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The human brain remains one of the greatest challenges for modern medicine, 
yet it is one of the most integral and sometimes overlooked aspects of medicine. 
The human brain consists of roughly 100 billion neurons, 100 trillion neuronal 
connections and consumes about 20–25% of the body’s energy. Emerging 
evidence highlights that insufficient or inadequate nutrition is linked to an 
increased risk of brain health, mental health, and psychological functioning 
compromise. A core component of this relationship includes the intricate 
dynamics of the brain-gut-microbiota (BGM) system, which is a progressively 
recognized factor in the sphere of mental/brain health. The bidirectional 
relationship between the brain, gut, and gut microbiota along the BGM 
system not only affects nutrient absorption and utilization, but also it exerts 
substantial influence on cognitive processes, mood regulation, neuroplasticity, 
and other indices of mental/brain health. Neuroplasticity is the brain’s capacity 
for adaptation and neural regeneration in response to stimuli. Understanding 
neuroplasticity and considering interventions that enhance the remarkable 
ability of the brain to change through experience constitutes a burgeoning area 
of research that has substantial potential for improving well-being, resilience, 
and overall brain health through optimal nutrition and lifestyle interventions. 
The nexus of lifestyle interventions and both academic and clinical perspectives 
of nutritional neuroscience emerges as a potent tool to enhance patient 
outcomes, proactively mitigate mental/brain health challenges, and improve 
the management and treatment of existing mental/brain health conditions 
by championing health-promoting dietary patterns, rectifying nutritional 
deficiencies, and seamlessly integrating nutrition-centered strategies into 
clinical care.
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1 Introduction

The complex interplay between the foods we eat and how our brains react to nutrition 
highlights the interconnectedness of daily lifestyle habits and the health of the brain, mind, 
and body. Understanding the relationship between food and its impact on mental/brain health, 
in conjunction with the reciprocal influence of mental/brain health on whole-body health, 
including gut health, and daily lifestyle habits, such as dietary choices, requires a 
transdisciplinary approach that incorporates the fields of psychiatry, psychology, neuroscience, 
nutrition, and lifestyle medicine (1–4). This review will explore the significant impact of 
nutrition on brain health, mental well-being, and cognitive functioning. It will highlight the 
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emerging role of lifestyle interventions and nutritional neuroscience 
in proactively improving patient outcomes and managing mental/
brain health conditions.

The brain has the greatest metabolic demands (approximately 
20–25% of the body’s total energy consumption) of any human organ 
(5). Additionally, optimal brain health requires various nutrients, 
including carbohydrates, essential fatty acids, proteins, vitamins, and 
minerals (6, 7). Glucose derived from carbohydrates is the primary 
source of energy for the brain. Essential fatty acids (e.g., omega-3 fatty 
acids, omega-6 fatty acids) play a critical role in maintaining the 
integrity of structures in the brain, as well as promoting the synthesis 
and functioning of neurotransmitters and components of the immune 
system (8). Finally, amino acids found in protein foods, including 
tryptophan, tyrosine, histidine, and arginine, are also utilized by the 
brain to produce neurotransmitters and neuromodulatory compounds 
(9). Research surrounding the link between nutrition and mental/
brain health issues has transitioned from an initial focus on nutrient 
deficiencies that manifested observable psychiatric and/or 
neurological symptoms in clinical settings (i.e., the lack of thiamine 
and the potential development of Wernicke syndrome) to a 
prioritization of research inquiries aiming to better understand the 
implications of comprehensive dietary patterns on human well-being 
in the context of both health and disease (4).

Evidence in the burgeoning fields of lifestyle psychiatry and 
nutritional neuroscience has made it increasingly evident that diet is 
not only a matter of physical sustenance but also a fundamental factor 
influencing cognitive abilities, emotional states, and risk of or 
protection against mental health issues and/or brain illnesses (4, 10–
13). This bidirectional relationship challenges the historical silos of 
nutrition and neuroscience, emphasizing the need for transdisciplinary 
collaboration to unravel the intricacies of how the foods we consume 
shape the functioning of our brains and, in turn, how the state of our 
brains influences our dietary choices.

2 Intersection of nutrition and mental 
health

The intersection between nutrition and mental health is an 
emerging area of research interest. For the purpose of this paper, 
we  will focus on depression since the data is more complete and 
depression is projected to be one of the top health concerns by 2030 
(14). Despite growing medications and therapeutics, the negative 
impact of depression continues to grow as reflected by the increase in 
disability-adjusted life-years (DALYs), years lived with disability 
(YLDs), and years of life lost (YLLs) (15).

2.1 Five theories of neuropathology of 
depression

In their 2016 review, Loonen and Ivanona postulated five theories 
regarding the neuropathology of depression (16). First is the well 
known monoamine theory. The majority of psychotropic medications 
that have FDA approval for the treatment of depression (e.g., selective 
serotonin reuptake inhibitors, serotonin-norepinephrine reuptake 
inhibitors, or tricyclic acids) modulate serotonin, as such, the 
monoamine theory links the origins of depression to deficits of 

serotonin. Currently, this has been expanded to include 
norepinephrine and dopamine as well. Second is the biorhythm 
theory, which centers on sleep disruption and altercations within the 
REM sleep and deep sleep patterns. A dysfunctional sleep rhythm 
alters the natural circadian rhythm that is regulated within the nucleus 
suprachiasmaticus (SCN), It is hypothesized that the altered circadian 
rhythm within the SCN contributes to mood dysregulation patterns 
throughout the day.

Third is the neuro-endocrine hypothesis. Thyroid levels, 
particularly, hypothyroidism has been linked with the onset of 
depressive symptoms (17). Changes in thyroid hormones have been 
linked with serotonin insufficiency (18). As will be discussed in more 
detail, dysregulation within the HPA, particularly higher levels of 
cortisol have been linked with altercations of the circadian rhythm, 
hippocampus, and limbic system, which may account for changes of 
emotions seen in depression. Individuals with depression also as a 
whole have higher levels of cortisol in the mornings and evenings 
compared to non-depressed individuals (19). The fourth is the neuro-
immune hypothesis, which also will be discussed in more detail. The 
HPA axis and the immune system are significantly interconnected, 
and changes with cortisol levels can greatly impact the immune 
system. Changes within neurohormones or other triggers cause the 
release of neurotrophic factors, like BDNF, regulatory cytokines, etc., 
which have been linked with changes in the hippocampus, limbic 
system, SCN and have been linked with depression. Finally, the fifth 
is the kindling hypothesis, which states that the actual illness causes 
cell death and reinforces depressive symptoms with progressive 
worsening symptoms.

In the 2021 review, Marx et al., show dietary patterns, commonly 
known as the Western Diet or Standard American Diet, which are 
high in saturated fats, refined carbohydrates and ultra-processed 
foods, can create many of the Loonen and Ivanona hypotheses (16, 
20). A systematic analysis of the Global Burden of Disease Study 
assessing the health effects of dietary risks in 195 countries from 1990 
to 2017 found that diet-related risk factors were responsible for 
approximately one-fourth of all deaths among adults and almost 
one-fifth of all disability-adjusted life years among adults (21). 
Particularly concerning is the increasing consumption of UPF. Prior 
to COVID-19 pandemic, the typical U.S. diet consisted of about 60% 
UPF. The consumption patterns were consistent between gender and 
race (22), and the global consumption of UPF has increased in the 
post-pandemic era (23). UPF contains excessively high levels of 
refined sugars, saturated fat, trans-fat, caffeine, and sodium, with 
regards to both overall macro- and micronutrient content and energy 
density, as well as very low levels of dietary fiber.

2.2 Ultra-processed food and 
neuropathology

In an attempt to categorize food content, the NOVA food 
classification system was developed, which categorizes food into four 
subgroups: 1) unprocessed and minimally processed foods, 2) 
processed culinary ingredients, 3) processed foods, and 4) ultra-
processed food (UPF), which are defined as “food substances of no or 
rare culinary use” (24, 25). A 2021 meta-analysis from Lane et al. of 
over 345,000 individuals noted that higher rates of UPF predicted an 
increased risk of subsequent mental health symptoms (26). In a 
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cross-section design of 10,359 participants, Hecht et al. showed that 
individuals who consumed primarily NOVA4, had an odds ratio for 
developing depression (OR: 1.81; 95% CI 1.09, 3.02). They had a risk 
ratio for being more mentally unhealthy (RR: 1.22; 95% CI 1.18, 1.25). 
Finally, they were also significantly less likely to report zero mentally 
unhealthy days (OR: 0.60; 95% CI 0.41, 0.88) (27). A potential 
explanation may be how a diet rich in UPF leads to dysregulated 
neuroimmune responses (28), increased neuroinflammation (29, 30), 
and altercations within the neuroendocrine system (29).

2.3 Ultra-processed food and the gut

People suffering from mental illness consume more UPF (30) and 
people who consume more UPF are prone to develop mental illness 
(31, 32). Apart from the neuroinflammatory contribution of mental 
illness on the microbiota, diets high in UPF promote low-grade 
inflammation, affecting the microbiota (29). In a recent meta-analysis 
conducted by Nikolova et al. (33), 34 studies comprising more than 
1,500 individuals with mental health illness were evaluated and 
showed a pattern of microbiota among mental illness diagnoses, 
which were depleted of pyruvate-producing bacteria. It is important 
to note that this shift in microbial diversity, which affects the 
absorption of key amino acids and adversely affects brain health 
(34, 35).

The following sections delve into the current state of 
understanding regarding these intersections, shedding light on the 
mechanisms through which nutrition influences mental well-being 
and offering insights into potential avenues for 
therapeutic interventions.

3 The brain-gut-microbiota: the 
developmental origins and a review

3.1 Developmental origins

The BGM system is a bidirectional communication network 
connecting the gastrointestinal system and the brain that has emerged 
as a focal point linking nutrition, health, and well-being (36, 37), 
particularly related to mental/brain health. The gut microbiota is a 
diverse community of microorganisms inhabiting the digestive tract 
that influences various aspects of brain function through the 
production of neurotransmitters, immune signaling molecules, and 
metabolic substances (38). Dietary patterns alter the microbiota 
composition of the gut (39). Strengthening the gut microbiota through 
dietary interventions holds promise as a novel approach to ameliorate 
mental/brain health symptoms, risk factors, and protective factors as 
the BGM system is a primary mechanistic channel through which the 
gut microbiota exert their effects on mental/brain health through 
nutrition-related pathways (4, 33).

The gut and brain are both derived from neural crest tissue 
during embryogenesis and influence each other during human 
developmental processes as they integrate into the enteric nervous 
system (40, 41). Microbes initially colonize the gastrointestinal tract 
at the time of birth. A microbiota is a biological community that 
forms when microorganisms live in a specific habitat and produce 
genetic material. The human microbiota develops after the first year 

of life and continues to diversify throughout life. Evidence indicates 
that microbiota bacteria have undergone a co-evolutionary process 
alongside humans and engage in bidirectional physiological 
interactions with our bodily systems (42). It is estimated that the 
ratio of microbial cells to human cells in the body is approximately 
one-to-one, which points to the significance of microbiota in 
facilitating processes that support human flourishing across the 
lifespan. There are three primary pathways through which the gut 
microbiota interacts with the brain along the BGM system, 
including neuroimmune, neuroendocrine, and vagus nerve 
pathways (37).

3.2 BGM system-neuroimmune pathway

Dietary habits play a huge role in maintaining a healthy gut 
microbiota (3), which inturn plays a key role in modulating the 
immune system. Diets rich in dietary fibers, not UPFs, activate 
microbial enzymes within certain bacteria (Bifidobacterium, 
Lactobacillus, Lachnospiraceae, Blautia, Coprococcus, Roseburia, and 
Faecalibacterium) are able to break down complex carbohydrates (43), 
via a fermentation, into short-chain fatty acids (SCFA), namely 
acetate, propionate, and butyrate (3). These SCFA have a wide range 
of host activities, including metabolism, cell differentiation, gene 
regulation (3, 44), and regulating anti-inflammatory and 
pro-inflammatory cytokines (45). Within the gut, SCFAs strengthen 
the epithelial barrier functions, which maintains an favorable 
environment for commensal bacteria and inhibits pathogen’s 
growth (44).

Butyrate is metabolized into acetyl CoA, which is needed in 
mitochondrial metabolism. It also plays a pivotal role in regulating 
IL-10 receptors and maintaining the gut epithelial tight junctions (44). 
Without this, a change of the overall gut microbiota diversity can 
develop, which may lead to a condition known as dysbiosis. The 
growth of Enterobacteriaceae, especially Escherichia, Shigella, Proteus, 
and Klebsiella can increase in enterotoxin levels (46), which leads to 
dysbiosis. This pro-inflammatory microbial imbalance typically 
occurs in diets rich in UPFs, sodium, saturated fats, trans-fat, and 
refined sugar (47, 48). It is significant to note that dysbiosis can lead 
to dysregulated immune responses that can contribute to chronic 
inflammation and have a wide range of negative health implications, 
including health challenges such as neuropsychiatric conditions and 
autoimmune diseases in which neuroinflammation is a key 
contributing factor (49, 50).

Specifically, chronic inflammation from the Enterobacteriaceae 
can release lipopolysaccharide (LPS) from their own cells. Once 
released within the gut, they impair gut-associated lymphoid tissue 
(GALT), which includes the multi-follicular Peyer’s patches of the 
ileum, the numerous isolated lymphoid follicles (ILF) distributed 
along the length of the intestine, and the vermiform appendix (28). 
Additionally, the disruption of the immune system within the 
enteric system will alter system immunity. Additional critical 
consequences of LPS include: increases blood brain barrier 
permeability, altering the microglia of the CNS as it promotes 
gliosis and neuronal damage (51). Due to the breakdown of the 
blood brain barrier, there is an increase of plasma proteins into the 
brain, particularly the component proteins, which can adversely 
affect synaptic pruning (52).
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Communication between the gut microbiota and the immune 
system occurs as part of the broader BGM system, rather than in 
isolation. Bidirectional crosstalk between these two major biological 
systems happens in such a way that signals from the gut can affect the 
brain and vice versa. The immune system may send signals to the 
brain when it detects inflammation in the gut, which can affect mood, 
behavior, and cognitive function. There is evidence that this 
bidirectional communication can contribute to the development or 
progression of neuropsychiatric conditions such as depression, 
anxiety, and as well as other mood disorders (47).

3.3 BGM system-neuroendocrine pathway

The neuroendocrine pathway of the BGM system involves a 
complex network of communication between the brain, the gut, and 
the endocrine system (37). In addition, the production of LPS has 
been shown to activate the hypothalamic–pituitary–adrenal axis 
(HPA) (53). Heightened levels of cortisol can in turn change intestinal 
permeability by activating interferon gamma, interleukin 6, 
interleukin 1 beta, and tumor necrosis factor alpha (54), which alter 
the diversity of the gut microbiota, leading to dysbiosis (55), neuronal 
damage within microglia and astrocytes, and depletion of 
neurotrophic factors, like BDNF (56). Heightened levels of cortisol 
can affect brain function by decreasing prefrontal cortex activity, 
heightening amygdala fear response and decreasing functional 
memory due to its negative hippocampal interactions.

Additionally, there is a growing body of literature that a number 
of neurotransmitters that function as hormones are also mediated 
within the BGM axis. Serotonin, for example, is derived from the 
essential amino acid tryptophan, which is absorbed within the 
kynurenine pathway (34) and regulated through the gut microbiota 
(46, 55). Serotonin concentration within the brain can contribute to 
the development and or progression of depression and anxiety (57). 
Enterobacteriaceae have also been shown to be histamine producing 
bacteria (58). Histamine has been linked with visceral gut 
hypersensitivity, increased gut permeability and altered gut motility 
(59), and studies have linked depression to these heightened 
eosinophilic conditions (60).

3.4 BGM system-vagus nerve

The vagal pathway of the BGM system involves the vagus nerve, 
the tenth cranial nerve, that plays a significant role in the bidirectional 
transmission of signals between the brain and the gastrointestinal 
tract. The vagus nerve extends from the brainstem into the abdomen 
through the gastrointestinal tract and other organs, including the 
heart and lungs and transmits both sensory and motor signals 
throughout the mesenteric organs. The sensory components of the 
vagus nerve called vagal afferents relay information from numerous 
organs to the brain, including signals associated with the gut 
environment such as the presence of inflammation, gut distension, 
nutrient availability, and gut hormones (i.e., leptin, ghrelin, glucagon-
like peptide 1, and insulin), and gut microbial metabolites (29, 61). 
Bidirectional communication between the brain and gut relies on an 
axis composed of 80% afferent and 20% efferent neurons (62). These 
microbial sensory signals can convey information about the 
composition and activity of the gut microbiota to the brain. The vagus 

nerve, which is also composed of motor branches known as vagal 
efferents, sends signals from the brain to the gastrointestinal tract and 
other organs. Vagal motor signals can influence functions of the 
gastrointestinal tract like gut motility, the secretion of digestive 
enzymes, and the modulation of immune responses in GALT (63).

4 Brain health, mental health, and 
wellness

While mental health is known by both the public and scientific 
community, it does not capture the importance of the concept of brain 
health. Brain health is defined by the WHO as the fostering of optimal 
brain development, cognitive health, and well-being throughout the 
entire lifespan (64). As such, brain health includes what is thought, 
done, said, and felt. The lifespan continuum of brain health is also in 
alignment with current evidence regarding neuroplasticity, the ability 
of the brain to adapt and escape previous genomic restrictions through 
the formation and reorganization of synaptic connections.

Brain health includes the concepts of wellness, mental health, and 
brain health (65) (see Figure 1 for a representation of the relationship 
between wellness, mental health, and brain health). With this 
framework in mind, it is important to note how dietary choices across 
the lifespan have the potential to positively alter brain structure and 
improve brain health or negatively impact it.

5 Nutrition and brain changes across 
the lifespan

The brain and body are exposed to a wide array of exogenous and 
endogenous stimuli that can impart various levels of functionality 
across biopsychosocial spheres of health, which determine both 
short- and long-term outcomes across the lifespan. A healthy early 
life development of the BGM system helps prevent later disease 
development. Nutritional programming is the concept that key cells 
within the body will be able to absorb nutrients or synthesize them 
de novo in key periods of time to support early life development (66). 
Multiple nutrients with epigenetic potential that are present in the 
diet or produced via microbial metabolism in the human gut. The 
B-complex vitamins, SCFAs, and polyphenols are among nutrients 
known to exert epigenetic effects on the host (67). Significant 
synaptogenesis in the brain occurs simultaneous to diversification of 
gut bacteria during critical windows (68, 69). Critical windows are 
periods of development during which the phenotypic outcomes (e.g., 
intelligence quotient) of an individual are remarkably sensitive to 
interactions between environmental and genetic factors. 
Environmental factors, such as diet, can significantly alter the 
developmental course of high-plasticity bodily systems, such as the 
central nervous system, cardiovascular system, gastrointestinal 
system, and immune system (70). As such, within the nutritional 
framework, nutrients need to be  available for optimal 
development (66).

5.1 Fetal period

The fetal period is a key nexus period within the nutritional 
framework. It is estimated that over half of the maternal energy 
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available to the growing fetus during pregnancy is allocated to brain 
development (71). The brain health, quality of life, and overall well-
being of offspring are critically dependent on the trajectory of their 
neurodevelopment, which begins prenatally (72, 73). An explanation 
for the relationship between postnatal neurodevelopment and gut 
microbiota diversity may lie in their influence on each other’s 
maturation processes mediated through the BGM axis (74).

Diet plays a critical role in the development of the gut microbiota 
in early life (75, 76). Research has demonstrated that the presence of 
breast- or formula-feeding, as well as the timing of transition to solid 
foods, are major drivers in shifting the gut microbiota to a more adult-
like composition (77). Gut microbiota composition varies between 
infants fed breast milk versus formula. The microbiota of breast-fed 
infants primarily consists of Bifidobacterium, Lactobacillus, and 
Staphylococcus (77, 78). Notably, the microbiota of formula-fed infants 
is predominantly Clostridium, Anaerostipes, and Roseburia. Moreover, 
data indicates that the introduction of solid foods around 6 months of 
age (within the critical neurodevelopmental window) in infants with 
an immature gut microbiota can fortify their health by stimulating the 
growth of microbes typically present in the adult gut (79). Adult-like 
gut microbiota are typically inclusive of Anaerostipes, Bacteroides, 
Bilophila, Clostridium, and Roseburia (77).

It has also been noted that breast milk feeding and duration of 
breastfeeding are positively associated with enhanced structural 

connectivity of neuronal networks in both white and gray matter, 
including regions of the brain consistent with improved outcomes 
related to cognitive and behavioral performance (80–83). Studies have 
not only revealed that levels of cognitive function of breast-fed 
children are significantly higher than formula-fed children at six to 
twenty-three months of age, but also that this distinction in brain 
performance persists over time as children age (84–86).

5.2 Early life

Early life eating patterns, which modulate and prime the gut 
microbiota have been found to influence both short- and long-term 
human health and disease, including brain health and heart disease 
(87). Codagnone et al. (88) identified the gut microbiota as the fourth 
most significant element in the programming of brain health and 
disease during early life, in addition to host genetics and prenatal and 
postnatal environment. Adolescence is a critical period of 
neurodevelopment that coincides with maturing socially, cognitively, 
and improving executive function (89). Typical adolescent diets tend 
to be high in UPF, high in sugar containing foods and beverages, and 
low in fiber. Adolescent diets can contribute to mental health 
symptoms, yet experts are still investigating the crossroads of a healthy 
gut microbiota, a developing brain, and brain health (90).

FIGURE 1

Relationship between wellness, mental health, and brain health. Copyright 2023. From Lifestyle Psychiatry by Gia Merlo & Chris Fagundes. Reproduced 
by permission of Taylor and Francis Group, LLC, a division of Informa plc.
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5.3 Adult life

Composition of gut microbiota gradually shifts throughout the 
lifespan and has been shown to play a role in the regulation of 
age-related changes in cognitive function and immunity (91). It is of 
significance to note that the current global burden of disease is mainly 
caused by neuropsychiatric conditions and cardiovascular disease. 
Poor diet, which can induce dysbiosis, has been established as one of 
the major contributing factors to the global burden of disease (92). 
Individuals affected by neuropsychiatric conditions are also more 
likely to be affected by chronic conditions, such as cardiovascular 
diseases (93). Daily lifestyle choices, including healthy or unhealthy 
eating patterns, can serve as protective factors or risk factors for the 
development and progression of neuropsychiatric conditions and 
chronic health conditions.

Individual differences in lifestyle-related factors, such as diet, 
contribute to cognitive reserve and physical reserve. Cognitive reserve 
is the brain’s adaptive capacity to be resilient against neural damage or 
age-related cognitive decline by efficiently using available brain 
resources through pre-existing or compensatory processes (94). 
Physical reserve is the body’s capacity to maintain physical 
functionality in the setting of illness, injury, or age-related 
physiological changes (95). Robust evidence indicates healthy eating 
(96). The World Health Organization describes a healthy diet as an 
eating pattern that is rich in fruits, vegetables, legumes, nuts, and 
whole grains and restricted in refined sugar, salt, saturated fats, and 
trans-fats (97). A healthy diet has been found to be  positively 
correlated with cognitive reserve and cognitive function (98).

5.4 Elderly life

The gut microbiota composition again changes in this phase of 
adult life as the bacterial diversity decreases. Opportunistic bacteria, 
like the Enterobacteriaceae family, increase in density (99). Animal 
models have shown that higher concentrations of LPS in adults can 
lead to increased blood brain permeability, tau hyperphosphorylation 
and additional neuroinflammation and may account for cognitive 
deficits (100). In a cross-sectional study of 127 participants, Saji et al. 
found a correlation between LPS concentration and mild cognitive 
impairment (odds ratio: 2.09, 95% confidence interval: 1.14–3.84, 
p = 0.007) (101).

6 BGM system and neuroplasticity

Brain development is a process that occurs throughout the 
lifespan of the individual. After the initial fetal development, 
which is driven by the actual genetics of the fetus, subsequent 
development, also called neuroplasticity, is significantly driven by 
environmental and epigenetic changes. Changes can provide 
benefits or maladaptive effects that can lead to a spectrum of 
neuropsychiatric sequelae (102). In a recent review, Innocenti 
identifies five potential targets of neuroplastic change: 1) neuronal 
cell count, 2) neuronal cell migration, 3) differentiation of the 
somatodendritic and axonal phenotypes, 4) formation of neuronal 
connections or pathways, and 5) cytoarchitectonic differentiation 

within the microglia. The intent of this section is not to provide a 
definitive review of all possible implications but rather show 
examples within the metabolic, immune, neuronal, and 
endocrine pathways.

6.1 Neuronal cell count

Neurogenesis is a fundamental component of neuroplasticity, as 
well as the functional and structural processes related to brain health 
homeostasis. The formation of new neuronal cells continues in the 
adult hippocampus throughout the course of the lifespan. The 
hippocampus is a region in the brain that modulates learning, 
memory, and mood and is extremely sensitive to environmental 
stimuli, including diet (103). Evidence suggests that decreased 
neurogenesis contributes to cognitive impairment and 
neuropsychological conditions, such as anxiety and depression (104, 
105). Zainuddin & Thuret suggest that nutrition can influence adult 
hippocampal neurogenesis via four primary pathways, including 
caloric intake, the nutritional content of meals, frequency of meals, 
and texture of meals (106).

6.2 Neuronal cell migration

Recent literature suggests that neuropsychiatric disorders and 
cognitive dysfunction are linked to damage induced by oxidative stress 
on nuclear and mitochondrial DNA (107, 108). Oxidative stress is a 
key pathway through which dietary factors affect neuronal cell 
migration. Of note, reactive oxygen species (ROS) involved in 
pathways related to oxidative stress have been found to induce 
epigenetic changes in aging processes of the brain (109), as oxidative 
damage has been recorded as a significant contributor to 
neurodegeneration (110). Increased production of free radical 
production and inflammatory responses may occur when long-term 
exposure to prooxidant and proinflammatory metabolic factors 
exceeds the capacity of bodily systems to protect against tissue injury 
and mitochondrial damage (111). Long-standing excess in certain 
nutritional components can induce a metabolic state of chronic, 
dysregulated, low-level inflammation often co-occurs with 
mitochondrial dysfunction (112).

Oxidative stress and damage can be caused by prooxidant foods, 
which have been found to decrease antioxidant activity and increase 
the production of ROS (113). The quality and quantity of various 
macronutrients and micronutrients can interact with prooxidant or 
antioxidant metabolic pathways (114). Data indicates that oxidative 
mechanisms inhibit the proliferation of precursor neurons, as well as 
the migration, differentiation, and viability of new neuronal cells 
(115, 116).

6.3 Cell phenotypes

The differentiation process of a neuron into somato-dendritic or 
axonal phenotypes engenders alterations in metabolic needs that vary 
from those of precursor or stem neuronal cells and are mediated by 
dietary nutrients (117). Differentiated mature neurons require higher 
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levels of energy. The increased energy needs of the developing or 
mature brain is bolstered through a metabolic shift from energy 
primarily sourced from cytoplasmic aerobic glycolysis to neuronal 
oxidative phosphorylation modulated by the mitochondria (117, 118). 
It is important to note that the reprogramming of metabolic processes 
related to the oxidation, glycolysis, and mitochondria supports 
neurogenesis and the functionality of differentiated neuronal cells by 
promoting adequate epigenetic modulation of gene expression and 
increased signaling of neurotransmitters in both the central nervous 
system and across the BGM system.

6.4 Neuronal connections

Increasing evidence substantiates that the both cognitive and 
non-cognitive functions of the brain encoded in the human genome 
are vulnerable to modification via epigenetic and epitranscriptomic 
mechanisms (119–122). The bidirectional relationship between food 
and the BGM system can alter neuroplasticity through interactions 
with these epigenetic and epitranscriptomic pathways. Nutrient intake 
can regulate gene expression that modulates learning, memory, and 
adaptive behaviors (123). Alternatively, neuroplastic changes in 
learning, memory, and adaptive behaviors can alter gene expression 
to promote different eating patterns. For instance, peptide hormones, 
such as ghrelin, leptin, and insulin, which are implicated in 
physiological processes surrounding hunger and satiety, utilize 
nutrient sensing along the BGM system to modulate signals in the 
brain related to hunger, satiety, and food-induced reward (124). 
Reception of these signals then shapes adaptive behaviors and 
experiential learning and conditioning associated with food intake, 
which can regulate mechanisms for the activation or repression of 
certain genes (125).

6.5 Cytoarchitectonic differentiation

Bioactive nutritional compounds may have the potential to 
restore quiescent capacity of microglia, which are cells that play a 
vital role in neurodevelopment (e.g., neuronal proliferation, 
neuronal differentiation), brain health homeostasis, neuroplasticity, 
and injury response and repair mechanisms in the central nervous 
system. Dysregulation of microglial cytoarchitectonic differentiation 
has implications in neuroinflammation, cognitive deficits, 
neuropsychiatric conditions, and chronic inflammatory diseases 
(126). Cytoarchitectonic differentiation within the microglia 
denotes the process of area-specific structural organization of these 
nervous system-specific macrophage cells. Neuroinflammatory 
responses can be induced by microglial cells in response to immune 
signals from the periphery. Evidence has demonstrated that 
age-related alterations in the brain cause changes in microglial 
morphology, as well as attenuated microglial functional capability 
to regulate injury and repair processes through adequate 
homeostatic shifts between anti-inflammatory and proinflammatory 
states and migratory and clearance abilities (127). Epigenetic 
modifications also change microglial functional profiles (128). Data 
suggests that microglia exposed to different environmental factors 
early in life, such as certain nutrients, may have implications in 

microglial diversity in later life through these epigenetic 
modifications (129).

7 Neuropsychiatric disorders affected 
by food

As previously discussed, there is a bidirectional link between 
metabolic aberrations and a diverse array of neuropsychiatric 
disorders (130–132). Approximately one in three individuals with a 
chronic health condition are affected by co-occurring neuropsychiatric 
condition (133, 134). Not surprisingly, the neuropsychiatric conditions 
most affected by dietary factors, anxiety and depression (135), are also 
those most prevalent in the general population. Diet-related pathways 
for therapeutic targets include the BGM system, inflammation, 
oxidative stress, mitochondrial dysfunction, epigenetics, the HPA axis, 
and tryptophan-kynurenine metabolism (20), which address many of 
neural circuits implicated in depression (16).

As noted, depression continues to be one of the world’s most 
debilitating illnesses. World estimates have estimated the lifetime 
prevalence between 30 and 40% (136). It is not uncommon for 
symptoms to last at least 1 year in duration (137). Depression is 
comorbid with other neuropsychiatric illnesses (i.e., anxiety, cognitive 
impairment, post-traumatic stress disorder, substance use disorders) 
and chronic physical disorders (i.e., arthritis, asthma, cancer, 
cardiovascular disease, chronic pain, chronic respiratory disorders, 
diabetes, hypertension, obesity) (138). Those with these comorbid 
outcomes tend to have worse outcomes (137). As a result, individuals 
with depressive disorders commonly develop a pattern of dysbiosis, 
showing higher concentrations of the Bacteroides species, a species 
that alters the BGM system (139, 140).

Historically, the treatment of choice for depression has been the 
use of medications that modulate the uptake of serotonin (i.e., 
selective serotonin reuptake inhibitors). Many individuals, however, 
have not received symptom relief from these remedies (141). Lessale 
et al., conducted a meta analysis of 21 cross sectional studies and 20 
longitudinal studies. Individuals were either adhering to the 
Mediterranean diet (MD), the Healthy Eating Index, the Alternative 
Healthy Eating Index, the Dietary Approaches to Stop Hypertension, 
or the Dietary Inflammatory Index. Individuals on the MD had an 
estimated relative risk of developing depression of 0.67 (5% CI 0.55–
0.82) (142). Firth et al. examined 16 randomized clinical controlled 
trials (dietary interventions varied) comprising over 45,000 
participants and noted that dietary interventions improved 
depressive symptoms compared to controls (g = 0.275, 95% CI = 0.10 
to 0.45, p = 0.002) (29). The SMILES study, a randomized control 
study, had study participants avoid UPF and fast food. The study 
showed that the number needed to improve depressive symptoms 
was 4.1 (143). A meta-analysis from 2018 of epidemiological studies 
showed that every increase in 100 g of whole fruits or vegetables 
corresponded with a 5% reduction risk of depression (144). Given 
these findings the Royal Australian and New Zealand College of 
Psychiatrists recommend lifestyle changes, including diet and 
exercise, and therapy for mild and moderate forms of depression 
(145). Similarly, the World Federation of Society for Biological 
Psychiatry has adopted a WFBP within its treatment 
recommendations for depression (146).
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8 Future directions related to the gut 
microbiota, nutrition, and mental 
health

Prior to the COVID-19 pandemic, it was estimated that 50% of 
the United  States experienced loneliness (147). Following the 
pandemic, the impact of loneliness has increased. More adolescents 
report loneliness and isolation and chronic illness. Although there 
is not a direct correlation between isolation, chronic illness and 
mental health, those who experience isolation report having 
increasing mental health symptoms (148). Based on world events, 
social injustice, and worsening socioeconomic factors, it seems 
unlikely that these trends will reverse. Although it may seem trivial 
in the wake of these factors to focus on the BGM system and 
nutrition, this effort may have more of a global impact. In addition 
to the mental health symptoms as outlined, dietary choices are the 
largest driver of chronic illness (21). The health industry promotes 
protein as the optimal food ingredient to reverse these trends and 
overlooks the importance of fiber (43). As a result, less than 5% of 
Americans are consuming an adequate dose of fiber (149), which 
has been key in developing and maintaining a healthy BGM-system 
(3, 34, 150).

Traditionally, healthcare professionals receive very little evidence-
based nutrition didactics during their formal education (151). The 
reasons vary from nutrition being a “soft science,” or there is “too 
much controversy over the nutrition literature,” or there is “only time 
to teach what is on licensing exams.” To ensure that healthcare 
providers receive this vital training, licensure boards need to 
incorporate questions regarding plant-based nutrition and the 
importance of the BGM system. Additionally, we encourage other 
medical organizations to follow the Royal Australian and New Zealand 
College of Psychiatrists and World Federation of Society for Biological 

Psychiatry and adopt lifestyle guidelines within their 
mental recommendations.
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