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Background: In a 12-week randomised controlled trial, personalised nutrition 
delivered using a metabotype framework improved dietary intake, metabolic 
health parameters and the metabolomic profile compared to population-level 
dietary advice. The objective of the present work was to investigate the patterns 
of dietary advice delivered during the intervention and the alterations in dietary 
intake and metabolic and metabolomic profiles to obtain further insights into the 
effectiveness of the metabotype framework.

Methods: Forty-nine individuals were randomised into the intervention group and 
subsequently classified into metabotypes using four biomarkers (triacylglycerol, 
HDL-C, total cholesterol, glucose). These individuals received personalised 
dietary advice from decision tree algorithms containing metabotypes and 
individual characteristics. In a secondary analysis of the data, patterns of dietary 
advice were identified by clustering individuals according to the dietary messages 
received and clusters were compared for changes in dietary intake and metabolic 
health parameters. Correlations between changes in blood clinical chemistry and 
changes in metabolite levels were investigated.

Results: Two clusters of individuals with distinct patterns of dietary advice 
were identified. Cluster 1 had the highest percentage of messages delivered to 
increase the intake of beans and pulses and milk and dairy products. Cluster 2 
had the highest percentage of messages delivered to limit the intake of foods 
high in added sugar, high-fat foods and alcohol. Following the intervention, 
both patterns improved dietary quality assessed by the Alternate Mediterranean 
Diet Score and the Alternative Healthy Eating Index, nutrient intakes, blood 
pressure, triacylglycerol and LDL-C (p  ≤  0.05). Several correlations were identified 
between changes in total cholesterol, LDL-C, triacylglycerol, insulin and HOMA-
IR and changes in metabolites levels, including mostly lipids (sphingomyelins, 
lysophosphatidylcholines, glycerophosphocholines and fatty acid carnitines).

Conclusion: The findings indicate that the metabotype framework effectively 
personalises and delivers dietary advice to improve dietary quality and metabolic 
health.

Clinical trial registration: isrctn.com, identifier ISRCTN15305840.
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1. Introduction

Dietary factors play a major role in the development of 
cardiometabolic diseases (1). Among a variety of strategies for 
improving metabolic health, there is an increased interest in 
personalised nutrition (2, 3). The enthusiasm in this area stems from 
the evidence on the importance of interindividual variability in 
response to dietary factors (4, 5). Moreover, personalised approaches 
have achieved greater improvements in dietary intake and health 
outcomes compared to population-level nutrition (6).

Examining the metabolic phenotype (metabotyping) is a novel 
strategy for personalising healthcare (7–9). This approach consists of 
grouping individuals with similar metabolic profiles (metabotypes) 
and designing interventions tailored to the characteristics of the group 
(7). Metabotypes have been robustly associated with different 
incidences of diet-related diseases (10–13), which supports their use 
to identify groups that could benefit from personalised nutrition. In 
addition, several studies have demonstrated that metabotypes present 
differential associations with dietary factors and responses to dietary 
interventions (14–19). For example, in a German cohort the 
prevalence of type 2 diabetes within a high-risk metabotype 
[characterised by an unfavourable biomarker profile and high body 
mass index (BMI)] was positively associated with the intake of sugar-
sweetened beverages and inversely associated with fruit intake, while 
the prevalence of type 2 diabetes in the metabotypes with more 
beneficial metabolic profiles was positively associated with the intake 
of total meat and processed meats (19). However, few studies 
investigated the use of metabotypes to deliver personalised nutrition. 
A dietary intervention demonstrated that the modulation of the 
macronutrient composition of diets prompted different 
cardiometabolic responses in metabotypes of tissue-specific (liver or 
muscle) insulin resistance (20), but dietary advice tailored for 
metabotypes based on extensive metabolomic and genetic profiling 
was not superior to generic dietary advice to improve body weight and 
metabolic health parameters in overweight and obese individuals (21). 
Although there is evidence supporting the use of metabotypes to 
develop dietary interventions targeted at a group level for the 
improvement of metabolic health and prevention of diet-related 
diseases, the methods applied and findings are not consistent.

Recently, we demonstrated with a 12-week randomised controlled 
trial (RCT) that personalised dietary advice based on metabotypes for 
a generally healthy population produced greater improvements in 
dietary quality and lipid profile (reductions in total cholesterol, 
LDL-C, triacylglycerol and glycerophosphocholines) compared to 
population-level nutrition advice (22). The framework applied 
comprises the classification of individuals into metabotypes using 
metabolic health markers and the delivery of dietary advice through 
a decision tree approach (23, 24), which results in a set of food or food 
group-related messages that are personalised for each individual. In 
order to obtain further insights into the mechanisms of the 
effectiveness of the metabotype framework, the objectives of the 

present paper were to investigate the patterns of dietary advice 
delivered during the intervention and the alterations in dietary intake 
and metabolic and metabolomic profiles.

2. Methods

The present paper reports secondary analyses carried out on data 
from participants that received personalised nutrition advice using a 
metabotype framework as part of a 12-week single-blind parallel RCT 
(ISRCTN15305840) (22). Throughout the study, participants attended 
three visits (baseline, week 4, and week 12) and received reports with 
dietary advice following baseline and week 4 visits. Free-living and 
healthy men and women aged 18 to 65 years and with a BMI ≥18.5 kg/
m2 were eligible to participate in the study. The exclusion criteria were 
as follows: any metabolic disease or condition that possibly alters 
energy metabolism or nutritional requirements (e.g., cancer, thyroid 
disorders, diabetes, inflammatory bowel diseases), food allergies or 
intolerances, adherence to a diet prescribed for any reason, adherence 
to a vegan diet, concomitant participation in another clinical trial, 
pregnancy, lactation and planning to become pregnant within the 
study period. Following the baseline visit, a total of 54 participants 
were randomised to the personalised group to receive dietary advice 
based on the metabotype framework. One participant in the 
personalised group did not receive the allocated intervention as the 
4-day food diary was not returned and four participants dropped out 
during the study mainly due to COVID-19-related issues. The study 
was approved by the ethics review board of the University College 
Dublin (LS-19-98-Brennan), performed in accordance with the 
declaration of Helsinki and all enrolled participants provided written 
informed consent.

In the RCT, the primary outcome was dietary quality assessed by 
the Alternate Mediterranean Diet Score (AMED) (25). Secondary 
outcomes were dietary quality assessed by the Alternative Healthy 
Eating Index 2010 (AHEI) (26), metabolic health biomarkers from 
lipid (total cholesterol, LDL-C, HDL-C, triacylglycerol) and glycaemic 
[glucose, insulin, homeostatic model assessment for insulin resistance 
(HOMA-IR)] parameters, anthropometry (weight, BMI, waist 
circumference, waist-hip ratio), systolic and diastolic blood pressures 
and blood metabolites levels using metabolomic analysis.

2.1. Delivery of personalised dietary advice

Participants received personalised nutrition advice based on a 
metabotype framework previously published (23, 24). The advice 
consisted of two reports containing three dietary goals each that were 
delivered following baseline and week 4 visits (22). Following week 4, 
participants were asked to follow both reports at the same time. To 
obtain the dietary goals, participants were classified into their 
metabotypes using a clustering model defined by k-means cluster 
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analysis and four biomarkers of metabolic health (total cholesterol, 
HDL-C, triacylglycerol and glucose) (23). Subsequently, personalised 
dietary messages for each participant were derived from decision trees 
algorithms containing information on the metabotype characteristics 
and individual BMI, waist circumference and blood pressure (22, 24). 
The personalised dietary messages were then merged and expanded 
to compose the dietary goals (22). During the intervention, 
participants were supported by regular email contact.

2.2. Dietary, anthropometric and clinical 
measurements

A detailed description of data collection was previously provided 
(22). Dietary intake was assessed before baseline and week 12 visits 
using a 4-day food diary. Energy and nutrient intakes were estimated 
using Nutritics software (Nutritics, Ireland) and are reported as 
excluding the intake of supplements. Dietary quality was assessed by 
AMED (25) and AHEI scores (26). The AMED consists of 9 
components with a total score ranging from 0 to 9 points and the 
AHEI consists of 11 components with a total score ranging from 0 to 
110 points. For both indexes, higher values indicate a diet that aligns 
better with dietary recommendations.

Anthropometric and clinical data collection was performed 
following a 12 h overnight fast. Anthropometric measurements 
included weight, height, waist circumference and hip circumference. 
Blood pressure was measured from the reference arm using an 
automatic blood pressure monitor. Blood was collected by a trained 
phlebotomist using a lithium heparin tube, processed following a 
standardised procedure (centrifuged at 1800 g for 10 min at 4°C and 
stored in 500 μL aliquots at −80°C) and plasma was used for clinical 
chemistry and metabolomic analyses. Clinical chemistry markers 
were quantified using colourimetric (total cholesterol, LDL-C, 
HDL-C, triacylglycerol and glucose; Sigma-Aldrich, Germany) and 
ELISA (insulin; Mercodia, Sweden) assays. Quality control (Randox 
Health, United Kingdom) and pooled plasma samples were included 
in the analytical runs. HOMA-IR was calculated as [(fasting insulin 
μU/mL × fasting glucose mmol/L)/22.5].

2.3. Metabolomic analyses

Targeted metabolomic analysis was performed on plasma samples 
using the AbsoluteIDQ p180 kit (Biocrates, Austria). Samples were 
analysed in three batches and samples from an individual were 
prepared in the same batch with positions randomised in the assay 
plate. The assay plate was preset with internal standards. Ten μL of test 
sample (phosphate-buffered saline, calibration standard solutions, 
quality controls, plasma or pooled plasma) was added to capture assay 
plate and dried at room temperature for 30 min. Samples were then 
derivatised with 50 μL of solution (5% phenyl isothiocyanate in 
ethanol/water/pyridine, volume ratio 1/1/1), incubated at room 
temperature for 25 min and dried under a nitrogen stream for 60 min. 
Metabolites were extracted with 300 μL of 5 mM ammonium acetate 
in methanol by shaking the plate for 30 min and following 
centrifugation at 500 g for 2 min. For LC-MS/MS analysis, 150 μL of 
the eluate was diluted in HPLC water (150 μL) and for FIA-MS/MS 
analysis, 50 μL of eluate was diluted with 450 μL of methanol.

Samples were analysed on a Sciex QTRAP 6500+ mass spectrometer 
coupled to a Sciex ExionLC series UHPLC capability as previously 
published (27). A total of 20 amino acids and nine biogenic amines were 
identified using LC-MS/MS in positive mode. Lipids [carnitine, 12 
fatty  acid carnitines (C), 10 monoacylglycerophosphocholines 
(LPC),  33  diacylglycerophosphocholines (PC), 37 1-alkyl,2-
acylglycerophosphocholines (PC-O), 14 sphingomyelins (SM)] and the 
sum of hexoses were identified using FIA-MS/MS in positive mode.

Amino acids and biogenic amines were quantified using 
isotopically labelled internal standards and seven-point calibration 
curves in the AB Sciex Analyst software v 1.7.2. Lipids and the sum of 
hexoses were measured semi-quantitatively by using 14 internal 
standards in MetIDQ software. MetIDQ was also used to check the 
quality of data through accuracy and reproducibility of QC samples 
(Supplementary Table S1). Only metabolites with levels above the 
limit of detection in >75% of samples were included in statistical 
analyses, which are reported in micromoles.

2.4. Statistical analyses

To identify patterns of dietary advice delivered through the 
metabotype framework, dietary advice clusters were generated using a 
total of 22 dietary messages that compose the metabotype framework 
(24). Each dietary message was considered a categorical variable and 
coded as 0 or 1 based on whether the participant received it or not during 
the intervention. The SPSS two-step cluster analysis procedure with the 
log-likelihood distance measures was performed to identify the clusters 
and the Schwarz’s Bayesian Criterion was used to automatically determine 
the optimal number of clusters. The normality of dietary intake data and 
metabolic health parameters was determined through visual inspection 
of histograms and Q–Q plots. Non-normal distributed variables were 
transformed using log10. At baseline, differences between dietary advice 
clusters were assessed by chi-square test (categorical variables) and 
independent t-test (continuous variables). Post-intervention (week 12), 
differences between dietary advice clusters were assessed by linear mixed 
models that included dietary advice clusters (two levels: cluster 1 vs. 
cluster 2), time (two levels: baseline vs. week 12) and their interaction as 
fixed effects and random intercepts for participants. Benjamini-Hochberg 
procedure was used to control multiple testing between clusters and a 
false discovery rate (FDR) ≤0.05 was considered significant. The changes 
in blood clinical chemistry and metabolite levels were calculated as the 
value at baseline minus the value at week 12 visit. To investigate the 
associations between changes in blood clinical chemistry with changes in 
metabolite levels, Spearman correlations and partial Spearman 
correlations controlled for age, sex and weight loss were applied to all 
participants as one group. The network graph was created in Cytoscape v 
3.7.2 (28) using correlation coefficients ≤ −0.4 or ≥0.4. Statistical analyses 
were performed using SPSS v 27 (IBM, United States).

3. Results

3.1. Dietary advice clusters have distinct 
metabolic profiles

A total of 49 participants completed the intervention, however, 
four participants did not have blood samples available. For the present 
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analyses, a total of 45 participants with dietary and blood data 
available at the completion of the intervention were included. 
Clustering of participants according to the dietary messages received 
resulted in two clusters with a silhouette measure of cohesion and 
separation of 0.5. Cluster 2 was characterised by the highest BMI, 
blood pressure, LDL-C, triacylglycerol, insulin, HOMA-IR and the 
lowest HDL-C and AMED and AHEI scores (Table 1). Additionally, 
cluster 2 had the highest percentage of participants that received 
dietary messages to limit the intake of foods high in added sugar, 
high-fat foods and alcohol and to implement low-fat cooking 
strategies (Table  2). By contrast, cluster 1 was characterised by a 
healthier metabolic profile and higher dietary quality and had the 
highest percentage of participants that received dietary messages to 
increase the intake of beans and pulses and milk and dairy products. 
Age, total cholesterol and glucose were similar between clusters at 
baseline. Furthermore, the percentages of participants that received 
dietary messages targeted at increasing the intake of fibre and 
unsaturated fat and reducing the intake of saturated fat were similar 
across the two clusters.

3.2. Distinct patterns of dietary advice 
similarly improve dietary intake and 
metabolic health parameters

Following 12 weeks of intervention, the delivery of personalised 
dietary advice improved dietary quality assessed by the AMED and 
AHEI scores and several dietary intakes and metabolic health 
parameters in the total group (Table  3, time effect FDR ≤0.05). 
Although the personalisation generated different patterns of dietary 

advice, both dietary advice clusters 1 and 2 had increases in the 
AMED score which were equivalent to 15% and 10% of the total score, 
respectively. Changes in the metabolic health parameters and dietary 
intake were mostly similar between clusters (Table 3, cluster x time 
interaction FDR ≥0.05). Energy intake was greater decreased in 
cluster 2 (Δ cluster 1 = −101 ± 444 kcal vs. Δ cluster 2 = −423 ± 364 kcal, 
p = 0.011) and folate intake was increased in cluster 1 while decreased 
in cluster 2 (Δ cluster 1 = 54 ± 103 μg vs. Δ cluster 2 = −29 ± 116 μg, 
p  = 0.018); however, they did not reach significance following 
correction for multiple testing.

3.3. Changes in blood clinical chemistry 
correlate with changes in circulating 
metabolites

Since the dietary intervention resulted in similar improvements 
in metabolic health parameters for both dietary advice clusters, 
we  investigated the correlations between the changes in the 
concentration of blood clinical chemistry and the changes in 
metabolite levels for the intervention group as a whole. Changes in a 
number of clinical biomarkers were significantly correlated with 
metabolite changes with the highest number observed for total 
cholesterol (63 significant correlations). Significant correlation 
coefficients ≤−0.4 or ≥0.4 are presented in Figure 1 and the totality of 
significant correlations is presented in Supplementary Figure S1. 
Changes in total cholesterol and LDL-C were positively correlated 
with changes in sphingomyelins and glycerophosphocholines, mostly 
in the subclass PC-O. The strongest correlations with changes in total 
cholesterol were with SM 33:1;O2, SM 34:2;O2, SM 41:1;O2, SM 

TABLE 1 Baseline characteristics of participants by dietary advice cluster.

Dietary advice cluster 
1 (n =  22)

Dietary advice cluster 
2 (n =  23)

p-value FDR

AMED 4.41 ± 1.68 3.22 ± 1.88 0.030 0.040

AHEI 53.1 ± 14.6 47.0 ± 14.9 0.175 0.199

Sex, male/female (n) 9/13 11/12 0.641 0.641

Age (years) 44.2 ± 10.9 47.5 ± 8.7 0.268 0.285

Weight (kg)a 64.4 ± 12.2 86.1 ± 13.2 <0.001 <0.001

BMI (kg/m2)a 22.3 ± 2.0 28.7 ± 2.4 <0.001 <0.001

Waist circumference (cm) 77 ± 8 101 ± 10 <0.001 <0.001

Waist-hip ratio 0.79 ± 0.07 0.92 ± 0.07 <0.001 <0.001

Systolic blood pressure (mmHg)a 106 ± 12 122 ± 15 <0.001 0.001

Diastolic blood pressure (mmHg)a 62 ± 6 73 ± 8 <0.001 <0.001

Total cholesterol (mmol) 4.64 ± 1.02 5.32 ± 0.96 0.024 0.034

LDL-C (mmol) 3.60 ± 0.88 4.41 ± 0.82 0.003 0.005

HDL-C (mmol) 1.63 ± 0.50 1.22 ± 0.53 0.009 0.014

Triacylglycerol (mmol)a 0.42 ± 0.22 0.86 ± 0.56 0.003 0.005

Glucose (mmol) 4.63 ± 0.40 4.89 ± 0.65 0.116 0.140

Insulin (mU/L)a 5.13 ± 1.64 11.57 ± 8.56 <0.001 <0.001

HOMA-IRa 1.06 ± 0.36 2.63 ± 2.42 <0.001 <0.001

Values are mean ± standard deviation. p-values are the comparison between clusters using chi-square for categorical variables and independent t-test for continuous variables. AMED, Alternate 
Mediterranean Diet Score; AHEI, Alternative Healthy Eating Index 2010; BMI, body mass index; FDR, false discovery rate; HOMA-IR, homeostatic model assessment for insulin resistance; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. aVariables were log10 transformed prior to analyses. Bold values are values significant at p ≤0.05 or 
FDR ≤0.05.
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41:2;O2 and glycerophosphocholines of shorter chain lengths (LPC 
28:1, PC 28:1, PC 32:2, PC O-30:0, PC O-30:2, PC O-34:0, PC O-34:2, 
PC O-36:0 and PC O-36:4). Although changes in LDL-C followed a 
similar pattern of positive correlations with the abovementioned lipid 
classes, they were less numerous and the coefficients were weaker. On 
the contrary, changes in HDL-C were not strongly correlated with 
metabolite changes. Changes in triacylglycerol were mostly positively 
correlated with changes in glycerophosphocholines in the subclass PC, 
with the strongest coefficients for the monounsaturated PC 32:1, PC 
34:1, PC 36:1, and for the polyunsaturated PC 38:3 and PC 40:5. A 
negative significant correlation of triacylglycerol was observed with 
the amino acid ornithine. For changes in glucose, a few positive 
correlations were observed with the subclasses PC and PC-O. However, 
more interestingly, several inverse correlations were observed between 

changes in insulin and HOMA-IR with changes in fatty acid carnitines 
and PC 36:0. Additionally, changes in insulin presented a positive 
correlation with LPC 18:0 while changes in HOMA-IR presented 
positive correlations with LPC 18:0, PC 36:2 and alanine and a 
negative correlation with symmetric dimethylarginine (SDMA).

Analyses of anthropometric and demographic parameters 
revealed significant positive correlations between weight loss during 
the intervention and changes in glucose, insulin and HOMA-IR 
(0.354 ≤ r ≥ 0.404) and a negative correlation between age and change 
in HDL-C (r = −0.303, Supplementary Table S2). However, partial 
correlations between changes in blood clinical chemistry and 
metabolites controlled for weight loss, age and sex did not affect 
substantially the number, strength and direction of correlations 
(Supplementary Figure S2).

TABLE 2 Percentage of participants in each dietary advice cluster that received the dietary messages from the metabotype framework, considering 
both reports as a total or each report separately.

Dietary advice cluster 1 (n =  22) Dietary advice cluster 2 (n =  23)

Baseline + week 4 Baseline Week 4 Baseline + week 4 Baseline Week 4

Messages focused on dietary quality improvement

Limit the intake of foods high in 

added sugar

50.0 40.9 18.2 95.7 95.7 34.8

Reduce the intake of high-fat 

foods

13.6 13.6 0 91.3 73.9 52.2

Low-fat cooking advice 13.6 13.6 0 73.9 26.1 56.5

Eat oily fish twice a week 95.5 77.3 22.7 87.0 8.7 82.6

Have a small daily handful of 

seeds and nuts

95.5 77.3 22.7 87.0 8.7 82.6

Choose fibre-rich carbohydrates 95.5 54.5 77.3 100 95.7 69.6

Eat five servings of fruit and 

vegetables per day

95.5 59.1 50.0 95.7 47.8 52.2

Eat more dark green vegetables 86.4 27.3 77.3 78.3 26.1 56.5

Eat more beans and pulses 81.8 31.8 68.2 56.5 26.1 30.4

Choose lean meats 63.6 50.0 45.5 73.9 73.9 13.0

Choose low-fat dairy products 72.7 63.6 45.5 73.9 73.9 17.4

Limit the intake of processed 

foods

72.7 63.6 45.5 78.3 78.3 26.1

Eat 3 servings of dairy products 

per day

50.0 31.8 22.7 13.0 4.3 8.7

Limit alcohol intake 9.1 0 9.1 30.4 21.7 13.0

Choose low-salt products 0 0 0 8.7 8.7 4.3

Limit added salt 0 0 0 8.7 8.7 4.3

Messages focused on body weight management

Aim for a gradual weight loss 

(0.5–1 kg per week)

4.5 4.5 0 100 95.7 100

Exercise for 60–90 min per day 4.5 4.5 0 100 95.7 100

Do not skip breakfast and avoid 

eating at night-time

4.5 4.5 0 100 95.7 100

Reduce the size of food servings 4.5 4.5 0 100 95.7 100

You have a healthy body weight: 

aim to keep it

100 95.5 100 4.3 4.3 0

Exercise for 30 min per day 100 95.5 100 4.3 4.3 0
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4. Discussion

Analyses of the personalised dietary messages delivered 
through the metabotype framework during the intervention 
identified two clusters of participants (dietary advice clusters) 

with distinct patterns of dietary advice. Both patterns of dietary 
advice similarly improved dietary quality assessed by the AMED 
and AHEI scores, nutrient intakes and metabolic health 
parameters. In addition, several correlations were identified 
between changes in blood clinical chemistry and changes in 

TABLE 3 Impact of personalised nutrition advice on dietary intake and metabolic health parameters by dietary advice cluster.

Dietary advice cluster 
1 (n =  22)

Dietary advice cluster 
2 (n =  23)

p-
value 

(C)

p-
value 

(T)

p-
value 
(C  ×  T)

FDR 
(C)

FDR 
(T)

FDR 
(C  ×  T)

Baseline Week 12 Baseline Week 12

Dietary intake

AMED 4.41 ± 1.68 5.82 ± 1.68 3.22 ± 1.88 4.13 ± 1.52 <0.001 0.002 0.370 0.004 0.001 0.635

AHEI 53.1 ± 14.6 61.7 ± 8.6 47.0 ± 14.9 51.5 ± 11.4 0.015 0.002 0.289 0.031 0.005 0.592

Energy (kcal) 2080 ± 500 1979 ± 540 2,236 ± 557 1813 ± 482 0.970 <0.001 0.011 0.982 0.001 0.250

Carbohydrate (% E) 41.1 ± 9.8 38.8 ± 10.6 40.6 ± 6.0 39.2 ± 5.7 0.982 0.061 0.595 0.982 0.095 0.694

Fat (% E) 39.8 ± 8.5 39.0 ± 7.1 39.9 ± 5.1 40.7 ± 5.8 0.610 0.998 0.420 0.657 0.998 0.635

Protein (% E)a 15.6 ± 3.8 18.5 ± 4.7 16.4 ± 3.6 18.5 ± 3.5 0.587 <0.001 0.515 0.657 0.001 0.668

Free sugars (% E) 8.2 ± 4.2 5.5 ± 4.1 9.0 ± 4.2 7.7 ± 3.8 0.172 <0.001 0.172 0.255 0.003 0.592

Saturated fat (% E) 14.9 ± 4.4 12.2 ± 2.5 15.1 ± 3.1 13.5 ± 2.8 0.373 <0.001 0.345 0.487 0.001 0.635

Polyunsaturated fat 

(% E)a

6.5 ± 1.7 7.7 ± 2.4 6.1 ± 1.6 7.1 ± 2.9 0.238 0.043 0.654 0.333 0.080 0.719

Monounsaturated 

fat (% E)a

14.8 ± 3.7 15.3 ± 4.0 14.5 ± 2.6 16.3 ± 3.8 0.578 0.068 0.296 0.657 0.100 0.592

Fibre (g/1000 kcal)a 10.9 ± 2.7 13.8 ± 3.6 10.2 ± 2.8 11.6 ± 2.8 0.098 <0.001 0.196 0.172 0.001 0.592

Sodium (mg)a 2,435 ± 645 2,164 ± 923 2,871 ± 747 2,131 ± 816 0.382 <0.001 0.098 0.487 <0.001 0.592

Calcium (mg)a 997 ± 315 892 ± 319 995 ± 402 806 ± 329 0.470 0.009 0.525 0.572 0.022 0.668

Folate (μg)a 307 ± 93 361 ± 122 309 ± 115 280 ± 100 0.126 0.661 0.018 0.208 0.736 0.250

Metabolic health parameters

Weight (kg)a 64.4 ± 12.2 64.0 ± 12.4 86.1 ± 13.2 85.0 ± 13.7 <0.001 0.056 0.454 <0.001 0.091 0.635

BMI (kg/m2)a 22.3 ± 2.0 22.2 ± 2.2 28.7 ± 2.4 28.3 ± 2.7 <0.001 0.056 0.454 <0.001 0.091 0.635

Waist 

circumference (cm)

77 ± 8 77 ± 9 101 ± 10 99 ± 11 <0.001 0.029 0.287 <0.001 0.059 0.592

Waist-hip ratio 0.79 ± 0.07 0.79 ± 0.07 0.92 ± 0.07 0.92 ± 0.09 <0.001 0.261 0.668 <0.001 0.331 0.719

Systolic blood 

pressure (mmHg)a

106 ± 12 106 ± 14 122 ± 15 118 ± 12 <0.001 0.213 0.214 0.001 0.283 0.592

Diastolic blood 

pressure (mmHg)a

62 ± 6 62 ± 7 73 ± 8 70 ± 7 <0.001 0.017 0.238 <0.001 0.037 0.592

Total cholesterol 

(mmol)

4.64 ± 1.02 4.69 ± 0.99 5.32 ± 0.96 5.01 ± 0.96 0.067 0.272 0.119 0.125 0.331 0.592

LDL-C (mmol) 3.60 ± 0.88 3.22 ± 0.77 4.41 ± 0.82 4.26 ± 0.84 <0.001 0.011 0.256 0.001 0.026 0.592

HDL-C (mmol) 1.63 ± 0.50 1.79 ± 0.58 1.22 ± 0.53 1.22 ± 0.51 0.002 0.160 0.150 0.004 0.225 0.592

Triacylglycerol 

(mmol)a

0.42 ± 0.22 0.31 ± 0.19 0.86 ± 0.56 0.57 ± 0.33 <0.001 0.001 0.915 0.001 0.005 0.949

Glucose (mmol) 4.63 ± 0.40 4.69 ± 0.36 4.89 ± 0.65 4.76 ± 0.41 0.173 0.609 0.227 0.255 0.711 0.592

Insulin (mU/L)a 5.13 ± 1.64 5.57 ± 2.71 11.57 ± 8.56 10.66 ± 6.24 <0.001 0.712 0.580 <0.001 0.738 0.694

HOMA-IRa 1.06 ± 0.36 1.17 ± 0.60 2.63 ± 2.42 2.28 ± 1.41 <0.001 0.683 0.449 <0.001 0.736 0.635

Values are mean ± standard deviation. p-values are the comparison between clusters using linear mixed models: C, cluster effect; T, time effect; C × T, cluster by time interaction; AMED, 
Alternate Mediterranean Diet Score; AHEI, Alternative Healthy Eating Index 2010; BMI, body mass index; FDR, false discovery rate; HOMA-IR, homeostatic model assessment for insulin 
resistance; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; % E, percentage of total energy intake. aVariables were log10 transformed prior to analyses. 
Bold values are values significant at p ≤0.05 or FDR ≤0.05.
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metabolite levels, which included mostly lipids (sphingomyelins, 
glycerophosphocholines and fatty acid carnitines). These findings 
indicate that the metabotype framework effectively personalises 
and delivers dietary advice to improve dietary quality and 

metabolic health parameters. Importantly, the different patterns 
of advice resulted in similar improvements in overall dietary 
quality and metabolic health highlighting the power of 
personalising based on the metabotype.

FIGURE 1

Network graph of significant Spearman correlation coefficients between changes in the blood clinical chemistry and changes in plasma metabolite 
levels obtained with a personalised dietary advice intervention. The thickness of the strokes denotes the magnitude of the correlation, blue strokes 
denote negative correlations and orange strokes denote positive correlations. Only correlation coefficients ≤ −0.4 or ≥0.4 are presented. The strongest 
negative correlation is r  =  −0.607 and the strongest positive correlation is r  =  0.631. The complete list of significant correlations is presented in 
Supplementary Figure S1. C, fatty acid carnitines; HOMA-IR, homeostatic model assessment for insulin resistance; LDL-C, low-density lipoprotein 
cholesterol; LPC, monoglycerophosphocholines; PC-O, 1-alkyl,2-acylglycerophosphocholines; PC, diacylglycerophosphocholines; SM, 
sphingomyelins; TAG, triacylglycerol; TC, total cholesterol.
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Personalised nutrition is built on the premise that dietary advice 
tailored to an individual will be more effective than one-size-fits-all 
approaches to improve dietary intake and metabolic health (2, 3, 29). 
The process includes the identification of individual characteristics 
that, if targeted, could induce the desired changes in dietary behaviour 
and consequently in health outcomes. However, the success of an 
approach will also depend on its ability to translate this information 
into practical and feasible advice. This is important as dietary changes 
require individuals to make commitments with daily choices and 
those perceived as personally relevant are more likely to 
be remembered and assumed to increase motivation and compliance 
(2, 29–31). As a tool for delivering dietary advice to healthy 
individuals, the metabotype framework guides the prioritisation of 
dietary messages that align with population-based recommendations 
by harnessing the individual metabolic profile (3). This is evident in 
the delivery of messages targeted at increasing the intake of 
unsaturated fat and fibre. In the RCT, participants in the control group 
received population-level nutrition advice containing the same six 
dietary goals based on the national dietary guidelines but in random 
order (22). Although messages with potential benefits on the intake of 
fibre and saturated fat were present in four and five dietary goals 
respectively, dietary advice delivered using the metabotype framework 
resulted in greater improvements in the intake of these nutrients. In 
the present analysis, two different patterns of dietary advice resulted 
in similar improvements in AMED and AHEI scores, which are 
effective indicators of dietary quality (32–34), and in several nutrient 
intakes reflecting the focus of the optimisation of the metabotype 
framework to tailor dietary advice (24). Dietary messages targeted at 
reducing sodium intake were delivered to a few participants but the 
reduction in the intake is possibly a consequence of the improvement 
of the overall dietary quality (35). These results reinforce the ability of 
the metabotype framework to improve dietary intake through the 
personalisation of dietary advice.

Several personalised approaches using lifestyle, phenotypic or 
genotypic information were successful at tailoring dietary advice that 
promoted dietary improvements (36–40). However, the use of 
metabotypes for this purpose is emerging and the available studies 
present critical differences in their approaches (20–22). The 12-week 
RCT PERSON study investigated the use of diets tailored for 
metabotypes of muscle or liver insulin resistance to improve 
cardiometabolic health (20). The metabotypes defined in the study 
considered the groups as having unique profiles that would benefit 
from distinct diets and individuals with heterogeneous profiles were 
not included (41). Although the primary outcome (disposition index) 
was not impacted by the intervention, secondary outcomes (insulin 
sensitivity, glucose homeostasis, triacylglycerol and C-reactive 
protein) were improved among individuals who followed the 
considered suboptimal diets. These results evidence the opportunity 
to use diets modulated based on metabotypes to achieve meaningful 
clinical improvements in cardiometabolic health but the complexity 
of delivering personalised nutrition. The 10-week RCT 
PREVENTOMICS focused on improving body weight and 
composition of overweight and obese individuals by scoring them into 
five metabolic processes/metabotypes (oxidative stress, inflammation, 
carbohydrate metabolism, lipid metabolism and gut microbiota 
metabolism) using an algorithm with 51 urine and blood markers and 
35 SNPs to score (21). Following a personalised dietary plan based on 

their metabotype did not improve the outcomes further compared to 
generic advice. However, the individuals followed a diet with the 
characteristics solely of the metabolic process where they scored the 
highest while metabolic processes with lower scores but potentially 
relevant were not be addressed in the dietary plan (42). Compared to 
the abovementioned studies, the metabotype framework used here 
employs a more flexible approach to define the metabotypes and tailor 
dietary advice. For example, it has two metabotypes characterised by 
high average total cholesterol but their other characteristics are 
distinct enough so that the dietary advice can be tailored. In addition, 
the metabotype framework includes variables in the decision trees that 
allow further personalisation of dietary advice. Metabotypes with 
similarities in the metabolic profile are common, especially in diabetes 
research (10, 11, 43, 44). Characteristics that are shared among 
metabotypes reflect the heterogeneity of the human phenotype which 
must be  considered when tailoring dietary advice and may have 
contributed to the effectiveness of the metabotype framework.

In addition to dietary quality and nutrient intakes, tailoring 
dietary advice using the metabotype framework improved metabolic 
health parameters with both patterns of dietary advice. Personalised 
nutrition approaches have mostly reported improvements in dietary 
intake (6, 36, 45), while one approach applied to three different 
populations reported improvements only in metabolic health 
parameters (5, 46, 47). Studies with positive effects in both dimensions 
are scarce. A 12-week RCT that applied the Food4Me decision trees 
adapted to overweight and obese Chinese adults (n = 318) found that 
the personalised group significantly increased dietary quality (China 
dietary guidelines index) and physical activity levels and reduced 
anthropometric parameters (e.g., BMI, body fat percentage, waist 
circumference) and blood biomarkers concentrations (e.g., blood 
lipids, uric acid, homocysteine) compared to generic advice (48). 
Personalised messages to lose weight, increase fibre intake and take 
multivitamin/mineral supplements were identified as the major 
contributors to reducing BMI and improving the lipid profile. The 
concomitant improvement in dietary quality and metabolic outcomes 
is solid evidence to support personalised approaches to deliver dietary 
advice. With improvements in dietary quality and lipid profile, the 
metabotype framework emerges as a tool for addressing well-
established risk factors for cardiometabolic diseases and consequently 
their prevention.

Metabolomics produces high-resolution and comprehensive 
biological signatures that have the potential to provide a broader 
understanding of metabolism (49, 50). Previous prospective 
metabolomic studies have established that several metabolites are 
differentially linked to the risk of cardiometabolic diseases including 
altered metabolism of amino acids, acylcarnitines, sphingolipids and 
phospholipids (51–53). However, their changes in relation to the 
classical blood markers are less frequently reported, especially for 
dietary interventions. In our study, changes in total cholesterol and 
LDL-C were mostly positively correlated with changes in 
sphingomyelins and glycerophosphocholines with shorter chain 
lengths. Similar associations were demonstrated in an intervention 
study during periods of weight loss and weight maintenance 
indicating that the associations were independent of weight decrease 
(54). These associations are expected as sphingomyelins are 
sphingolipids found predominantly in circulating LDL-C, while 
glycerophosphocholines are the most abundant lipid subclass in 
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LDL-C (55). However, most of the glycerophosphocholines 
associated with changes in total cholesterol and LDL-C had alkyl-
acyl residues (PC-O) while the diacyl residues (PC) were mostly 
associated with changes in triacylglycerol. PC-O are phospholipids 
characterised by a hydrocarbon chain with an ether bond located at 
the sn-1 position of the glycerol-backbone and often include 
plasmalogens, which have a vinyl-ether linkage (56). Plasmalogens 
are implicated in cholesterol transport and one possibility is that 
their increased concentration may indicate increased protective 
activity against oxidative stress. Findings from three Dutch 
population-based cohorts with 5,337 individuals reported positive 
correlations between concentrations of LDL-C and levels of several 
glycerophosphocholines with diacyl residues (PC 36:2, PC 36:3, PC 
36:4, PC 38:5, PC 38:6) while concentrations of triacylglycerol were 
positively correlated with levels of several glycerophosphocholines 
with alky-acyl residues (PC O-34:1, PC O-36:1, PC O-36:2, PC 
O-36:3, PC O-38:3, PC O-40:4, PC O-40:6) (57). In addition, the 
strongest correlations with changes in triacylglycerol were observed 
with changes in monounsaturated diacyl residues. Furthermore, 
we observed inverse associations between changes in several fatty 
acid carnitines and changes in insulin levels and 
HOMA-IR. Population-based studies have associated increased 
levels of fatty acid carnitines with incident type 2 diabetes (58, 59), 
especially those with long carbon chains (60). However, interventions 
with weight loss and reduced fructose intake demonstrated a general 
increase in fatty acid carnitines levels (61, 62). In the EPIC cohort, 
these levels were influenced by intrinsic and lifestyle factors in 
different directions which reflects the complexity of the topic (63). 
Changes in blood biochemistry were also correlated with changes in 
the levels of amino acids and derivates. Changes in HOMA-IR were 
positively correlated with changes in alanine and inversely correlated 
with changes in SDMA. Alanine is one of the most abundant amino 
acids in the circulation and higher levels have been robustly 
associated with impaired insulin secretion and incident type 2 
diabetes (51, 64). On the contrary, the status of SDMA in insulin 
resistance is controversial. Elevated SDMA levels have been 
associated with several clinical conditions, including type 2 diabetes 
(65), but inverse concurrent changes in SDMA and HOMA-IR were 
also reported (66, 67). The associations between changes in blood 
clinical chemistry and metabolite levels observed with the 
personalised dietary advice delivery by the metabotype framework 
shed light on the physiological impact of the improvement of 
dietary quality.

A limitation of the present study is that the sample size was 
calculated to detect a difference in the AMED score between 
personalised and control groups in the primary analysis of the 
12-week RCT and thus a reduced statistical power to detect difference 
between dietary advice clusters is expected. Additional studies with 
larger sample sizes could confirm if the magnitude of changes is 
similar between clusters. However, both presented improvements in 
dietary quality and metabolic health parameters which support the 
metabotype framework as an effective tool to tailor and deliver dietary 
advice. In addition, we  used a targeted approach to assess the 
metabolomic profile of the participants and a method with a wider 
selection of biomarkers could provide further insights into the 
associations between changes in blood biochemistry and metabolites. 
Strengths of the study include dietary data captured through a detailed 

4-day food diary in conjunction with blood clinical chemistry and 
extensive metabolomic data, which provides a comprehensive analysis 
of the effects of personalising dietary advice through the metabotype 
framework. In addition, both clusters of dietary advice had a wide age 
range but were significantly different in body weight and AMED 
scores at baseline. With both clusters highly benefiting from the 
personalisation of the advice (15 and 10% increase in AMED score for 
clusters 1 and 2, respectively), this suggests broad applicability of the 
metabotype framework to the general population.

In conclusion, the metabotype framework is an effective tool to 
personalise and deliver dietary advice. Concomitant improvements in 
dietary quality and metabolic health parameters with different 
patterns of dietary advice highlight the power of personalising 
nutrition based on metabotypes. Future development should focus on 
extending this approach to different population groups and evaluating 
its acceptance among healthcare professionals.
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