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Introduction: Micronutrient (MN) deficiencies are a major public health 
problem in developing countries including Ethiopia, leading to childhood 
morbidity and mortality. Effective implementation of programs aimed at 
reducing MN deficiencies requires an understanding of the important drivers 
of suboptimal MN intake. Therefore, this study aimed to identify important 
predictors of MN deficiency among children aged 6–23  months in Ethiopia 
using machine learning algorithms.

Methods: This study employed data from the 2019 Ethiopia Mini 
Demographic and Health Survey (2019 EMDHS) and included a sample 
of 1,455 children aged 6–23  months for analysis. Machine Learning (ML) 
methods including, Support Vector Machine (SVM), Logistic Regression (LR), 
Random Forest (RF), Neural Network (NN), and Naïve Bayes (NB) were used 
to prioritize risk factors for MN deficiency prediction. Performance metrics 
including accuracy, sensitivity, specificity, and Area Under the Receiver 
Operating Characteristic (AUROC) curves were used to evaluate model 
prediction performance.

Results: The prediction performance of the RF model was the best performing 
ML model in predicting child MN deficiency, with an AUROC of 80.01% and 
accuracy of 72.41% in the test data. The RF algorithm identified the eastern 
region of Ethiopia, poorest wealth index, no maternal education, lack of 
media exposure, home delivery, and younger child age as the top prioritized 
risk factors in their order of importance for MN deficiency prediction.

Conclusion: The RF algorithm outperformed other ML algorithms in 
predicting child MN deficiency in Ethiopia. Based on the findings of this 
study, improving women’s education, increasing exposure to mass media, 
introducing MN-rich foods in early childhood, enhancing access to health 
services, and targeted intervention in the eastern region are strongly 
recommended to significantly reduce child MN deficiency.
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1 Introduction

Micronutrient (MN) deficiencies are a major public health 
problem around the world, contributing to childhood morbidity and 
mortality. The burden of this problem is disproportionately high in 
low- and middle-income countries, particularly in Sub-Saharan 
Africa, including Ethiopia (1, 2). MN deficiencies mainly occur when 
people lack access to MN-rich foods like fruits, vegetables, animal 
products, and fortified foods. MN deficiencies lower immune 
capabilities and increase the overall risk of infection-related mortality, 
particularly diarrhea, measles, malaria, and pneumonia, which are 
among the world’s top ten leading causes of death (1, 3). MNs are only 
minimally required; however, their lack in the diet has a severe impact 
on the survival and development of children. Furthermore, MN 
deficiency contributes to stunting, wasting, weakened immunity, and 
delays in cognitive development (1, 3, 4).

Vitamin A (VA) and Iron are essential micronutrients that are 
crucial for the growth and development of children and their 
deficiency causes significant public health problem in children (5). 
Iron deficiency is a primary cause of anemia and has serious health 
consequences for both women and children. VA plays an important 
role in maintaining the epithelial tissue in the body. Its severe 
deficiency causes eye damage and is the leading cause of preventable 
childhood blindness. Moreover, VA deficiency increases the severity 
of infections such as measles and diarrheal disease in children and 
slows recovery from illness. It is common in dry environments where 
fresh fruits and vegetables are not readily available (3).

According to the 2019 United Nations Children’s Fund report, 340 
million children globally suffered from hidden hunger as a result of 
MN deficiency (6). In Africa, less than one-third and one-half of 
children aged between 6 and 23 months met the minimum criteria for 
dietary diversity and meal frequency, respectively. According to the 
2019 Ethiopian Mini Demographic Health Survey (EMDHS) report, 
the consumption of foods rich in VA and iron, which are the major 
MN deficiency indicators, remains low among young children in 
Ethiopia. Thirty-nine percent of children aged 6–23 months consumed 
foods rich in VA during the 24 h before the interview, whereas 24% 
consumed iron-rich foods (3).

Empirical studies have identified several factors associated with 
insufficient minimum dietary diversity, including limited access to 
media such as newspapers, magazines, and radio; lower education 
level of fathers; fewer antenatal care visits; younger child age; working 
in agriculture, and poorest household wealth index (1, 4, 6–8). 
However, the typical logistic and multilevel models employed in these 
studies were unable to identify the most important predictors. 
Identifying predictors of MN deficiency and taking corrective action 
are critical in reducing MN deficiency. Prioritizing predictors based 
on their contribution in predicting MN deficiency will be cost effective 
and simple to implement but has not yet been considered. Machine 
learning (ML) algorithms, which intersects statistical learning and 
artificial intelligence research, are used to explore large amounts of 
data to discover unknown patterns or relationships and show the share 
of predictors for a particular problem (9, 10). In addition, ML helps to 
develop predictive models and the selection of the most 
important predictors.

Hence, the ML algorithm is the ideal candidate statistical model 
for addressing these statistical modeling issues. These models have 
demonstrated high performance in solving classification problems 

compared to the conventional statistical models applied to select the 
most important predictors. The availability of diverse alternative 
models to be selected as the best fit for a predictive model is one of the 
most important features behind the use of ML algorithms. Among 
others, the five widely used ML models considered in this study are 
Support Vector Machine (SVM), Logistic Regression (LR), Neural 
Network (NN), Random Forest (RF), and Naïve Bayes (NB) (9–14).

The most significant predictors of MN deficiency were determined 
after evaluating these multiple models and choosing the model that 
best fit the data under consideration in this study. This enables health 
professionals, policy designers and implementers, and interventions 
geared towards addressing challenges posed by MN deficiency to 
concentrate their efforts on the most reliable predictors and take 
corrective actions. To the best of our knowledge, no previous study 
has used ML modeling to determine the factors that predict MN 
deficiency in Ethiopia and other East African nations. The main 
objective of this study was to identify the most important predictors 
of childhood MN deficiency in Ethiopia by evaluating various ML 
algorithms that most accurately and efficiently predict 
micronutrient deficiency.

2 Materials and methods

2.1 Data source and sampling procedure

This analysis involved the Ethiopia Mini Demographic and Health 
Survey (EMDHS), which was collected through a nationally 
representative, cross-sectional, and household-based survey 
conducted in Ethiopia in 2019. The data collection used a two-stage 
cluster sampling design with stratification into urban and rural 
regions. Twenty-one sampling strata were obtained after stratifying 
each region into urban and rural areas. In the first stage, 305 
Enumeration Areas (EAs) (93 urban EAs and 212 rural EAs) were 
chosen with a probability proportional to the EA size in each stratum. 
In the second stage, 30 households were randomly selected from each 
EA using an equal probability method from the fresh list of 
households, resulting in a total of 8,663 households with 1,463 
children aged 6–23 months (3).

2.2 Study variables and measurements

2.2.1 Outcome variable
The outcome variable in this study was the MN deficiency status 

of children aged 6–23 months, which was derived based on the MN 
intake status from respondents’ report. It was mainly computed from 
the VA and Iron rich foods consumed in the last 24 h prior to the data 
collection among children aged 6–23 months. We classified children’s 
MN deficiency status into two groups: “Yes” outcomes if the 
respondent reported that the child did not consume any of the 
minimum recommended MNs, and “No” outcomes if the child had 
consumed at least one of the minimum recommended MNs (1).

A child was grouped in the MN deficient category in VA if he or 
she had not consumed any of the seven VA-rich foods in the 24 h prior 
to the data collection. The seven VA rich foods include: i. eggs; ii. meat 
(beef, hog, lamb, or chicken); iii. Pumpkin, carrots, and squash; iv. any 
dark green leafy vegetables; v. mangoes, papayas, and other fruits 
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containing VA; vi. liver, heart, and other organs; and vii. Fish or 
shellfish. Similarly, a child was deemed MN deficient in Iron if she or 
he did not eat anything from the four food groups that were high in 
Iron: eggs, meat (beef, hog, lamb, or chicken), liver, heart, and other 
organs, fish, or shellfish. Hence, in this study, the MN deficiency status 
of the child was determined as MN deficient if the child was MN 
deficient in both groups (VA and Iron) and labeled “Yes” and “No” 
otherwise. The outcome variable is MN deficiency (Y), which is 
defined for an individual child as:

 
y

if a child i had received none of the minimum recomended MN
i =

1, ss

if a child i had eaten atleast one of the minimum recomended M0, NNs





2.2.2 Predictors in the model
The MN deficiency predictor variables or features included in the 

models were child age in months, age of mothers, number of children 
under five, mother’s education, antenatal care (ANC) visit, postnatal 
care (PNC) visit, health check after delivery, place of delivery, current 
pregnancy status, currently breastfeeding, wealth index, region, place 
of residence, and media exposure (See details in Table 1). Moreover, 
the administrative region shapefiles were used to investigate the spatial 
variation in the prevalence of child MN deficiency.

2.2.3 Feature selection
Feature selection is a critical step in predicting and interpreting 

high-dimensional datasets. We  employed the Recursive Feature 

Elimination (RFE) method as a feature selection technique that uses 
a wrapper approach to select the most relevant features for a given ML 
model by recursively removing features from the dataset and training 
the model on the remaining features until the desired number of 
features is obtained (15). RFE is a valuable tool for identifying the 
most important features of MN deficiency in children and improving 
the predictive power of our ML models. Therefore, ML algorithms 
were applied to determine their predictive power and identify the 
most important determinants of child MN deficiency.

2.3 Machine learning methods

Machine Learning (ML) methods that were used in this study 
include SVM, LR, NN, RF, and NB. ML models have been used to 
rank relevant predictors of MN deficiency and to identify important 
predictors of health outcomes and other variables of interest.

We used the R programming language (version 4.2.2) and R 
packages sf (16), caret (17), and pROC (18) for data preprocessing and 
analysis. The performance of the ML algorithms was evaluated using 
metrics such as accuracy and the Area Under the Receiver Operating 
Characteristic curve (AUROC).

In this study, we employed ML approaches by randomly dividing 
the dataset into two sets: 80% of it for the training set and 20% for the 
test set. The training set was used to train the model and the test set 
was used to evaluate the performance of the model. Standard ML 
accuracy measures were used to evaluate the prediction power of 
popular supervised ML algorithms, including SVM (13), LR (11, 14), 
NN (11–14, 19), RF (10–14, 20, 21), and NB (19). The ML algorithms 
were trained based on 10-fold cross-validation to optimize models. 
The overall pipeline of this study is shown in Figure 1. Figure 1 depicts 
the ML approach for predicting MN deficiency using EMDHS data. 
The approach involves several steps, including data collection, 
preprocessing, data cleaning and encoding, feature selection, building 
and evaluating ML algorithms, and comparing the performance of 
different models. The best-performing model was then used to predict 
MN deficiency. Following this approach, this study aimed to develop 
accurate and reliable predictive models that can inform public health 
policies and promote child development in Ethiopia.

Support Vector Machine (SVM) is a supervised ML model used 
for regression and classification that creates a hyperplane or set of 
hyperplanes in a high- or infinite-dimensional space. The objective is 
to maximize the margin between the nearest training points or 
support vectors of each class and the separating hyperplane. The best 
separation border is represented by the hyperplane with the largest 
available margin. To conduct linear separation, data must 
be  transformed into higher dimensions using kernel functions. 
Non-linear classification tasks can be successfully completed using 
SVM, which is successful on complicated issues with little training 
data because of its generalization capabilities (22).

Logistic Regression (LR) is a statistical machine learning 
algorithm for binary classification problems that models the 
probability of an input data point belonging to a particular class. LR 
applies a logistic sigmoid function to the weighted sum of input 
predictors to estimate the probabilities, then thresholds the output to 
make a binary prediction. Moreover, it assumes a linear relationship 
between the log-odds of the outcome and the input predictors and can 
handle numerous predictor variables. It does not require linear 

TABLE 1 The description of the predictor variables considered in the 
analysis.

Variables Descriptions

Maternal level characteristics

Mother’s education No education, primary, secondary, higher

Age of mothers 15–24, 25–34, 35–49 (Mothers current 

age)

Number of under five children 1, 2, 3 or more

Community level characteristics

Place of residence Urban/Rural

Media exposure No/Yes

Wealth index Poorest, poorer, middle, richer, richest

Region Tigray, Afar, Amhara, Oromia, Somali, 

Benshangul, SNNPR, Gambela, Harari, 

Addis Ababa, Dire Dawa

Obstetric characteristics

Antenatal care (ANC) visit No visit, 1–3, >=4

Postnatal care (PNC) visit No/Yes

Health check after delivery No/Yes

Current pregnancy status No or unsure/Yes

Place of delivery Home/health facility

Child level characteristics

Child age in months 6–8, 9–11,12–17, 18–23 (Child age in 

months)

Currently breastfeeding No/Yes
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relationships between dependent and independent variables, and 
penalization can control overfitting. The interpretability of model 
coefficients and probabilities makes logistic regression a popular 
starting classifier for machine learning applications involving binary 
prediction (23, 24).

The Random Forest (RF) is a popular algorithm for supervised 
ML that is used to solve classification and regression issues. It 
generates decision trees from randomly chosen data samples, gets 
predictions from each tree, and uses a majority vote to determine the 
optimal solution. RF also ranks the significance of each predictor 
using the mean decrease in accuracy (24–26).

The Neural Network (NN), also known as an Artificial Neural 
Network (ANN), is an ML model that uses a network of functions to 
recognize and translate a data input of one form into a desired output. 
The notion of NN was based on the biology of humans and how 
neurons work together in the human brain to understand information 
from the senses. NNs learn from labeled training data by adjusting the 
connection weights between layers of simple processing units, which 
enables them to model complex nonlinear relationships for 
applications in prediction, classification, and clustering (24, 27).

Naive Bayes (NB) is a supervised machine learning algorithm 
classifier based on Bayes’ theorem with independence assumptions 
between the features that simplifies the computation needed to 
estimate likelihood and posterior probability, making Naive Bayes a 
fast, scalable classifier that tends to perform very well on a variety of 
data despite its simplicity and restrictive assumptions (28).

2.4 Model performance evaluation

Different model performance metrics, including precision, recall 
or sensitivity, specificity, accuracy, F1 score, Receiver Operating 
Characteristics (ROC) curves, and ROC Area Under the Curve (ROC 
AUC) scores, were used to compare the performance of ML models 
or classifiers (24, 29).

A confusion matrix for binary classification is a two-by-two 
matrix that displays the values of True Positives (TP), False Negatives 
(FN), False Positives (FP), and True Negatives (TN) resulting from 
the predicted classes of data. By analyzing the confusion matrix, 
we  can calculate various performance metrics such as recall (or 

FIGURE 1

Flow chart of Machine learning approach.
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sensitivity), specificity, and accuracy. The TP and TN represent 
correct classifications by the model, whereas FN and FP are 
incorrect predictions.

Recall (sensitivity) also called True Positive Rate (TPR) measures 
how many of the positive samples are captured by the positive predictions

 
TPR

TP

TP FN
=

+( )

Specificity is another performance metric used in binary 
classification that measures the proportion of negative samples 
that are correctly identified by the model. Specifically, it measures 
the ability of the model to correctly predict negative samples 
as negative.

 
Specificity

TN

TN FP
=

+( )

Accuracy is a commonly used performance metric in binary 
classification that measures the proportion of samples that are 
correctly classified by the model out of all the samples it has predicted. 
It is calculated as:

 
Accuracy

TP TN

TP FP TN FN
=

+( )
+ + +( )

Precision also called positive predictive value (PPV) measures 
how many of the samples predicted as positive are actually positive.

 
Precision

TP

TP FP
=

+( )

The F1 score is the harmonic mean of precision and recall

 

F

Precision Recall

TP

TP FN FP
1

2

1 1 2
=

+( )
=

+ +( )( )/

The Receiver Operating Characteristic (ROC) curve is another 
standard tool used with binary classifiers, which plots sensitivity versus 
(1 − specificity). Measuring the Area Under the Curve (AUC) is one 
method of comparing classifiers. AUC provides an aggregated value 
that illustrates the likelihood that each ML algorithm will accurately 
classify a random sample. The better the classifier, the more closely the 
ROC curve will hug the top left corner (24, 30).

3 Results

3.1 Descriptive results

Data from 1,455 children aged 6 to 23 months were included in 
the analysis to assess the MN deficiency status in Ethiopia. Overall, 
62.1% of them had not received any of the minimum recommended 

micronutrients and were therefore MN deficient. According to 
Table 2, the prevalence of MN deficiency was significantly higher 
among children whose mothers had no education (70.53%) compared 
to those with higher education (36.53%).

The prevalence of MN deficiency decreases as the child’s age 
increases, with the lowest percentage of deficiency found in the 
18–23 month age group (47.97%). MN deficiency is also significantly 
prevalent among children whose mothers have no media exposure 
(67.95%) compared to those with media exposure (47.43%). The 
results also suggest that as the wealth quintile increases, the 
prevalence of MN deficiency decreases, with the lowest percentage 
of deficiency found in the richest wealth quintile (47.12%) and the 
highest in the poorest (80.3%). The prevalence of MN deficiency 
also varies widely across regions, with the highest percentage of 
deficiency found in the Somali region (98.20%) and the lowest 
percentage of deficiency found in the Gambela region (42.94%) 
(Table 2).

According to Table 2, children whose mothers did not attend any 
ANC visits were more likely to have a MN deficiency (73.49%), 
compared to mothers who attended 1–3 ANC visits (60.70%) and 
those attended 4 or more visits (53.85%). Additionally, households 
with three or more children are more likely to experience a MN 
deficit (78.84%) than households with one or two children (59.81 and 
57.3%, respectively).

3.2 Spatial distribution of childhood MN 
deficiency

As per the findings presented in Figure 2, the spatial variation of 
childhood MN deficiency was most prevalent in Somali, Afar, and 
Amhara regions, while Gambela, Addis Ababa, and Southern Nations, 
Nationalities, and Peoples (SNNP) were the least affected regions. The 
findings suggest that the eastern part of Ethiopia, which includes the 
Somali and Afar regions, and the Amhara region were severely 
affected by MN deficiency.

3.3 Predictive algorithms for child 
micronutrient deficiency

The Recursive Feature Elimination (RFE) method was used to 
identify the features required to develop the ML algorithms on the 
training dataset. The results showed that RF had a relatively higher 
accuracy of 72.41% (95% CI: 66.89, 77.48), indicating its ability to 
correctly classify positive and negative cases. RF also achieved an 
AUROC of 80.01, suggesting good discriminative ability in 
distinguishing between positive and negative cases. The NPV of RF 
was found 69.23%, indicating its effectiveness in correctly identifying 
children without micronutrient deficiency. Additionally, the F1 score 
of RF was 79.59, indicating a balanced performance in terms of 
precision and recall, while NN had a slightly lower AUROC (79.84%) 
and accuracy (71.03%) compared to RF. Moreover, RF has the highest 
sensitivity (86.67%), meaning 86.67% of the children who are actually 
MN deficient are correctly identified by the model. In comparison to 
the other classifiers, Generalized Linear Model (GLM) had a slightly 
lower accuracy (70.69%) compared to RF, NN, and SVM and a 
relatively high AUROC score of 79.53% next to RF and NN. However, 
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TABLE 2 Weighted prevalence and chi-square statistics of MN deficiency by demographic and other characteristics among children aged 6–23  months 
in Ethiopia (n  =  1,455).

Predictors Non-MN deficient (%) MN deficient (%) Chi square test 
statistic

p values

Region 126.37 0.000

Tigray 52.24 47.76

Afar 16.63 83.37

Amhara 29.53 70.47

Oromia 42.07 57.93

Somali 1.80 98.20

Benishangul 47.52 52.48

SNNPR 49.58 50.42

Gambela 57.06 42.94

Harari 45.81 54.19

Addis Adaba 56.92 43.08

Dire Dawa 43.18 56.82

Place of residence 2.4024 0.121

Urban 47.81 52.19

Rural 35.99 64.01

Media exposure 7.8064 0.005

No 32.05 67.95

Yes 52.57 47.43

Number of under 5 children 12.199 0.002

1 40.19 59.81

2 42.63 57.37

3 or more 21.16 78.84

Wealth index 28.89 0.000

Poorest 19.71 80.29

Poorer 38.89 61.11

Middle 38.47 61.53

Richer 46.23 53.77

Richest 52.88 47.12

Current pregnant 1.053 0.305

No or unsure 39.79 60.21

Yes 31.83 68.17

Currently breastfeeding 0.298 0.5852

No 35.29 64.71

Yes 40.03 59.97

Maternal age 1.9302 0.381

15–24 38.67 61.33

25–34 42.17 57.83

35–49 32.75 67.25

Maternal education level 23.465 0.000

No education 29.47 70.53

Primary 44.84 55.16

Secondary 48.20 51.80

Higher 63.47 36.53

(Continued)
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its sensitivity score of 80% was lower than those of RF and 
SVM. Finally, RF had the highest AUROC score (80.01%), whereas 
NB had the lowest (78.18%) (Figure 3). Based solely on the results 
presented in Table 3, RF, NN, and SVM were the top-performing 

algorithms, respectively, in terms of accuracy (Table 3). Thus, among 
all the algorithms utilized in our investigation, the RF algorithm 
performed the best in predicting the MN-deficient status of the cases, 
as evidenced by performance measures.

TABLE 2 (Continued)

Predictors Non-MN deficient (%) MN deficient (%) Chi square test 
statistic

p values

ANC visit 8.49 0.014

No visit 26.51 73.49

1–3 visits 39.30 60.70

>=4 visits 46.15 53.85

Place delivery 0.44 0.51

Home 36.17 63.83

Health facility 41.75 58.25

Health check after delivery 0.83 0.363

No 38.58 61.42

Yes 45.94 54.06

PNC check 0.52 0.47

No 38.52 61.48

Yes 44.55 55.45

Child age in months 13.46 0.003

6–8 28.07 71.93

9–11 33.55 66.45

12–17 36.88 63.12

18–23 52.03 47.97

MN, micronutrient; ANC, antenatal care; PNC, postnatal care; SNNPR, Southern Nations Nationalities and People Region.

FIGURE 2

Spatial variations in MN deficiency by administrative regions in Ethiopia, EMDHS, 2019.
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3.4 The important predictors of 
micronutrient deficiency

The model evaluation findings, as discussed above, demonstrated 
that the random forest classifier was the best classifier in terms of 
accuracy and area under the receiver operating characteristics 
(AUROC) curve. Based on the most accurate classifier (RF), the top 
important predictors are presented according to their mean decrease 
accuracy (MDA) (Figure 4). Among the proposed predictors, the 
Somali region, the poorest wealth index, no maternal education, no 
media exposure, home delivery, the Afar region, and children aged 
6–8 months were the top important predictors in their order of 
importance for MN deficiency among children aged 6–23 months 
in Ethiopia.

3.5 Spatial mapping of actual vs. predicted 
childhood MN deficiency prevalence

The spatial variation in Figures 5A,B depicts the actual and 
predicted prevalence of childhood MN deficiency for each region 

in the test data, respectively. To predict the regional prevalence 
of MN deficiency, our best predictive model (RF) was employed. 
Upon visual inspection of the map, we observed that while some 
discrepancies existed between a few regions, the overall patterns 
of the observed prevalence were consistent with the predicted 
prevalence of child MN deficiency. This suggests that our 
predictive model (RF) was reliable and can be used to predict the 
childhood MN deficiency prevalence in areas where data 
are lacking.

3.6 Classical logistic regression analysis

In contrast to the machine learning models, the traditional 
logistic regression model provides interpretable odds ratios for 
each predictor. Based on the results presented in Table  4, the 
region where the child lives, wealth index, maternal education 
level, and child age in months were found to be  significant 
predictors of micronutrient deficiency among children aged 
6–23 months in Ethiopia. Specifically, children living in the 
Somali and Afar region had 31.20 and 4.75 times higher odds of 
MN deficiency, respectively, compared to children in the SNNP 
region. Children in the poorest wealth index category had 4.75 
times higher odds of micronutrient deficiency compared to 
children in the richest wealth index category. Moreover, the study 
found that a lower maternal education level and a younger child’s 
age were significantly associated with higher odds of 
micronutrient deficiency in children. Specifically, no education, 
primary, and secondary education in mothers were associated 
with 2.50, 1.96, and 1.91 times higher odds, respectively, 
compared to higher education. Children aged 6–11 months had 
1.78 times higher odds of MN deficiency compared to those aged 
18–23 months (Table 4).

4 Discussion

In this study, we found that children aged 6–23 months had a 
significant prevalence of MN deficiency, which accounted for 62.1% 
of children in Ethiopia. This finding highlights the highest MN 
deficiency compared with other studies conducted in East Africa 
(31), including Ethiopia (1). The difference in results can be explained 
by the influence of sample size because the current survey was a mini-
demographic survey. Moreover, we  found strong associations 
between certain demographic and socio-economic factors and the 

FIGURE 3

ROC curve for machine learning models in predicting childhood 
micronutrient deficiency. ROC, receiver operating characteristic; 
AUROC: area under the receiver operating characteristics.

TABLE 3 Model evaluation metrics for all ML models as evaluated on the test data.

ML algorithms Accuracy 
(95% CI) (%)

Sensitivity 
(recall) (%)

Specificity (%) Precision 
(PPV) (%)

NPV (%) F1-score 
(%)

AUROC (%)

SVM 71.03 (65.44, 76.19) 84.44 49.09 73.08 65.85 78.35 78.98

GLM 70.69 (65.09, 75.87) 80.00 55.45 74.61 62.89 77.21 79.53

RF 72.41 (66.89, 77.48) 86.67 55.45 73.58 69.23 79.59 80.01

NN 71.03 (65.44, 76.19) 80.00 56.36 75.00 63.27 77.42 79.84

NB 67.93 (62.22, 73.27) 57.78 84.55 85.95 55.03 69.10 78.18

ML, machine learning; GLM, generalized linear model; SVM, support vector machine; RF, random forest; NN, neural network; NB, Naive Bayes; PPV, positive predictive value; NPV, negative 
predictive value; AUROC, area under the receiver operating characteristic curve.
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prevalence of micronutrient deficiency, such as poverty, lack of media 
exposure, young age, low maternal education, and larger household 
size. This finding is consistent with other studies in this area (1, 
32, 33).

The findings of this study also showed considerable variations in 
MN deficiency among children across Ethiopian regions, as 
illustrated in the spatial map. MN deficiency is most prevalent in the 

eastern regions, such as Somalia and Afar, and in Amhara region, but 
least prevalent in the south-west, southern, and central regions in 
Gambella, SNNP, and Addis Ababa, respectively. Evidence of similar 
geographical variabilities in MN deficiency has been shown (1, 31, 
34). These findings highlight the need for targeted interventions that 
address the specific needs of different population groups in the 
eastern regions of Ethiopia.

FIGURE 4

Variable importance from random forest.

FIGURE 5

The spatial distribution of the actual (A), and predicted (B) of MN deficiency prevalence on the test data. MND, micronutrient deficiency.
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TABLE 4 Logistic regression model results for factors associated with child MN deficiency (based on training data).

Characteristics Adjusted odds ratio 
(AOR)

Confidence interval (CI) p value

Lower Upper

(Intercept) 0.13 0.06 0.29 0.000

Region

Tigray 1.30 0.75 2.28 0.351

Afar 4.75 2.46 9.55 0.000

Amhara 2.53 1.48 4.36 0.001

Oromia 1.30 0.79 2.15 0.296

Somali 31.20 9.02 197.20 0.000

Benishangul 1.08 0.63 1.88 0.771

Gambela 0.58 0.32 1.04 0.070

Harari 1.66 0.91 3.04 0.100

Addis Adaba 1.94 0.99 3.81 0.053

Dire Dawa 1.78 0.96 3.34 0.071

SNNP (Ref)

Media exposure

No 1.39 1.00 1.95 0.053

Yes (Ref)

Wealth index

Poorest 1.81 1.09 3.01 0.021

Poorer 1.11 0.69 1.78 0.666

Middle 1.17 0.73 1.88 0.525

Richest 1.01 0.62 1.64 0.968

Richer (Ref)

Current pregnant

No (Ref)

Yes 1.61 0.92 2.90 0.102

Education level

No education 2.50 1.40 4.52 0.002

Primary 1.96 1.13 3.45 0.018

Secondary 1.91 1.02 3.62 0.045

Higher (Ref)

Place of delivery

Home 1.18 0.85 1.62 0.322

Health center (Ref)

Health check after delivery

No 1.37 0.91 2.05 0.133

Yes (Ref)

Child age in months

6–8 2.77 1.84 4.19 0.000

9–11 2.32 1.54 3.54 0.000

12–17 1.75 1.26 2.43 0.001

18–23 (Ref)

AOR, adjusted odds ratio; CI, confidence interval; Ref, reference category.
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In terms of predictive ML algorithms, the random forest algorithm 
was found to have the highest accuracy and AUROC score for 
predicting micronutrient deficiency. However, it is worth noting that 
while the logistic regression algorithm (GLM) had slightly lower 
accuracy compared to other algorithms such as NN, RF, and SVM, its 
advantage lies in producing more interpretable results in terms of the 
predictors estimated in the algorithm. Numerous machine learning 
(ML) approaches have been applied to health issues, including 
nutritional status (11, 14, 21, 35), asthma risk prediction (20), and 
childhood anemia (9). These studies have demonstrated high-quality 
and valid predictions, highlighting the potential of the ML approach in 
predicting health outcomes. Findings from the RF classifier reveal that 
the Somali region, the poorest wealth index, children of mothers who 
have no education, children whose mothers have no media exposure, 
home delivery, the Afar region, and children aged 6–8 months were the 
top important variables in their order of importance for predicting MN 
deficiency among children aged 6–23 months in Ethiopia (1, 31, 32).

The findings of this study indicated that the poorest household 
wealth index was an important predictor of child MN deficiency. This 
aligns with evidence that poverty and the poorest wealth index status 
contribute to childhood MN deficiency (31, 33). Children from 
low-income households often have limited access to nutritious food, 
which can lead to deficiencies in essential micronutrients. The 
implications of these findings highlight the need for targeted 
interventions aimed at addressing MN deficiency in low-income 
households. Besides, this study finds that home delivery was a 
significant risk factor for micronutrient deficiency. This suggests that 
women who give birth at home may not receive the same level of 
support and education on proper nutrition and infant care that they 
would receive in a healthcare facility (36).

Likewise, the significance of a child’s age in predicting micronutrient 
deficiency has been well documented in the literature (1, 31, 33), which 
supports the results of this study. Additionally, it seems that children 
aged 6 to 11 months are more vulnerable to micronutrient deficiencies. 
These findings suggest that there is a strong association between child 
age and micronutrient deficiency, with younger children being at a 
higher risk of deficiency. This highlights the importance of early 
interventions to promote optimal nutrition and prevent micronutrient 
deficiency in infants and young children in Ethiopia.

Furthermore, the results indicate that a lack of maternal education 
increases the risk of childhood micronutrient deficiency. Conversely, 
children of educated women have significantly lower rates of 
micronutrient deficiency (31, 33). These findings have important 
implications for addressing child micronutrient deficiency and further 
emphasize the need to improve women’s education in developing 
countries to promote better outcomes for children’s micronutrient 
status. Moreover, the findings indicate that parents who lack media 
exposure are also important predictors of childhood micronutrient 
deficiency, which is consistent with previous research conducted in 
India (35). This indicates that parental access to media can play a 
significant role in promoting good nutritional outcomes for children.

Additionally, this study investigated the spatial variation of the 
actual and predicted prevalence of MN deficiency using RF model, 
which highlighted the overall patterns of the observed prevalence 
that were consistent with the predicted prevalence of MN deficiency 
in children. This suggests that our predictive model (RF) was reliable 
and can be used to predict the prevalence of childhood MN deficiency 
in areas where data is lacking.

Moreover, the findings from the best-performing ML model (RF) 
are largely consistent with the traditional logistic regression analysis. 
Both the eastern region where the child lives, the wealth index, maternal 
education level, and child age in months were found to be significant 
predictors of micronutrient deficiency among children aged 6–23 months 
in Ethiopia. However, home delivery and media exposure emerged as 
important predictors in the ML models but not in conventional logistic 
regression. This suggests that the ML models may reveal previously 
unknown insights beyond traditional logistic regression approaches. 
Specifically, ML models could identify new influential variables for 
policy decision making that are missed by standard statistical methods 
(37). While the core findings aligned, ML provided the additional benefit 
of highlighting novel and potentially crucial MN deficiency factors not 
captured by traditional logistic regression.

5 Conclusion

The aim of this study was to evaluate the effectiveness of various 
ML algorithms and identify the most accurate and efficient algorithm 
for predicting micronutrient deficiencies. Accuracy and AUROC were 
used to evaluate the predictive power of the ML algorithms. The 
random forest algorithm was identified as the best model, achieving 
an accuracy of 72.41% and an AUROC of 80.01% on the test data. 
Thus, the Somali region, the poorest wealth index, children of 
uneducated moms, children whose parents have no media exposure, 
home delivery, the Afar region, and children aged 6–8 months were 
found to be the most important predictors of child MN deficits in 
their order of importance. Furthermore, the findings demonstrated 
considerable regional variations in the frequency of child MN deficit, 
particularly in Ethiopia’s eastern region. Although the RF model and 
traditional logistic regression model displayed more similar important 
predictors, the RF model was able to discover some crucial predictors 
that the conventional logistic regression model had missed. As a 
result, our model may provide better policy suggestions for children 
with MN deficiency. These findings underscore the importance of 
socioeconomic and spatial factors in the incidence of micronutrient 
deficiencies among Ethiopian children. Addressing these issues may 
result in better health outcomes for children within an age category of 
6–23 months. The regional variation in the prevalence of MN 
deficiency emphasizes the need for targeted interventions that account 
for differences in the prevalence and risk factors of micronutrient 
deficiencies across different regions in Ethiopia.
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