source of these minerals (42). On the other hand, ABFT has a low 
contribution of sodium (43 mg/100 g), the nutritional declaration 
naming it as a low-content source. Thus, its consumption is attractive 
for low-sodium or low-salt diets, recommended, for example, to 
patients with hypertension.

3 Health benefits associated with blue 
fish consumption

As previously mentioned, blue fish and ABFT are highly nutritious 
seafood products of great interest in the market and among health-
conscious consumers (88). Numerous studies have linked the chemical 
composition of these foods with many biological properties and 
beneficial effects on health. These beneficial effects are mainly 
attributed to PUFAs, especially EPA and DHA. Additionally, fish 
provide other high-quality nutrients, such as proteins, vitamins, and 
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minerals, that may have a synergic effect, reducing the incidence of 
certain diseases (89). The health benefits associated with fish 
consumption will be discussed in this section and are summarized in 
Table 3 and Figure 3.

3.1 Cardiovascular diseases

Globally, cardiovascular diseases (CVDs) are still the leading 
cause of mortality. According to the World Health Organization 
(WHO), about 17.9 million people died in 2019 from CVDs, which 
represents 32% of all global deaths (97). The major risk factors that 
may trigger CVDs include smoking, hypertension, obesity, 
dyslipidemia, psycho-social stress, and unhealthy and sedentary 
lifestyle (98). Current first-line treatments effectively reduce CVD risk; 
however, adherence to healthier dietary patterns is increasingly 
encouraged since certain nutrients can contribute to maintaining this 
risk to the minimum and can be used as a preventive tool (98, 99). In 
this context, fish represents an important cardioprotective dietary 
component, attributed to its high omega-3 long chain PUFAs content, 
especially EPA and DHA (99). Many studies have correlated a higher 
fish consumption to a lower risk of CVDs, including stroke (98), 
coronary heart disease (99), hypertension, arrhythmias (100), and 
cerebrovascular disease (101). Recently, a dose-response meta-analysis 
showed that fish intake of 20 g/day significantly reduced total CVD 
mortality (4%) (102). In a further study, these authors also found a 

significant association between a fish intake of 15 g/day and a 
reduction of myocardial infarction risk by 4% (99). Increasing fish 
consumption to 100–700 g/week was significantly associated with 
stroke risk reduction by 2%–12% (103). Some differences were 
observed in such association between geographical regions. While a 
pronounced inverse relationship between fish consumption and CVDs 
risk was found in Asian countries, studies conducted in Western 
countries reported a modest U-shaped association (102). This means 
that both low and high fish consumption could lead to higher CVDs 
risk. Possibly, this variation may be attributed to different cooking fish 
methods employed in Asian (mainly steaming and stir-frying) and 
Western countries (deep-frying) being the latter more unhealthy (102).

Many biological mechanisms are responsible for the 
cardioprotective effects attributed to omega-3 long chain PUFAs. 
Among them, are anti-inflammatory (104), and antioxidant action 
(105), antiarrhythmic and antithrombosis action, regulation of blood 
lipids level, protection of vascular endothelial cells, and immune-
modulatory activity (99, 100, 106).

3.2 Neurological diseases

Bluefish consumption has also shown beneficial neuroprotective 
properties attributed to omega-3 long chain PUFAs composition. 
These compounds have a crucial role in proper brain development, 
neuro transmission, neuronal differentiation and growth, gene 
expression, and modulation of ion channels (107, 108). It has been 
stated that DHA can enhance blood flow, reduce inflammation and 
diminish amyloid-β pathology, thus preventing a primary cognitive 
decline (107). In addition, DHA has vital functions in different stages 
of the neuronal degeneration process since this compound can keep 
membrane fluidity, stimulate neurotrophic factors, diminish oxidative 
stress and cell death and exert anti-inflammatory activities (109). By 
contrast, DHA levels in the brain decrease with aging, resulting in 
cognitive decline (108). In a meta-analysis, the impact of DHA 
supplementation alone or in combination with EPA on specific 
memory domains (working, episodic and semantic) was studied in 
adults. These authors found that supplementation with 1 g/day DHA/
EPA significantly improved episodic memory in adults with mild 
memory problems, while DHA supplementation alone induced 
changes in semantic and working memory to a lesser extent (110).

Regarding the incorporation of fish into diet as a good source of 
DHA and EPA, some authors found that moderate fish consumption 
and supplementation with omega-3 long-chain PUFAs (0.5–1 g/day) 
led to a significant reduction in depression prevalence with an 
U-shaped association, regardless of sex, cardiometabolic disturbances 
or lifestyle (111). Other study reported that a decreased ratio of 
omega-6/omega-3 PUFAs, a reduction of omega-6 PUFAs, and 
increased EPA and DHA levels in Mediterranean-style diet 
supplemented with fish oil significantly enhanced mental health in 
patients with depression over 3 and 6 months. The addition of fish oil 
to the diet improved omega-3 PUFAs levels while reducing the 
omega-6 ones (112).

3.3 Metabolic diseases

Metabolic syndrome is a multifactorial disorder resulting from the 
interaction between genetic, metabolic and environmental factors that 

TABLE 2 Amino acid profile, recommended daily intake values and 
percentage of contribution to the daily diet of the amino acids present in 
bluefin tuna (55–58).

Amino acids
Bluefin 
tuna (g)

Reference 
daily intake (g)

Input (%)

Essentials

Histidine 0.687 1.14 60

Isoleucine 1.075 1.55 69

Leucine 1.896 3.43 55

Lysine 2.142 3.10 69

Methionine 0.690 1.55 44

Phenylalanine 0.911 2.69 63

Threonine 1.023 1.63 63

Tryptophan 0.261 0.41 64

Valine 1.202 1.96 61

Semi-essentials

Proline 0.825 — —

Arginine 1.396 — —

Aspartic acid 2.388 — —

Cystine 0.250 — —

Glutamic acid 3.482 — —

Glycine 1.120 — —

Serine 0.952 — —

Tyrosine 0.787 — —

Non-essentials

Alanine 1.411 — —

Aspartic acid 2.388 — —
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can increase the risk of suffering CVDs, type-2 diabetes and all-cause 
mortality (113). It has been stated that fish consumption could 
inversely enhance metabolic syndrome features such as insulin 
resistance, abdominal obesity, hypertension, and dyslipidemia since 
fish containing omega-3 PUFA can reduce plasma triglycerides, blood 
pressure, fasting blood glucose while increasing high-density 
lipoprotein (HDL) cholesterol (113, 114). In addition to omega-3 
PUFAs, fish also contain high-quality nutrients such as vitamins, 
minerals, and proteins, which could contribute to reducing metabolic 
syndrome (113). In a cross-sectional analysis, higher fish consumption 
in Norwegian adults was related to a better lipid profile with high HDL 
cholesterol levels and reduced triglyceride content. These authors also 
observed that participants consuming fish once a week (aged between 
60 and 70 years) showed a 36% lower risk of suffering metabolic 
syndrome compared to those consuming fish at a low frequency (115). 
Similarly, in another cross-sectional study, higher fish consumption in 
Iranian female adults led to a lower prevalence of metabolic syndrome 
features like low blood pressure and high HDL cholesterol (113).

Many biological mechanisms have been proposed to understand 
the beneficial effects of omega-3 PUFAs on reducing metabolic 
syndrome. Among them, omega-3 PUFAs may alter transcription 
factors activity involved in inflammatory pathways and liver lipid 
metabolism (116). In this way, omega-3 PUFAs may promote 
triglyceride oxidation in the liver, adipose tissue and skeletal muscle, 
thus avoiding fat accumulation in these tissues (117). In addition, 
omega-3 PUFAs can enhance insulin sensitivity by reducing adipose 
tissue inflammation and synthesizing peroxisome proliferator-
activated receptor alpha (117, 118).

3.4 Immunological system-related diseases

The immune system protects the host from infectious agents, 
bacteria, and viruses. This system involves various blood-borne factors 
and cells (119). The phospholipids of human immune cells hold a high 
concentration of omega-6 PUFAs (6%–10% linoleic acid, 1%–2% 

TABLE 3 Different studies about omega-3 benefits in human health.

Disease type Study Results Reference

Cardiovascular: stroke Prospective cohort study

Men: 43,671

Age: 40–79 years

Duration: 12 years

Eating fish (n−3 PUFAs) once per month or more can 

reduce the risk of ischemic stroke in men

(90)

Cardiovascular: stroke Prospective cohort study

Women: 79,839

Age: 34–59 years

Duration: 14 years

Eating fish (n−3 PUFAs) 2 or more times per week can 

reduce risk of thrombotic infarction in women

(91)

Cardiovascular and metabolic: all 

cancer, CVD, ischemic heart disease, 

ischemic and hemorrhagic strokes, 

and diabetes

Prospective cohort study

Men: 61,127

Age: 40–74 years

Duration: 12 years

Reductions of risk of total, ischemic stroke, and diabetes 

were 16, 37, and 39%, respectively when fish 

consumption is high

(92)

Prospective cohort study

Women: 73,159

Age: 40–70 years

Duration: 12 years

Obesity and overweight Cross-sectional study

People: 124

Average age: 49

Duration: not determined

There is an inverse correlation between n−3 PUFA and 

BMI, waist circumference, and hip circumference

(93)

Metabolic: type 2 diabetes Prospective cohort study

People: men (51,963) and women (64,193)

Age: 40–74 (men), 40–70 (women)

Duration: 12 years

There is an inverse relation between fish intake and type 2 

diabetes in women. There is not a detrimental effect of 

fish intake in the population

(94)

Metabolic: prostate cancer Prospective cohort study

People: men (14,916)

Age: 40–84

Duration: 13 years

n−3 PUFAs consumption can reduce the risk of prostate 

cancer

(95)

Cardiovascular, metabolic and 

obesity: body weight, cholesterol 

levels, inflammation

Study

People: men (34)

Age: 25–65

Duration: 4 weeks

n−3 PUFAs supplementation did not lead to a significant 

reduction in body weight and body fat of patients.

n−3 PUFAs supplementation reduced triglycerides and 

insulin levels of patients.

n−3 PUFAs supplementation reduced inflammatory 

cytokines (IL-1β, IL-6, TNF-α) in the patients

(96)
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dihomo-γ-linoleic and 15%–25% arachidonic acid), while low 
concentrations of omega-3 PUFAs (<1% α-linoleic acid, 0.1%–0.8% of 
EPA, and 2%–4% of DHA). The immune processes are controlled by 
proteins, pro-inflammatory cytokines, eicosanoids, or miscellaneous 
compounds (120). It has been stated that arachidonic acid is the 
primary precursor of eicosanoids and leads to the production of 
inflammatory mediators, controlling inflammatory cell activities, 
cytokine production, and balance within the immune system (121). 
Eicosanoids are a family of bioactive mediators that modulate the 
intensity and duration of inflammatory and immune responses. 
Therefore, by altering the arachidonic acid concentration, cells will 
have less ability to produce eicosanoids (121–123).

Some studies concluded that omega-3 long-chain PUFAs, 
especially EPA and DHA, could reduce immune cells’ capacity to 
synthesize eicosanoids from arachidonic acid. The levels of eicosanoids 
are widely elevated when the amount of arachidonic acid is limited 
(122, 124). Thus, human diets rich in fish or fish oil may increase the 
concentration of EPA and DHA in immune cells. The anti-
inflammatory activity attributed to omega-3 PUFAs may handle their 
immune function. Some studies conducted in animals, mainly in rats, 
demonstrated that omega-3 PUFAs affected the production of 
inflammatory cytokines (120, 121, 125). In fact, incorporating fish oil 
into the diet reduced the arachidonic acid proportion while increasing 
EPA and DHA levels in immune cell phospholipids (126, 127). Studies 
carried out in humans also demonstrated the immunomodulatory 

effects of omega-3 PUFAs, resulting in a significant decrease in the 
generation of pro-inflammatory leukotriene B4 and modulating 
cytokine production (128–130). Studies suggested that when sufficient 
concentrations of fish oil are consumed, significant anti-inflammatory 
effects are obtained. According to some authors, 1.35–2.7 g EPA per 
day is the threshold intake required to achieve a significant 
immunological effect (131). From these results, it may be concluded 
that n−3 fatty acids can be  used as therapy for any type of 
inflammation that involves an undesirable immune response (121). 
Therefore, the regular intake of ABFT may lead to a reduction in the 
level of inflammation and exert a crucial immunomodulatory effect.

3.5 Bodyweight control

Obesity is considered an energy balance disorder leading to 
adipose tissue dysfunction. It is associated with high levels of 
inflammation and metabolic abnormalities (high levels of cytokines) 
(132). In fact, this disorder usually appears when omega-6:omega-3 
ratio is increased, and serum phospholipid n−3 concentrations are 
decreased (93). Being overweight can lead to the development of other 
conditions, such as insulin resistance, type 2 diabetes, and some types 
of CVDs (133, 134). Women have a higher prevalence of obesity and 
overweight than men, and it increases with age (135). In 2017, 
approximately 39% of the world’s adult population was overweight, 

FIGURE 3

Biological activities associated with bluefin tuna consumption.
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and 13% were obese (136). Although there are various strategies to 
treat obesity and overweight, such as pharmaceuticals, surgery, or 
dietary supplements, the prevalence of obesity continues to rise during 
this decade (117). For this reason, healthy strategies to help in weight 
loss and reduce body fat are needed. Omega-3 PUFAs might be a good 
candidate to treat obesity and its related side effects due to its 
important role as anti-inflammatory agent (117), reducing cytokines 
such as IL-1, IL-6, and TNF-α (137–139).

Numerous mechanisms have been proposed to explain the effects 
of omega-3 PUFAs, particularly EPA and DHA, on reducing body 
weight and enhancing the metabolic profile, including alterations in 
adipose tissue gene expression, changes in adipokine release, appetite 
suppression, alterations in carbohydrate metabolism and increase of 
fat oxidation, among others (117). Despite the knowledge of these 
mechanisms to reduce obesity, more studies are needed to reach a 
conclusion. Some works have assessed the effects of omega-3 PUFAs 
on body weight control both in animals and humans, concluding that 
EPA and DHA play a key role in promoting protection against body 
fat gain (140–142). For instance, incorporating omega-3 PUFAs into 
a rat diet for 3 weeks reduced up to 30% fat weight of subcutaneous 
and visceral adipose tissues (142). Similarly, other authors 
demonstrated that obese mice fed a diet rich in omega-3 PUFAs 
showed a significant loss of weight (143). Other studies dealt with the 
effects of supplementing the diet of overweight or obese young adult 
men with lean fish, fatty fish or fish oil capsules during 8 weeks (144, 
145). They found a significantly higher weight loss when supplemented 
with fish-related capsules concerning a diet without fish. On the other 
hand, Schulz et al. (146) found that regular fish intake led to low 
weight loss in men and higher weight gain in women. Another study 
concluded that adopting a Mediterranean diet, including a higher 
consumption of fish rich in omega-3 PUFAs, did not lead to significant 
weight changes in men and women compared with lower fish 
consumption (47). Nonetheless, based on clinical studies, the impact 
of omega-3 PUFAs on body composition is still uncertain since there 
is little data available to reach a conclusion.

For this reason, there is still much controversy about whether 
omega-3 PUFAs exert significant anti-obesity effects (90, 93, 96). In 
this context, despite the anti-obesity effects of omega-3 PUFAs not yet 
being clear, incorporating these fatty acids into the diet may mitigate 
weight gain or maintain weight loss (117). Moreover, they clearly play 
a beneficial role in obese or overweight people in contributing to 
reducing inflammatory cytokines levels (137–139) and inflammatory 
processes (117).

4 Importance of fish consumption 
during the life cycle stages

4.1 Recommended intake per age group

Bluefish consumption during the life cycle stages is highly 
relevant. Starting with pregnant women, a sufficient intake of this type 
of fish is not reached to meet the recommended contributions, it can 
generate malformations in the fetus and defects in the neural tube. In 
fact, the EFSA recommends the consumption of blue fish because it 
can be  positive in avoiding cardiovascular diseases. In the first 
6 months of life and even in young children, insufficient consumption 
of blue fish can affect their cognitive development, causing adverse 
effects on brain and immune function (147, 148). However, there is 

still no specific information or data on the optimal amounts of ABFT 
in pregnant women and children under 3 years (149). In children 
between three and 12 years, the recommended consumption is 
between 50 g per week, with a total of 120 g per month (150). In adults, 
according to EFSA, the recommended intake is 125 g per week (148).

As mentioned, ABFT provides vitamins and minerals that stand 
out in its nutritional composition. ABFT is a source of vitamins B (B6, 
B3 and B12), D, and minerals such as phosphorus or selenium, which 
are high contents. For instance, one serving of tuna provides 250% of 
the recommended intake of vitamin D (151). Table  4 shows the 
nutritional contribution for each portion of 100 g of ABFT as well as 
the recommended daily intakes for different groups of age and also 
differentiated by sex. For instance, every portion of 100 g of this 
species provides 23 g of protein, which nearly accounts for half of the 
recommended daily intake. Similarly, a portion of ABFT contributes 
to fulfilling the recommended intake of minerals, as 100 g of ABFT 
provides 82 mg of Se (Table 4).

It is important to note that the ingestion of toxic elements studied 
in different investigations from samples obtained from tuna do not 
pose any risk to the consumers health. However, regular, or excessive 
consumption of tuna species could exceed the recommended weekly 
intake or the lower confidence limit of the reference dose, which does 
not necessarily pose a significant risk to consumers (149).

4.2 Risk-benefit ratio: toxicological 
assessment

EFSA has provided risk-benefit assessments of fish consumption 
based on scientific resources that expose the beneficial effects of fish 
intake and the possible risks associated with some contaminants such 
as Hg or methylmercury (MeHg) (23, 150, 154, 155). In this sense, in 
2012 EFSA updated the tolerable weekly intake (TWI) of MeHg, 
establishing the limit at 1.3 μg/kg of body weight and for inorganic Hg 
4 μg/kg of body weight (150). These limits were adopted based on the 
assessment of different outcomes. Among them, several biomarkers 
were used to provide precise data for MeHg exposure such as red 
blood cells, hair, toenail, or fingernail whereas plasma and urine 
samples were preferred for Hg. Data obtained from in vivo assays 
based on different experimental animals and epidemiological studies 
from the Faroe Islands and Seychelles such as the Hg and MeHg 
toxicity in prenatal neurodevelopment, were also used as reference. To 
assess dietary exposure, it was assumed that the total content of Hg in 
fish was 100% as MeHg and a bioavailability in the body of 100%. 
Subsequently, EFSA made a scientific statement where panel members 
addressed the benefits of fish consumption, such as those due to the 
PUFAs content and its capacity to counteract to the risks of MeHg. 
Considering all this data and factors, EFSA concluded that an intake 
of 1 to 4 servings per week of fish was associated with beneficial effects 
in adults with coronary artery disease. In this range of fish 
consumption, health benefits outweigh risks, especially compared to 
people who do not consume fish (23). In addition, the EFSA stated 
that this frequency of consumption (1–4 servings/week) has been 
associated with a lower risk of mortality from coronary heart disease 
in adults and is compatible with current intakes and recommendations 
in most European countries. This statement refers to fish per se and 
considers the beneficial and adverse effects of nutrients and 
non-nutrients, including contaminants such as MeHg, which may 
be  present in fish (23). However, in the risk assessment, EFSA 
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considers children under 10 years of age and women during 
pregnancy, lactation or expecting to get pregnant as sensitive 
populations to exposure of high levels of Hg or MeHg. Therefore, for 
these groups, the consumption of fish species with lower amounts of 
these contaminants is recommended (155). Indeed, various national 
food safety agencies have issued recommendations to limit the 
consumption of certain types of fishery products in these susceptible 
populations. For instance, AESAN recommends avoiding the 
consumption of swordfish, shark, bluefin tuna, and pike by these 
previously mentioned susceptible populations (156).

Various authors have pointed out that the risk-benefit assessment 
should consider the apparent protective effect of some nutrients such 
as PUFAs and Se against Hg and MeHg (83, 84, 87, 88, 157–159). 
Regarding the protective effect of PUFAs, DHA seems to protect 
against oxidative stress induced by MeHg in neuronal cells (160–162). 
In this sense, a study evaluated the dose-response between maternal 
fish consumption and the child’s verbal intelligence quotient (IQ). It 
was found that a maternal intake of 100 mg of DHA per day may 
prompt a gain of 2.8 points of verbal IQ in 18 months-old children 
(163). Similarly, other works reported that the continuous consumption 
of fish by pregnant women led to a laxer relationship between 
intrauterine exposure to MeHg and children’s IQ (164, 165). In 
accordance with the Scientific Opinion of EFSA regarding the risks for 
public health related to the presence of Hg and MeHg, omega 3-LC 
PUFAs, can counteract the negative effects of exposure to MeHg (150). 
In this line, the most studied nutrient for protection against MeHg 

appears to be Se. The bound affinity of Hg and Se is a million times 
greater than for sulfur in analogous forms. Indeed, several attempts 
have been made to design products with Hg-detox capacity using Se 
(e.g., Hg selenide). Possible protective modes of action of Se against 
MeHg toxicity include antioxidant effects, increased glutathione 
peroxidase activity, glutathione synthesis, elevated selenoprotein levels, 
and increased MeHg demethylation (157, 166). In this sense, it is 
suggested that a molar excess of Se compared to Hg can protect against 
its toxic effects. This could explain why studies of maternal populations 
exposed to foods that contain Hg in a molar excess of Se, such as pilot 
whale meat, have found adverse results in children, while populations 
exposed to Hg but showing a constant pattern of consumption of sea 
fish rich in Se showed lesser or none adverse effects (167). Subsequently, 
a new criterion was proposed to assess the risks of Hg exposure, the Se 
Health Benefit Value (HBVSe), which simultaneously evaluates Hg 
exposures and dietary Se intakes, particularly regarding Se 
consumption during pregnancy (157). Another risk assessment 
proposal is the benefit-risk value (BRV), this equation attempts to 
reflect either excess Hg or excess Se, in which case it can be assessed 
with respect to adequate Se intake. Various studies have shown that 
benefits outweigh risks when it comes to bluefin tuna consumption, as 
the molar ratio of Se:Hg oscillates between 1.3 and 20 and always 
implies a molar excess of Se compared to Hg (Table 5). In addition, 
HBVSe values are reported to oscillate between 7.9 and 296 (Table 5); 
therefore, it is likely that the high Se content against Hg prevents the 
toxicity induced by Hg (88, 176, 178, 179).

TABLE 4 Nutrition offered by 100  g of bluefin tuna Thunnus thynnus and the recommended daily value of certain nutrients to several different targeted 
populations (40–43, 152, 153).

Nutrients (g/100  g DW)
Children 

7–11  months
Children 

1–17  years
Pregnant 
women

Female 
>18  years

Male 
>18  years

Nutrients (g/day)

Proteins 23 1.12 g/kg bw per day
0.67–0.85 g/kg bw per 

day

0.52–28 g/kg bw per 

day

0.66–0.83 g/kg bw 

per day

0.66–0.83 g/kg bw 

per day

Carbohydrates — NA 45–60 E% ND 45–60 E% 45–60 E%

Minerals (mg/day)

Ca 38 280 mg/day 390 mg/day 750 mg/day 750 mg/day

Fe 1.3 8 mg/day 5–13 mg/day 7–16 mg/day 7–16 mg/day 6–11 mg/day

I 0.04 70 μg/day 90–500 μg/day 200 μg/day 150 μg/day

Mn 28 0.02–0.5 mg/day 0.5–3.0 mg/day 3 mg/day 3 mg/day

Zn 1.5 2.4 mg/day 3.6–14.2 mg/day 1.3 mg/day 6.2 mg/day 7.5–16.3 mg/day

Na 43 NA 1.1–2 g/day* 2 g/day* 2 g/day

K 40 750 mg/day 800–3,500 mg/day 3,500 mg/day 3,500 mg/day

P 200 160 mg/day 250 mg/day 550 mg/day 550 mg/day

Se 0.08 15 μg/day 15 μg/day 70 μg/day 70 μg/day

Vitamins (mg/day)

A 0.6 250 μg of retinol per day
205 μg of retinol per 

day

540 μg of retinol per 

day

490 μg of retinol per 

day

570 μg of retinol per 

day

B6 0.46 0.6 mg/day 0.5 mg/day 1.5 mg/day 1.3–1.6 mg/day 1.5–1.7 mg/day

B12 0.005 1.5 μg/day 1.5–4.0 μg/day 4.5 μg/day 4 μg/day

C Traces 20 mg/day 15 mg/day 105 mg/day 80–95 mg/day 90–110 mg/day

D 0.025 10 μg/day 15 μg/day 15 μg/day 15 μg/day

E 1 5 mg/day 6 mg/day 11 mg/day 11 mg/day 13 mg/day

*Do not consume any other fish in this category in the same week.
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On the other hand, some authors suggest considering the 
bioaccessible fraction of Se and Hg to provide a more accurate risk 
assessment (180–182). In this line in vitro gastrointestinal digestion 
techniques provide valuable data about the bioaccessibility of Hg 
and MeHg which can get decreased after cooking to around half of 
the original concentration (181). This change in bioaccessibility 
has been attributed to the effect of the temperature in the structural 
conformation of fish muscle proteins, which may cause loss of 
native protein structure. These alterations could prevent the access 
of the enzymes used in in vitro gastrointestinal digestion models 
to the structures to which Hg is bound such as thiol groups (181). 
In agreement with these outcomes, another work also found up to 
40% reductions in the bioaccessible fraction of Hg in fish after 
cooking it (183). Therefore, for a more accurate risk assessment, all 
the criteria mentioned above must be considered Nevertheless, 
further research in the area is necessary to study the synergistic 
effects between the different variables, to improve the 
understanding of the repercussions on health regarding the intake 
of fish and shellfish.

5 Conclusion

Atlantic bluefin tuna, Thunnus thynnus, is a highly nutritious 
species rich in high-quality proteins, lipids, fat-soluble vitamins, and 

various essential elements essential for the proper functioning of the 
body. Among the nutritional composition, bioactive peptides and the 
omega-3-polyunsatturated fatty acids EPA and DHA have been linked 
to beneficial effects. In this sense, several population studies have 
reported the positive effects of fish consumption on human health, 
including protection against cardiovascular, neurological, metabolic, 
and immune diseases and body weight regulation. Besides, consuming 
this species helps achieve the intake recommendations of several 
vitamins and minerals. However, some limitations for some vulnerable 
population groups, such as young children and pregnant women, 
should be considered due to the presence of contaminants, especially 
mercury and methylmercury. However, several authors have pointed 
to high selenium levels’ capacity to counteract the negative effects of 
these contaminants. Selenium has been suggested to form complexes 
that reduce the bioaccessibility of mercury and methylmercury and so 
it would decrease their harmful effects. In this sense, some studies 
have evaluated this species’ risk-benefit ratio, showing a minimal risk 
in most cases. Nevertheless, further research and assessments of the 
risk of tuna consumption is still necessary to provide reliable data and 
help safeguard the health of humans, especially about the 
bioaccessibility of heavy metals, toxicity of selenium complexes or 
deeper evaluation of risk-benefits and exposure. These outcomes 
would reinforce and increase the current knowledge about Atlantic 
bluefin tuna consumption safety and try to define more accurate 
consumption recommendations.

TABLE 5 Comparison of Hg and Se concentrations (mg  kg  −  1 w.w.) and relation molar ratios Se/Hg and HBVSe in farmed or wild Thunnus sp. samples.

Species Sampling area Typology Hg Se Se/Hg HBVSe Reference

T. thynnus

Malta Farm 0.61 1.07 5.48 (−7.9 to 46.8)*
(88)

Sardinia Wild 1.68 0.64 1.32 (−59.9 to 10.7)*

Spain Wild
0.38

NM NM NM
(168)

0.21 (88)

Italy
Wild

0.45 0.607
NM NM

(149)

0.25 0.73 (169)

Farm 0.66 NM NM NM (170)

Turkey Wild 0.45 1.05 5.49 NM (171)

Slovenia Wild 0.60 0.75 NM NM (172)

New Jersey Wild 0.52 0.43 2.07 NM (173)

Black Sea

Wild

0.62 1.29

NM NM (174)Arabian Sea 0.08 NM

Medit. Sea 0.20 NM

Central Pacific Ocean Wild 0.50 0.88 5.26 10.4 (88)

T. albacares

Taiwan
Wild 0.65 0.75 2.93 NM (175)

Farm 0.16 0.96 15.57 296 (176)

Hawaii Wild 0.30 1.25 14.1 201.7 (177)

Mozambique Wild 0.13 1.24
NM NM (174)

Reunion Island Wild 0.30 1.65

Mexico Wild 0.16 0.53 10.3 64.5 (178)

Spain Farm 0.76 1.24 4.50 82.7 (14)

T. alalunga
Japan Wild 0.23 1.51 20 NM (179)

Hawaii Wild 0.50 0.88 5.26 45.6 (177)

Hg, mercury; Se, selenium; HBVSe, selenium health benefit value; Se/Hg, ratio molar selenium/mercury; w.w, wet weight; NM, not measured. *(Min–Max).
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