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Introduction: Hypo-high-density lipoprotein cholesterolemia (hypo-HDL-C) 
contributes to the development of cardiovascular diseases. The hypothesis that 
the polygenic variants associated with hypo-HDL-C interact with lifestyle factors 
was examined in 58,701 middle-aged Korean adults who participated in the 
Korean Genome and Epidemiology Study (KoGES).

Methods: Participants were categorized into the Low-HDL (case; n  =  16,980) 
and Normal-HDL (n  =  41,721) groups. The participants in the Low-HDL group 
were selected using the guideline-based cutoffs for hypo-HDL-C (<40  mg/dL 
for men and  <  50  mg/dL for women) and included those taking medication for 
dyslipidemia. The genes associated with hypo-HDL-C were determined through 
a genome-wide association study (GWAS) in a city hospital-based cohort, and 
the results were validated in the Ansan/Anung study. The genetic variants for the 
single nucleotide polymorphism (SNP)-SNP interaction were selected using a 
generalized multifactor dimensionality reduction analysis, and the polygenic risk 
score (PRS) generated was evaluated for interaction with lifestyle parameters.

Results: The participants with hypo-HDL-C showed a 1.45 and 1.36-fold higher 
association with myocardial infarction and stroke, respectively. The High-PRS 
with four SNPs, namely ZPR1_rs3741297, CETP_rs708272, BUD13_rs180327, 
and ALDH1A2_rs588136, and that with the 11q23.3 haplotype were positively 
associated with hypo-HDL-C by about 3 times, which was a 2.4-fold higher 
association than the PRS of 24 SNP with p  <  5×10−8. The risk alleles of CETP_
rs708272 and ALDH1A2_rs588136 were linked to increased expression in the 
heart and decreased in the brain, respectively. The selected SNPs were linked to 
the reverse cholesterol transport pathway, triglyceride-rich lipoprotein particle 
remodeling pathway, cholesterol storage, and macrophage-derived foam cell 
differentiation regulation. The PRS of the 4-SNP model interacted with energy 
intake and smoking status, while that of the haplotype interacted with a glycemic 
index of the diet, sulfur microbial diet, and smoking status.

Discussion: Adults with a genetic risk for hypo-HDL-C need to modulate their 
diet and smoking status to reduce their risk.
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Introduction

Dyslipidemia, defined as an imbalance of lipids including 
cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides 
(TG), and high-density lipoprotein cholesterol (HDL-C), is a risk 
factor for cardiovascular disease (CVD) worldwide (1). The global 
burden of dyslipidemias has increased over the last 30 years (2). In 
Korea, the incidence has risen from 9.0% in 2007 to 20.7% in 2018 (3). 
Dyslipidemia is highly prevalent in patients with metabolic syndrome 
(MetS) and type 2 diabetes (T2D), and this combination further 
increases the CVD risk (2). Hypo-HDL-cholesterolemia (hypo-
HDL-C), hyper-LDL-cholesterolemia (hyper-LDL-C), and 
hypertriglyceridemia are influenced by a varied set of genetic and 
environmental factors (4). Therefore, the genetic factors and their 
interaction with lifestyle factors that influence hypo-HDL-C 
development may differ among Asians.

Cholesterol and triglycerides are emulsified with proteins and 
phospholipids to form lipoproteins that serve as vehicles for 
transporting cholesterol throughout the body. Under normal 
circumstances, LDL-C transports cholesterol into the peripheral 
tissues. However, when LDL-C is in excess, it can deposit cholesterol 
into the blood vessels, especially arteries, leading to a series of 
inflammatory changes in the vessel wall, resulting in CVD. HDL-C is 
synthesized in the liver and small intestines as ‘nascent’ HDL and 
contains a variety of lipid binding proteins called apolipoprotein 
(Apo) and includes ApoA1, ApoA2, ApoA4, ApoA5, ApoC1, ApoC2, 
ApoC3, and ApoE. ‘Nascent’ HDL is secreted into the bloodstream via 
transporter ATP Binding Cassette Subfamily A Member 1 (ABCA1) 
(5). The Apo proteins play specific roles in the reverse cholesterol 
transport function of HDL (5). ApoA1 and ApoC1 activate the 
enzyme lecithin–cholesterol acyl transferase (LCAT), and ApoA5, 
ApoC2, and ApoC3 modulate lipoprotein lipase (LPL) activity. The 
liver can also uptake HDL-C through ApoE, although it is a well-
known ligand for the LDL receptor. The ‘mature’ HDL-C mediates 
cholesterol transport from non-hepatic tissues, especially arteries, to 
the liver. The returned cholesterol is metabolized and excreted through 
the bile (5). Therefore, reverse cholesterol transport via apolipoproteins 
in HDL-C is essential to reduce plaque formation in the blood vessels.

Plaque formation occurs in the blood vessels with the 
accumulation of LDL-C and its subsequent oxidation, followed by the 
inflammatory process of recruitment of monocytes-macrophages, 
uptake of oxidized LDL-C, and transformation of macrophages into 
foam cells. On the other hand, HDL-C particles protect against plaque 
formation by removing lipid buildup from the vessels and preventing 
inflammation (6). Hypo-HDL-C in persons without a history of CVD 
is inversely associated with future CVD risk, especially atherosclerosis. 
However, the inverse association may not apply to all patients with 
metabolic disorders and a history of CVD (7). Furthermore, serum 
HDL-C concentration may not always accurately represent the 
benefits of HDL function. This suggests that the functionality of HDL 
in reverse cholesterol transport can be  influenced differently by 

various HDL subclasses with distinct particle sizes and compositions 
rather than solely by serum HDL concentration (8). However, the 
guideline for CVD includes that serum HDL-C should be maintained 
at a high level through lifestyle modifications.

Since genetic backgrounds significantly influence serum HDL-C, the 
interaction of genetic variants with lifestyle factors should be considered 
to modulate HDL-C. Several genetic variants have been reported to 
be associated with hypo-HDLC. These include variants associated with 
the following genes: low-density lipoprotein receptor (LDLR), proprotein 
convertase subtilisin-kexin type 7 (PCSK7), APOA5, SID 1 
transmembrane family member 2 (SIDT2), and ABCA1, cholesterol ester 
transfer protein (CETP), APOA1, tyrosine-protein phosphatase 
non-receptor type 11 (PTPN11), rabphilin 3A (RPH3A), and 
oligoadenylate synthetase 3 (OAS3) (9–11). However, studies on the role 
of single genetic variants that affect hypo-HDL-C have been conducted 
only with small sample sizes. A few studies have attempted to explore 
genetic variants and their interactions to evaluate the role of the 
polygenic risk score (PRS) in HDL-C function and the PRS interaction 
with lifestyle factors to influence hypo-HDL-C. We hypothesized that the 
polygenic variants associated with hypo-HDL-C interacted with lifestyle 
factors. The hypothesis was examined in 58,701 middle-aged Korean 
adults who participated in the Korean Genome and Epidemiology Study 
(KoGES) and validated in 13,598 adults in the combined regional and 
rural cohorts. The results can be used to modulate lifestyle factors to 
prevent hypo-HDL-C in genetically susceptible adults at risk of CVD.

Methods

Participants and setting

The KoGES aimed to establish a scientific basis for the 
implementation of customized treatments and preventive medicine by 
identifying risk factors for chronic diseases common among Koreans. 
Among several cohorts in KoGES, a large city hospital-based cohort 
(n = 58,701) and the Ansan/Ansung plus rural cohorts (n = 13,598) 
included the measurement of genetic variants, and their volunteers 
were used as the participants in the present study. The Ansan/Ansung 
plus rural cohorts were used as a replicate study for the genetic result. 
The participants aged 40–74 years were recruited during the years 
2010–2014 (12). The institutional review boards (IRB) of the Korea 
National Institute of Health and Hoseo University approved the KoGES 
and the present study (KBP-2015-055 and 1041231-150811-HR-034-
01, respectively). All participants signed written informed consent.

Demographic, anthropometric, and 
biochemical parameters of the participants

On their initial visit to the hospital, the participants filled out 
survey forms for demographic information and lifestyles. Gender, 
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education (<, =, or > high school), income (<monthly 2,000, 3,000, 
4,000, or over 5,000 USD), physical activity, and smoking history 
were collected as the categorical variables. Alcohol and coffee 
consumption was recorded during a health interview. Current and 
past smokers were defined as smoking at least 20 cigarettes in the 
past six months and not smoking for at least the past six months, 
respectively (13). Daily alcohol and coffee intakes were calculated 
by multiplying the frequency of consumption by the amount 
consumed at one time (13). Regular physical activity was defined as 
more than 30 min of moderate physical activity for three or more 
days per week.

Height and weight were measured as described previously (12). 
Body fat and skeletal muscle masses were estimated using a 
prediction model generated by a machine learning algorithm from 
the Ansan/Ansung cohort based on the measurements made using 
the Inbody 3.0 (Cheonan, Korea) equipment, which uses the 
bioelectric impedance analysis method (14). The skeletal muscle 
index (SMI) was calculated by dividing the appendicular skeletal 
muscle mass (ASM) by height squared. Insulin resistance was 
calculated with homeostatic model assessment for insulin resistance 
(HOMA-IR), and it was also predicted using a prediction model 
made from a machine learning approach (15). The average systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) were 
measured three times with a sphygmomanometer under resting 
conditions. After fasting for more than 12 h, the serum total 
cholesterol, HDL-C, triglycerides, creatinine concentrations, alanine 
aminotransferase (ALT) and aspartate aminotransferase (AST) 
activities, and plasma glucose concentrations were measured using a 
Hitachi 7,600 Automatic Analyzer (Hitachi, Tokyo, Japan). Blood 
HbA1c and serum high-sensitive C-reactive protein (hs-CRP) were 
measured using a ZEUS 9.9 automatic analyzer (Takeda, Tokyo, 
Japan) and a high-sensitivity ELISA kit (Thermofisher, Waltham, 
MA, USA), respectively.

Definition of hypo-HDL-C

Hypo-HDL-C was defined as HDL-C < 40 mg/dL for men 
(n = 4,173) and < 50 mg/dL for women or the current use of anti-
dyslipidemic medication (n = 12,807) (16). Participants were 
categorized into the Low-HDL and Normal-HDL groups based on the 
above definition. There were 16,980 and 41,721 participants in the 
Low-HDL and Normal-HDL groups, respectively.

Food intake using a semi-quantitative food 
frequency questionnaire (SQFFQ)

The usual food intake during the past 12 months was measured 
using an SQFFQ with 106 food items commonly consumed by 
Koreans and validated with three-day food records of the four seasons 
(16, 17). Food intake was calculated by multiplying the frequency of 
each food consumption item by the amount consumed daily, as 
described previously. The food intake was expressed as grams/day. The 
daily intake of energy, carbohydrates, fats, proteins, vitamins, and 
minerals was calculated from the SQFFQ results using the computer-
aided nutritional analysis program CAN-Pro 2.0 designed by the 
Korean Nutrition Society.

Dietary patterns by principal component 
analysis, dietary inflammatory index (DII), 
glycemic index (GI), and sulfur microbial 
diet index

As reported previously, food items in the SQFFQ were divided 
into 30 predefined food groups, which were used to constitute the 
dietary patterns using principal component analysis (PCA). Based on 
eigenvalues >1.5 and the orthogonal rotation procedure (varimax), 
four dietary patterns were defined (15). The name of each dietary 
pattern was assigned to foods with ≥0.40 factor-loading values or 
predominant contributors (15). Supplementary Table S1 lists the foods 
in each dietary pattern. The groups were named the Korean-balanced 
diet (KBD), plant-based diet (PBD), Western-style diet (WSD), or 
rice-based diet (RBD) groups.

DII is an index of the pro-inflammatory potential of dietary 
components. As the intake of garlic, ginger, saffron, and turmeric was 
not recorded, they were excluded from the DII computation. DII was 
calculated by multiplying the dietary inflammatory scores of the 38 
food and nutrient components by their daily intakes, and the sum of 
38 items was divided by 100, as described previously (18).

The GI and glycemic load (GL) were calculated using the relevant 
equations. The GI of the same food can vary due to differences in the 
types of the food and its nutritional composition. The GI values listed 
for common Korean foods were used (19). The 43 gut microbes related 
to sulfur metabolism were selected, and food groups positively or 
negatively associated with the gut microbes were identified in a 
previous study (20). The food groups with a positive association were 
processed meats, liquor, and low-calorie drinks, and those with a 
negative association were beer, fruit juices, legumes, other vegetables, 
and sweets or desserts. Sulfur microbial diet scores were calculated by 
summing the multiplying value of the beta coefficient by the amount 
of each food item (20).

Genotyping using a Korean Chip, quality 
control, and genome-wide association 
study (GWAS)

The participants’ genotypes in the Ansan/Ansung, rural, and city 
hospital-based cohorts were measured at the Center for Genome 
Science at the Korea National Institute of Health. The genotypes were 
measured in the genomic DNA isolated from whole blood using a 
Korean Chip (Affymetrix, Santa Clara, CA) designed for assessing the 
disease-related single nucleotide polymorphisms (SNPs) in Koreans 
(18). The inclusion criteria were ≥ 98% genotyping accuracy, <4% 
missing genotype call rate, <30% heterozygosity, and no gender bias. 
The genetic variants met the Hardy–Weinberg equilibrium (HWE) 
criterion at p > 0.05 and minor allele frequency (MAF) at >1% (18).

GWAS was conducted between the Low-HDL (n = 16,980) and 
Normal-HDL (n = 41,721) groups using the PLINK open-source whole 
genome association analysis toolset. The Manhattan and quantile-
quantile (Q-Q) plots showed the quality of the selected genetic variants 
from the GWAS using the Fastman library in the R program (12). The 
Manhattan plot displayed the negative logarithms of the association 
p-values for each serum HDL-C concentration. The Q-Q plot displayed 
the quantile distribution of observed p-values (on the y-axis) versus the 
expected p-values (on the x-axis) for the genetic variants between the 

https://doi.org/10.3389/fnut.2023.1244185
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hur et al. 10.3389/fnut.2023.1244185

Frontiers in Nutrition 04 frontiersin.org

Low-HDL and Normal-HDL groups. The Q-Q plot indicated the 
goodness of fit between the actual and theoretical data distributions, and 
the lambda value of the Q-Q plot was calculated. The pathways linked 
to the genetic variants for serum HDL-C concentrations were selected 
using the MAGMA gene-set analysis in the SNP2GENE of the FUMA 
web application, available through the git repository.1 The statistical 
analysis was selected at p-values for the Bonferroni correction <0.05.

Selection of the genetic variants to 
influence hypo-HDL-C and the optimal 
model with SNP-SNP interactions

The procedure to select genetic variants for hypo-HDL-C risk and 
to generate the best model with the SNP-SNP interactions is presented 
in Figure 1. Genetic variants associated with hypo-HDL-C risk were 

1 https://github.com/Kyoko-wtnb/FUMA-webapp/

evaluated to select 4,233 SNPs in the urban hospital-based cohort 
(p < 5×10−5). Among the genetic variants, those not meeting the criteria 
for HWE and MAF were removed (n = 681). The linkage disequilibrium 
(LD) analyses were conducted on the SNPs of the 3,552 genetic 
variants in the same chromosome using Haploview 4.2 in PLINK. The 
genetic variants having an LD score of D′ ≥ 0.2 were eliminated 
because they provided the same information on the genetic impact. 
The gene names of the remaining 154 genetic variants were searched 
using g:Profiler,2 and 56 SNPs were identified by gene names. The 
pathways involved in the genetic variants were identified, and 24 SNPs 
were selected.3 The optimal SNP-SNP interaction model was identified 
using the generalized multifactor dimensionality reduction (GMDR).

Ten genetic variants interacted with each other and were selected 
by GMDR from among the 24 genetic variants associated with hypo-
HDL-C risk. The optimal SNP-SNP interaction model was selected in 

2 https://biit.cs.ut.ee/gprofiler/snpense

3 http://genemania.org/

FIGURE 1

Flow chart to generate the polygenic risk score (PRS) associated with hypo-HDL-cholesterolemia by SNP-SNP interaction and haplotype and its 
interaction with lifestyle factors. Korean adults aged over 40 were categorized based on the guidelines based on the cutoff of HDL-C  <  40  mg/dL for 
men and  <  50  mg/dL for women, plus the current use of anti-dyslipidemic medication in the period 2010–2014. There were 16,980 and 41,721 
participants in the Low-HDL and Normal-HDL groups, respectively.
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a sign rank test of trained balanced accuracy (TRBA) and testing 
balanced accuracy (TEBA) while adjusting for the covariates using a 
GMDR program and a p-value threshold of 0.05 (12). The covariates 
used were age, gender, residence area, body mass index, education, 
and income for model 1, and the model 1 covariates plus energy 
intake, alcohol intake, regular exercise, and smoking status for model 
2. The ten-fold cross-validation was also checked for cross-validation 
consistency (CVC) because the sample size was larger than 1,000 (12). 
The 10 out of 10 scores in the CVC indicated perfect cross-
validation criteria.

Haplotype analysis and polygenic risk score

The haplotype was considered to show the genetic impact of the 
hypo-HDL-C risk when the primary genetic variants were located on 
the same chromosome. The LD of the selected SNP met the criteria 
(D′ < 0.2). The haplotypes and their frequencies were analyzed using 
the GPLINK software (21).

The risk allele number of each SNP was counted to generate the 
PRS of the optimal models. For example, the genetic score for the SNP 
was 2, 1, and 0 when the participants had AA, AG, and GG of one SNP, 
respectively, and the A allele was the risk allele. The PRS of the best 
model was assessed by summing the number of the risk alleles from 
each selected SNP in the best gene–gene interaction model (21, 22). 
The PRSs in the three and six SNP models were divided into three 
categories according to the number of risk alleles. They were classified 
as Low-PRS, Middle-PRS, and High-PRS when the number of risk 
alleles in the PRS was 0–2 (n = 19,686), 3–4 (n = 30,513), and ≥ 5 
(n = 3,629) in the three-SNP model and 0–5 (n = 27,212), 6–7 
(n = 20,375), and ≥ 8 (n = 1,822) in the six-SNP model, respectively. 
Among the best models to meet the value of p of the sign test and 
CVC, the model with the lowest SNP number (three-SNP model) was 
used to explore its interaction with the lifestyle parameters.

Expression quantitative trait locus (eQTL) 
analysis

The eQTL analysis is a direct approach to estimating the candidate 
gene expression with the genetic variants at risk loci. Gene expressions 
corresponding to the genetic variants related to the hypo-HDL risk 
were determined by eQTL analysis in the Genotype-Tissue Expression 
(GTE) × eQTL calculator.4

Molecular docking of the gene having 
missense mutation with food compounds 
and molecular dynamics simulation (MDS)

The wild and mutated protein structures were generated in the 
Protein Data Bank (PDB) format from the Iterative Threading 
Assembly Refinement (I-TASSER) website.5 The proteins were 

4 https://gtexportal.org/home/testyourown, accessed on July 19, 2022.

5 https://zhanggroup.org/I-TASSER/

switched into the PDB, partial charge (Q), and atom type (T) 
(PDBQT) files using AutoDock Tools 1.5.6 (Molecular Graphics 
Laboratory, Scripps Research Institute, FL, USA) (23). The active sites 
of the proteins were searched using the ProteinsPlus website.6 The 
active functional pockets and the mutated sites were also included in 
the active site for molecular docking. Food compounds (n = 20,000) 
were converted to the PDBQT file format, and water molecules 
attached to the ligands were removed (23). Food components having 
< −10 kcal/mol binding energy between the proteins and food 
components were selected (24). The lower the binding free energy, the 
tighter the binding and affinity.

The conformational changes in the protein structures were 
examined using MDS to detect the changes in their activity. After the 
top docking poses with the selected food components were added, 
simulations were conducted on the docked complexes between the 
protein and food components. The Chemistry at Harvard 
Macromolecular Mechanics (CHARMM) force field was added to the 
docked complex in the “Simulation” part, and the protein was solvated 
by “Solvation.” The “Standard Dynamics Cascade” was used to set the 
molecular dynamics simulation parameters for the protein added to 
the solvent system. The root mean square deviation (RMSD), root 
mean square fluctuations (RMSF), and hydrogen bond values were 
determined after the 10 ns simulation.

Statistical analysis

Statistical analysis was performed using SAS (version 9.3; SAS 
Institute, Cary, NC, USA). The sample size was determined by 
satisfying the significance at α = 0.05, β = 0.99, and 1.05 odds ratio in 
the logistic analysis using a G-power calculator. The sample size of 
57,801 was sufficient to achieve the significance. Frequency 
distributions were used for the descriptive statistics for categorical 
variables between the Low-HDL and Normal-HDL groups, and a 
Chi-square test was applied to determine statistical significance. 
Descriptive statistics of the continuous variables were determined as 
the adjusted means with standard deviations after adjusting for the 
covariates linked to dyslipidemia. The gender and HDL groups were 
used as the main effects, and their interactions were evaluated in a 
two-way analysis of covariance (ANCOVA) (19). Multiple 
comparisons of the groups were conducted using Tukey’s test.

The association of hypo-HDL-C with the biochemical parameters 
was evaluated using a logistic regression analysis after adjustment for 
covariates. The odds ratios (ORs) and 95% confidence intervals (CIs) 
of hypo-HDL-C with each biochemical parameter were calculated. 
The covariate set 1 was age, residence area, survey year, body mass 
index (BMI), education, and income. Set 2 was the covariates in set 1, 
plus energy intake, physical activity, smoking status, and alcohol 
consumption, and the covariate set 3 were covariates of set 2, plus 
blood HbA1c and serum triglyceride concentration. In the two-way 
analysis of covariance (ANCOVA), when the interaction terms 
between the PRS and lifestyle-related parameters were statistically 
significant, each lifestyle-related parameter was categorized into the 
Normal-HDL or Low-HDL groups with the designated cutoff. The 

6 https://proteins.plus/
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adjusted odds ratio (ORs) and 95% confidence intervals (CIs) of hypo-
HDL-C with PRS were also calculated by adjusted logistic regression 
analysis with covariate set 3 between the Normal-HDL and Low-HDL 
groups. The significant differences between the Low-HDL and 
Normal-HDL groups were analyzed using the χ2 test in the low- and 
high groups of lifestyle-related parameters.

Results

Characteristics of the participants

The participants in the Low-HDL group were older, less educated, 
and earned a lower income than those in the Normal-HDL group, but 
this difference was restricted only to the women (Table  1). The 
participants in the Low-HDL group had higher BMI, waist 
circumferences, and fat mass than those in the Normal-HDL group for 

both genders, but only women had a lower SMI (Table 1). Serum glucose 
and blood HbA1c concentrations and insulin resistance were higher in 
the participants in the Low-HDL group than those in the Normal-HDL 
group. The participants in the Low-HDL group had a higher incidence 
of dyslipidemia and hypertension (Table 1). The incidence of myocardial 
infarction, stroke, and cardiovascular disease was higher in the 
Low-HDL group than in the Normal-HDL group for both genders 
(Table 1). The participants in the Low-HDL group were higher at 1.4 
times the risk of cardiovascular diseases, including myocadiac infarction 
and cerebrovascular stroke, than the Normal-HDL (Figure 2).

Lifestyles, including nutrient intake, and 
dietary patterns

There was no difference in the daily energy intake between the 
Low-HDL and the Normal-HDL groups. The participants of both 

TABLE 1 General, anthropometric, and biochemical characteristics according to gender and hypo-HDL.

Men (n  =  20,293) Women (n  =  38,408)

Normal-HDL 
(n  =  16,120)

Low-HDL 
(n  =  4,173)

Normal-HDL 
(n  =  25,601)

Low-HDL (n  =  12,807)

Age (years) 57.1 ± 0.09a 57.3 ± 0.17a 52.1 ± 0.07c 53 ± 0.1b***+++

Education (N, %)

≤Middle school 1,356 (13.8) 397 (14.9) 3,868 (19.8) 2,784 (26.4)‡‡‡

High school 7,474 (76.0) 1960 (74.6) 14,388 (73.8) 7,234 (68.7)

≥Collage 1,015 (10.3) 276 (10.5) 1,248 (6.4) 518 (4.92)

Income (N, %)

≤$2000 1,228 (8.11) 355 (9.06) 2,410 (10.1) 1705 (14.4) ‡‡‡

$2000–4,000 6,401 (42.3) 1,690 (43.1) 10,402 (43.6) 5,400 (45.5)

>$4,000 7,507 (49.6) 1874 (47.8) 11,073(46.4) 4,761(40.1)

BMI (kg/m2) 24.3 ± 0.04b 25.2 ± 0.06a 23.2 ± 0.03c 24.2 ± 0.04b***+++

Waist circumferences(cm) 84.8 ± 0.08b 87.6 ± 0.13a 77.3 ± 0.05d 80.2 ± 0.07c***+++

SMI (kg/cm) 7.17 ± 0.005a 7.19 ± 0.01a 6.12 ± 0.004b 6.07 ± 0.005c***++###

Fat mass (%) 25 32 22.5 ± 0.01d 22.7 ± 0.02c 31.4 ± 0.01b 31.6 ± 0.01a***+++###

Fasting glucose (mg/dL) 97.6 ± 0.25b 98.6 ± 0.46a 93.4 ± 0.2d 95.3 ± 0.27c***+++

HbA1c (%) 5.67 ± 0.01c 5.78 ± 0.02b 5.69 ± 0.01c 5.83 ± 0.01a**+++

Insulin resistance (N, %) 1,555 (9.79) 728 (17.7) ‡‡‡ 982 (3.88) 1,289 (10.2) ‡‡‡

Total cholesterol (mg/dl) 192 ± 0.47b 176 ± 0.84c 206 ± 0.36a 192 ± 0.5b***+++###

HDL (mg/dl) 52.9 ± 0.09c 35.9 ± 0.16d 62.6 ± 0.07a 43.1 ± 0.09b***+++

LDL (mg/dl) 115 ± 0.43c 103 ± 0.78d 123 ± 0.33a 118 ± 0.46b***+++###

TG (mg/dl) 118 ± 1c 183 ± 1.8a 101 ± 0.77d 154 ± 1.08b***+++##

SBP (mmHg) 125 ± 0.14a 124 ± 0.24b 121 ± 0.1c 121 ± 0.14c***++##

DBP (mmHg) 78.2 ± 0.09a 77.3 ± 0.16b 74.5 ± 0.07c 74.4 ± 0.09c***+++###

Myocardial infarction (N, %) 636 (4.01) 228 (5.55)‡‡‡ 420 (1.66) 370 (2.93) ‡‡‡

Stroke (N, %) 276 (1.74) 92 (2.24) ‡ 170 (0.67) 144 (1.14) ‡‡‡

Cardiovascular disease (N, %) 890 (5.61) 315 (7.67) ‡‡‡ 581 (2.30) 502 (3.97) ‡‡‡

Values represent adjusted means and standard errors for continuous variables and the number (N) and percentage for categorical variables. BMI, body mass index; SMI, skeletal muscle index 
(SMI defined as appendicular skeletal muscle mass/height); HbA1c, hemoglobin A1c; TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic blood pressure. *Significant differences by 
gender at p < 0.05, ** at p < 0.01, *** p < 0.001. #Significant differences by height at p < 0.05, ## at p < 0.01, ### p < 0.001. +Significant interaction between gender and height at p < 0.05, ++ at p < 0.01, 
+++ p < 0.001. ‡Significantly different from the control group in χ2 test in each gender at p < 0.05, ‡‡ at p < 0.01, ‡‡‡ at p < 0.001. a,b,c,dDifferent superscript letters indicated significant differences 
among the groups in Tukey’s test at p < 0.05.
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genders in the Low-HDL group consumed higher carbohydrates and 
lower fat than those with Normal-HDL (Table  2). Protein, fiber, 
calcium, sodium, and vitamin D intakes were lower in the women 
participants with the Low-HDL group than in those with the 
Normal-HDL group (Table 2). The DII, GI of the food consumed, and 
flavonoid intake did not differ between the Low-HDL and 
Normal-HDL groups. Coffee intake was lower in the Low-HDL than 
the Normal-HDL group only in women, and alcohol intake was lower 
for both genders (Table 2). Fewer participants exercised regularly in 
the Low-HDL than in the Normal-HDL group for both genders, and 
the number of male smokers was much higher in the Low-HDL group 
(Table 2).

Genetic variants associated with 
hypo-HDL-C

The statistical significance of the genetic variants associated with 
hypo-HDL-C has been shown in a Manhattan plot 
(Supplementary Figure S1A). Lambda, a genome inflation factor for 
genetic variants linked to hypo-HDL-C, was calculated by comparing 
the observed and expected p values. This comparison was shown in 
the Q–Q plot, and the lambda was 1.083, indicating no inflation of the 
genetic variants (Supplementary Figure S1B).

The PRS of 24 genetic variants associated with hypo-HDL-C 
satisfied the inclusion criteria, such as p < 5×10−8 for the GWAS, 
D′ < 0.2 for LD, p ≥ 0.05 for HWE, and ≥ 0.01 for MAF. In the PRS 
containing the risk alleles of 24 genetic variants, serum HDL-C was 
lower in the high-PRS containing up to 12–15 risk alleles, but they 
continuously decreased with PRS containing up to 37 risk alleles 
(Figure  3A). Among the 24 genetic variants, ten were selected as 
having similar pathways and interactions with each other using the 

GeneMANIA site. The characteristics of the 10 genetic variants are 
shown in Table 3. These 10 genetic variants were associated with hypo-
HDL-C at p < 5×10−12 in the city hospital-based cohort (n = 58,701) 
and at p < 5×10−5 in the Ansan/Ansung plus rural cohorts (n = 13,598).

PRS for interacted genetic variants each 
other or the haplotype

The optimal model with genetic variants interacting with each 
other was found using GMDR. The 4-SNP and 6-SNP models met the 
criteria for TEBA at p < 0.05 and 10/10 CVC. The 4-SNP model 
included BUD13_rs180327, ZPR1_rs3741297, ALDH1A2_rs588136, 
and CETP_rs708272, and the 6-SNP model added LPL_rs325 and 
ABCA1_rs1883025 to the genetic variants of the 4-SNP model 
(Supplementary Table S2). Among the 10 genetic variants, 4 genetic 
variants in chromosome 11 were part of the haplotype, and its PRS 
was calculated. Four genetic variants in chromosome 11 showed 
D′ < 0.2 of LD, as shown in Supplementary Figure S2. As the PRS for 
the 4-SNP, 6-SNP, and haplotype 11q23.3 models decreased, the 
serum HDL-C was lowered (Figures 3B–D). However, the decline in 
serum HDL-C was greater in the 4-SNP model than in the 6-SNP 
model. In haplotype 11q23.3, the genetic variants with LD ≥ 0.2 were 
removed (Supplementary Figure S2).

After dividing the PRS for the 4-SNP and 6-SNP models, 
haplotype for chromosome 11, and 24 genetic variants, their high-PRS 
was associated with hypo-HDL-C compared to the Low-PRS by 2.899 
(2.637–3.187), 2.81 (2.64–2.99), 3.048 (2.826–3.288), and 2.52 (2.402–
2.644) times, in the 4-SNP, 6-SNP, haplotype, and 24-SNP models, 
respectively, after adjusting for covariates linked with dyslipidemia 
(Figure  3E). These results showed that the 4-SNP model and the 
haplotype were optimal for predicting genetic risk of hypo-HDL-C.

FIGURE 2

Adjusted odds ratio (ORs) and 95% confidence intervals (CIs) of hypo-HDL-cholesterolemia with cardiovascular diseases. Covariates set 1 included age, 
gender, body mass index, residence area, education, and income; covariate set 2 contained those in set 1 plus energy intake, exercise, alcohol 
consumption, smoking, and incidence of osteoporosis; and covariate set 3 included those in set 2 plus blood HbA1c and serum triglyceride 
concentrations.
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Gene expression by eQTL according to 
genetic variants

Only the gene expressions of some genetic variants selected for 
hypo-HDL-C were determined in different tissues. The risk allele of 
ALDH1A2_rs588136 and SIK3_rs7115583 had a lower expression 
than that of the non-risk allele in the cortex of the brain and skeletal 
muscle (Figure 4). However, the risk alleles of CETP_rs708272 and 
ABCA1_rs1883025 had a higher expression than the non-risk allele in 
the arterial appendage of the heart and skeletal muscle (Figure 4).

The binding affinity of kuwanol E to APOE_
rs429358

The wild (cys13) and mutated APOE_rs429358 (130Arg) exhibited 
different levels of binding free energy to specific food components 
(Table  4). Neoacrimarine H, viniferifuran, morellinol, 
22-deoxocucurbitacin D, cucurbitacin B, yuccaol A, yuccaol C, 
pregeijerene, and plantacyanin showed a low binding energy of < 
−10 kcal/mol to both wild and mutated types of APOE_rs429358 

(Table  4). However, some food components showed a different 
binding affinity to wild and mutated types of APOE_rs429358. For 
example, the binding energy of APOE_rs429358 with Kuwanol E was 
−7.3 kcal/mol with the wild type but −10.1 kcal/mol with the mutated 
type (Table 4). Kuwanol E’s binding to the wild and mutated type of 
APOE_rs429358 is presented in Figures 5A,B.

Figures 5C,D show the root mean square deviation (RMSD) and 
root mean square fluctuation (RMSF) for APOE_rs429358 wild and 
mutated types binding to kuwanol E. RMSD for APOE_rs429358 
mutated type binding with kuwanol E was sustained close to 3 Å during 
100 nanoseconds (Figure 5C). RMSF for APOE_rs429358 wild-type 
binding with kuwanol E also did not exceed 3 nm in the RMSF graph 
(Figure 5D). These results suggest that kuwanol E was more stably bound 
to the APOE_ rs429358 mutated type than the wild type.

Metabolic functions of the genetic variants 
associated with hypo-HDL-C

The genetic variants associated with hypo-HDL-C were 
involved in reverse cholesterol transport, triglyceride-rich 

TABLE 2 Daily nutrient intake according to gender and hypo-HDL-cholesterolemia.

Men (n  =  20,293) Women (n  =  38,408)

Normal-HDL 
(n  =  16,120)

Low-HDL (n  =  4,173) Normal-HDL 
(n  =  25,601)

Low-HDL (n  =  12,807)

Energy intake (EER %) 90.1 ± 0.40b 89.5 ± 0.73b 102 ± 0.31a 101 ± 0.44a***

CHO (En%) 71.8 ± 0.09b 72.6 ± 0.16a 71.1 ± 0.07c 72.2 ± 0.1a***+++#

Fat (En%) 13.7 ± 0.07b 13.1 ± 0.13a 14.4 ± 0.05c 13.4 ± 0.07a***+++##

SFA (En%) 8.45 ± 0.06a 7.90 ± 0.11b 8.02 ± 0.05b 7.39 ± 0.06c

MUFA (En%) 10.7 ± 0.08a 10.1 ± 0.13b 10.0 ± 0.05b 9.20 ± 0.07c***+++

PUFA(En%) 5.99 ± 0.05a 5.84 ± 0.08a 5.48 ± 0.03b 5.24 ± 0.04c***+++

Protein (%) 13.2 ± 0.03c 13.1 ± 0.06c 13.7 ± 0.03a 13.5 ± 0.04b***+++

Fiber (mg) 15.0 ± 0.1a 15.2 ± 0.16a 14.3 ± 0.07b 14.6 ± 0.09a***+

Ca (mg) 426 ± 3.5c 424 ± 6.31c 488 ± 2.7a 475 ± 3.77b***+

Na (mg) 2,512 ± 18.4a 2,593 ± 33.2a 2,372 ± 14.2c 2,437 ± 19.8b***+++

Vitamin C (mg) 99.5 ± 0.92b 102 ± 1.65b 115 ± 0.71a 116 ± 0.99a***+

Vitamin D (mg) 5.63 ± 0.06c 5.41 ± 0.10c 7.00 ± 0.04a 6.57 ± 0.05b***+++

DII −20.1 ± 0.02a −20.8 ± 0.04a −21.1 ± 0.02b −21.6 ± 0.02b***+

Flavonoids (ug) 34.1 ± 0.43b 35.2 ± 0.78b 43.7 ± 0.33a 43.4 ± 0.46a***

Glycemic index 51.0 ± 0.10a 51.1 ± 0.17a 47.6 ± 0.07b 47.5 ± 0.09b***

Sulfur microbial diet index −34.6 ± 0.69a −36.3 ± 1.18a −55.2 ± 0.49b −55.8 ± 0.66b***

Coffee (g/day) 3.72 ± 0.03a 3.71 ± 0.05a 3.73 ± 0.02a 3.39 ± 0.03b***+++###

Alcohol (g/week) 230 ± 4.67b 138 ± 8.5a 70.1 ± 3.63c 53.9 ± 5.07d***+++###

Exercise (N, %) 9,534 (60.2) 2,250 (54.8)‡‡‡ 13,569(53.8) 6,257 (49.6)‡‡‡

Former smoking Smoking 

(N, %)

7,134 (44.4) 1,661 (39.9)‡‡‡ 313 (1.23) 147 (1.15)

Smoking (N, %) 4,259 (21.0) 1,405 (33.7) 473 (1.24) 276 (2.16)

Values represent adjusted means and standard errors for continuous variables and the number and percentage for categorical variables. EER, estimated energy requirement; En%, energy 
percent; CHO, carbohydrates; SFA, saturated fatty acids; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; DII, dietary inflammatory index; GI, dietary glycemic index. 
*Significant differences by gender at p < 0.05, ** at p < 0.01, *** p < 0.001. # Significant differences by height at p < 0.05, ## at p < 0.01, ### p < 0.001. + Significant interaction between gender and 
height at p < 0.05, ++ at p < 0.01, +++ p < 0.001. ‡ Significantly different from the control group in χ2 test in each gender at p < 0.05, ‡‡ at p < 0.01, ‡‡‡ at p < 0.001. a,b,c,d Different superscript letters 
indicated significant differences among the groups in Tukey’s test at p < 0.05.
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FIGURE 3

Adjusted odds ratio (ORs) and 95% confidence intervals (CIs) of hypo-HDL-C with polygenic risk score (PRS) generated by different methods. (A) Serum 
HDL-C concentration according to the PRS of all SNPs (24 SNPs) with p  <  5×10−8. (B) Serum HDL-C concentration according to the PRS of 4 SNPs 
(BUD13_rs180327, ZPR1_rs3741297, ALDH1A2_rs588136, and CETP_rs708272) selected from the SNP-SNP interaction by generalized multifactor 
dimensionality reduction (GMDR). (C) Serum HDL-C concentration according to the PRS of 6 SNPs (4-SNP plus LPL_rs325 and ABCA1_rs1883025) 

(Continued)
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selected from the SNP-SNP interaction by GMDR. (D) Serum HDL-C concentration according to the PRS of 4 SNPs in haplotype 11q23.3 selected from 
the SNP-SNP interaction by GMDR. (E) Adjusted odds ratio (ORs) and 95% confidence intervals (CIs) of hypo-HDL-cholesterolemia with PRS with 24 
SNP, 4-SNP PRS. 6-SNP PRS, and PRS of the haplotype 11q23.3. PRS was generated as the sum of the number of risk alleles in each SNP generated 
from the SNP-SNP interaction and haplotype. They were classified as Low-PRS, Middle-PRS, and High-PRS according to the range 0–3, 4–5, and  ≥  6 in 
the four-SNP model and 0–5, 6–7, and  ≥  8 in the six-SNP model, respectively. Covariates set 1 included age, gender, body mass index, residence area, 
education, and income; covariate set 2 contained those in set 1 plus energy intake, exercise, alcohol consumption, smoking, and incidence of 
osteoporosis; and covariate set 3 included those in set 2 plus blood HbA1c and serum triglyceride concentrations.

FIGURE 3 (Continued)

TABLE 3 Characteristics of genetic variants related to adult height from generalized multifactor dimensionality reduction analysis.

CHR1 SNP2 Base pair A13 A24 OR5 SE6 p for 
city7

p for 
asan+nong8

MAF9 P for 
HWE10

Gene 
names

Location

7 rs146148222 80,304,855 G C 0.8192 0.02823 1.64E-12 3.35E-05 0.0702 0.8087 CD36 Intron

8 rs325 19,819,328 C T 0.7257 0.02239 1.68E-46 2.41E-11 0.1249 0.3452 LPL Intron

9 rs1883025 107,664,301 T C 1.218 0.01593 3.26E-35 7.17E-07 0.2508 0.8261 ABCA1 Intron

11 rs180327 116,623,659 C T 1.164 0.0141 3.7E-27 9.45E-09 0.4312 0.2257 BUD13 Intron

11 rs3741297 116,657,667 T C 1.887 0.02421 1.1E-151 7.80E-16 0.0797 0.1767 ZPR1 Intron

11 rs5069 116,708,254 A G 0.7417 0.03244 4.11E-13 4.42E-05 0.0541 0.936 APOA1 5’-UTR

11 rs7115583 11,678,437 T G 0.8182 0.02029 4.61E-23 1.12E-06 0.1489 0.4839 SIK3 Intron

15 rs588136 58,730,498 C T 0.819 0.01455 7.29E-43 1.33E-12 0.3930 0.869 ALDH1A2 Intron

16 rs708272 56,996,288 A G 0.7472 0.01473 4.14E-87 6.74E-10 0.3816 0.1618 CETP Intron

19
rs429358 

(cys130arg)
45,411,941 C T 1.309 0.02316 3.03E-31 2.74E-11 0.0956 0.5349 APOE Missense

1Chromosome; 2Single nucleotide polymorphism; 3Minor allele; 4Major allele5Odds ratio (OR) for city cohort; 6Standard error; 7P-value for OR after adjusting for age, gender, residence area, 
survey year, body mass index, daily energy intake, education and income in the hospital-based cohort (case: n = 17,545; control: n = 36,283); 8P-value for OR after adjusting for covariates in the 
Ansan/Ansung cohort (case: n = 1,657; control: n = 3,245); 9Minor allele frequency; 10Hardy-Weinberg equilibrium.

TABLE 4 Biding energy of food components to APOE wild type (WT) and mutated one (MT) in rs429358.

Compounds Binding energy (kcal/mol) Herbs

WT MT

epsilon-Viniferin −10.0 −9.3 Resveratrol dimer

Muzanzagenin −10.1 −10.1 Wild asparagus (Asparagus africanus)

3-Benzoyloxy-6-oxo-12-ursen-28-oic acid −10.1 −10 Momordica dioica

Neoacrimarine H −10.4 −10.4 Citrus paradisi (grapefruit)

Viniferifuran −10.4 −10.5 Wine grapes (Vitis vinifera ‘Kyohou’) and amur grape (Vitis amurensis)

22-Deoxocucurbitacin D −10.4 −10.5 Lagenaria siceraria (bottle gourd).

Cucurbitacin B −10.2 −10.8 Muskmelon

Yuccaol A −10.6 −10.7 Bark of Yucca schidigera (Mojave yucca)

Yuccaol C −10.4 −10.4 Bark of Yucca schidigera (Mojave yucca)

Pregeijerene −14 −13.9 Ruta graveolens (rue) and Rubus rosifolius (Mauritius raspberry)

Plantacyanin −11.1 −11.2 Cucumber

6”-Acetylhyperin 7-rhamnoside −10 −10.1 Broad bean (Vicia faba) leaves

14alpha-Hydroxy-4beta-deoxypaxilline −10.1 −10.1 Penicillium paxilli and Acremonium lolii

Cucurbitacide E −10.4 −10.5 Leaves and fruit of Cucumis sativus (cucumber)

Khelmarin D −10.0 −9.9 Citrus paradisi and Citrus tangerina (Rutaceae)

WT only

Delphinidin 3-feruloylglucoside −10.0 −8.7 Purple tomato

Solacauline −10 −8.6 Solanum punae and Solanum schreiteri (Solanaceae)

(Continued)
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lipoprotein particle remodeling, cholesterol storage, regulation of 
macrophage-derived foam cell differentiation, triglyceride-rich 
lipoprotein particle remodeling, protein-containing complex 
remodeling, cholesterol storage, HDL particle remodeling, and 
phospholipid homeostasis in the biological process of gene ontology 
(Table 5).

Interaction of genetic variants and lifestyle 
parameters in hypo-HDL-C

In the interaction between the PRS and lifestyles, the PRS of the 
4-SNP model interacted with energy intake (p = 0.04) and smoking 
status (p = 0.0006; Table  6). The HDL-C was much lower in the 
participants in the high-PRS group with a low-energy intake than 
those with a high-energy intake (Figure 6A). Former and current 

smokers had lower serum HDL concentration than non-smokers but 
the PRS effect was smaller in the smokers than non-smokers 
(Figure  6B). These results indicated that a low-energy intake and 
non-smoking status did not improve the hypo-HDL-C status in the 
participants with high-PRS.

The PRS of the haplotype in 11q23.3 interacted with the 
glycemic index (p = 0.003), sulfur microbial diet (p = 0.005), and 
smoking status (p < 0.0001) to influence hypo-HDL-C status 
(Table  6). In participants with a high-GI diet, serum HDL 
concentration was lower than those with a low-GI diet regardless 
of haplotype(hap)-PRS but the participants with high-hap-PRS had 
a much lower serum HDL concentration in Low-GI diet 
(Figure  6C). In the both low- and high-sulfur microbial diets, 
participants with a high-hap-PRS had a lower HDL-C than those 
with a low- hap-PRS, while the PRS impact was greater in the 
low-sulfur microbial diet than in the high-sulfur microbial diet 

FIGURE 4

Gene expression according to the alleles of the selected SNPs for hypo-HDL-cholesterolemia risk in different tissues. (A) ALDH1A2_rs588136 in the 
cortex of the brain (β  =  0.14; p  =  0.03). (B) CETP_rs708272 in the arterial appendage (β  =  −0.31; p  =  5.5×10-7). (C) CETP_rs708272 in the skeletal muscle 
(β  =  −0.16, p  =  0.00035). (D) CETP_rs708272 in subcutaneous adipose tissue (β  =  −0.17, p  =  0.00063). (E) ABCA1_rs1883025 in the skeletal muscle 
(β  =  0.1, p  =  0.0012). (F) SIK3_rs7115583in the skeletal muscle (β  =  0.07, p  =  0.05).

Compounds Binding energy (kcal/mol) Herbs

WT MT

Isomorellic acid −10.9 −8.8 Garcinia morella (batuan)

MT only

Quercetin 3-O-xylosyl-glucuronide −9.0 −10 Green beans

Gambogic acid −7.9 −10 Gamboge resin (exudate of Garcinia morella)

Kuwanol E −7.3 −10.1 Morus alba (white mulberry)

TABLE 4 (Continued)
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(Figure 6D). Smokers had lower serum HDL concentrations than 
non-smokers but the non-smokers with high-hap-PRS showed a 
remarkably lower than those with low-hap-PRS (Figure  6E). 
Therefore, low-GI, low-sulfur microbial diet and non-smoking 
status could not offset the high-hap-PRS impact to decrease serum 
HDL concentration.

Discussion

The prevalence of hypo-HDL-C is estimated to be approximately 
15–25% in the adult population worldwide (1). Hypo-HDL-C is an 
independent risk factor for CVD and is associated with an increased 
risk of coronary artery disease, stroke, and peripheral arterial disease. 
The risk factors for hypo-HDL-C include age, gender, lifestyle factors 
(smoking, lack of physical activity, poor diet, and obesity), family 
history, and certain medical conditions. Age above 55 years, the female 
gender, higher BMI, waist circumferences, fat mass, hyperglycemia, 
insulin resistance, hypertension, and hypertriglyceridemia were risk 
factors for hypo-HDL-C in the present study. Among lifestyle factors, 
the risk factors were observed to be a high carbohydrate and sodium 
intake, low protein, vitamin D, coffee, and alcohol intake, low exercise, 

and smoking. In addition to lifestyle factors, hypo-HDL-C was 
associated with genetic factors, and the interaction between genetic 
and lifestyle factors influenced hypo-HDL-C.

In the present study, the PRS of the 4-SNP model and the 11q23.3 
haplotype were positively associated with hypo-HDL-C by about 3 
times. This was a higher association than the PRS of the 24 SNP model 
with p < 5×10−8. These results suggest that the interaction between 
genetic variants with each other showed a better association with 
hypo-HDL-C when they were pooled. The selected genetic variants 
indicated the essential pathways that influence hypo-HDL-C. The 
SNPs associated with hypo-HDL-C identified in the present study 
were involved in generating HDL-C, reverse cholesterol transport, 
triglyceride transport, and cholesterol metabolism in macrophage and 
foam cells. Pre-β-HDL is formed and secreted from the liver and 
intestines into the bloodstream. It interacts with ABCA1 to form disc-
shaped nascent HDL by the efflux of phosphatidylcholine and 
cholesterol, and phospholipids from the macrophage and foam cells 
are transferred into nascent HDL-C through ABCA1 (7). The 
intracellular cholesterol contents control the expression of the ABCA1 
gene. The nascent HDL-C is converted into mature spherical HDL by 
esterifying free cholesterol by LCAT, reverse cholesterol transport. 
CETP, mainly released from the liver, is bound to HDL-C in the blood, 

FIGURE 5

Molecular docking and molecular dynamic simulation (MDS) of Kuwanol E on Apolipoprotein E (APOE) wild type (cys130) and mutated type (130arg) in 
rs429358. (A) The interaction force between Kuwanol E and APOE _rs429358 wild type. (B) The interaction force between Kuwanol E and APOE _
rs429358 mutated type. (C) Root mean square deviation (RMSD) of Kuwanol E on APOE_rs429358 wild and mutated types. (D) Root mean square 
fluctuations (RMSF) of Kuwanol E on APOE_rs429358 wild and mutated types.
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and it facilitates the movement of cholesteryl ester and triglycerides 
among HDL, LDL, and very low-density lipoprotein (VLDL). 
Moreover, increased HDL-C content and activity decreases 
triglycerides in the serum. Therefore, the expression and mutation of 
APOA1, ABCA1, LCAT, CETP, and LPL are involved in HDL-C and 
triglyceride homeostasis (25). The present study showed that their 
genetic variants were associated with hypo-HDL-C.

Interestingly, hypo-HDL-C is genetically linked to triglyceride 
transfer from chylomicron and VLDL. The APOA1/C3/A4/
A5-ZPR1-BUD13 gene cluster is located on chromosome 11q23.3 and 
modulates LPL activity (26, 27). The cluster is also linked to HDL 
metabolism. The best model with SNP-SNP interaction included 2 
SNPs (ZPR1_rs3741297 and BUD13_rs180327). The PRS of the 4-SNP 
model and 11q23.3 haplotype were positively associated with not only 
hypo-HDL-C but also hypertriglyceridemia. However, the PRS of the 
4-SNP model and 11q23.3 haplotype were not associated with other 
biochemical and anthropometric measurements. This suggests that 
triglyceride metabolism is closely linked to HDL metabolism. Girona 
et  al. (28) have reported that the triglyceride content in HDL is 
strongly inversely related to HDL-C and positively associated with the 
triglyceride contents in chylomicron and VLDL. HDL-C, with high 

triglyceride content, is small and has a severely abnormal structure 
(29). Small HDL or HDL with high triglycerides is a marker of 
cardiovascular disease (29). Therefore, the genetic variants involved 
in triglyceride metabolism may be linked to the triglyceride movement 
of not only chylomicron and VLDL but also HDL.

ApoE mediates the binding of lipoproteins, especially VLDL and 
chylomicron remnants or lipid complexes in the plasma or interstitial 
fluids, to specific cell-surface receptors (30). In the present study, 
APOE_rs429358, a missense mutation (cys130arg), was positively 
associated with hypo-HDL-C. Consistent with the present study, 
APOE_rs429358 and rs7412 polymorphisms have been positively 
associated with hypo-HDL-C, hyper-LDL-C, and hypertriglyceridemia 
in an earlier study. Furthermore, the lipid profile was linked to 
cognition in the aging Chinese population (31) and Eastern Europe, 
as observed in the Health, Alcohol, and Psychosocial Factors in 
Eastern Europe (HAPIEE) study (32). Therefore, ApoE_rs429358 is 
associated with dyslipidemia, indicating it impacts ApoE activity, 
thereby modulating the lipid profile.

However, no study has investigated the change in ApoE 
binding energy with food components according to the rs429358 
mutation. Its wild and mutated type proteins showed similar or 

TABLE 5 Pathways related to genetic variants for serum HDL concentration.

Gene set N of genes Beta Beta STD SE P value P value with 
Bonferroni

GO BP: GO reverse 

cholesterol transport
17 1.92 0.058 0.231 4.21e-17 6.52e-13

GO BP: GO triglyceride-

rich lipoprotein particle 

remodeling

13 2.20 0.058 0.269 1.42e-16 2.20e-12

GO BP: GO protein-

containing complex 

remodeling

30 1.37 0.055 0.117 4.49e-16 6.95e-12

GO BP: GO cholesterol 

storage
17 1.69 0.051 0.211 6.70e-16 1.04e-11

GO BP: GO regulation of 

macrophage-derived foam 

cell differentiation

30 1.26 0.050 0.163 8.00e-15 1.24e-10

GO BP: GO very low-

density lipoprotein 

particle remodeling

11 2.14 0.052 0.289 6.40e-14 9.90e-10

GO BP: GO positive 

regulation of cholesterol 

storage

7 2.60 0.050 0.361 2.98e-13 4.61e-09

GO BP: GO foam cell 

differentiation
36 1.05 0.046 0.148 6.63e-13 1.03e-08

GO BP: GO protein-lipid 

complex subunit 

organization

50 0.90 0.046 0.127 6.97e-13 1.08e-08

GO BP: GO high-density 

lipoprotein particle 

remodeling

17 1.518 0.046 0.226 9.22e-12 1.423e-07

GO BP: GO phospholipid 

homeostasis
10 1.938 0.045 0.296 2.90e-11 4.493e-07

GO, Gene Ontology; BP, biological process.
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different binding energies to food components. Among 20,000 
food components, 13 food components, mainly polyphenols, had 
< −10 binding energy with wild and mutated types of 
APOE_rs429358 (cys130arg). Two (solacauline and isomorellic 
acid) and three food components (quercetin 3-O-xylosyl-
glucuronide, gambogic acid, and kuwanol E) had low binding 
energy with wild-type or mutated-type APOE, respectively. The 
differences in binding energy between the wild and mutated types 
were due to conformational changes of the ApoE expressed by the 
gene with a missense mutation. The changes modified 
intermolecular binding affinities, such as the conventional 
hydrogen bonds between food components and the ApoE protein. 
Kuwanol E known to be  present in Morus alba had a lowered 
binding affinity with the mutated type rather than the wild one. 
Previous studies have shown that Morus alba intake protects 
against dyslipidemia and hepatic liver steatosis in rats and humans 
(33–35). Lowering the binding energy of ApoE improves its 
activity by lowering serum HDL-C concentrations.

The relationship between dietary fat and carbohydrate intake and 
HDL-C is somewhat paradoxical with respect to CVD risk (36). HDL-C 
decreases by replacing dietary saturated fat with polyunsaturated and 
monounsaturated fat (36). Furthermore, the switch from dietary fat to 
dietary carbohydrate reduces HDL-C. The present study showed that 
high carbohydrate and low-fat intake, regardless of the type of fat, 
decreased HDL-C (p < 0.001). Although fiber intake was lower in the 
Low-HDL group than in the Normal-HDL group (p < 0.05), the dietary 
glycemic index and sulfur diet index did not differ between the 
Low-HDL and Normal-HDL groups. Vitamin D intake is a well-known 
regulator of calcium homeostasis, blood pressure, and glycemia (37). 
Vitamin D significantly enhances HDL-C to reduce atherosclerotic 
cardiovascular disease risk scores (38, 39). Consistent with the previous 
studies (40), vitamin D and calcium intakes were higher in the 
Normal-HDL group than in the Low-HDL group.

Previous studies have consistently reported that individuals with 
higher sulfur microbial diet scores related to consuming a high intake 
of processed meats, liquor, low-calorie drinks, beer, sweets, and 

TABLE 6 Adjusted odds ratios for the hypo-HDL risk by polygenetic risk scores (PRS) of the best model for gene–gene interaction or haplotype in 
11q23.3 after covariate adjustments according to the patterns of lifestyles.

4-SNP PRS Low- PRS (n  =  29,317) Medium-PRS 
(n  =  17,592)

High-PRS (n  =  11,792) Gene-nutrient 
interaction
P value

Low energy1

High energy
1

1.566 (1.483–1.653)

1.586 (1.483–1.696)

2.703 (2.372–3.080) 2.143 

(1.812–2.533)
0.0426

Low GI2

High GI
1

1.552 (1.471–1.637) 1.614 

(1.507–1.729)

2.612 (2.292–2.976) 2.267 

(1.916–2.682)
0.7382

Low Sulfur2

High sulfur
1

1.596 (1.526–1.670) 1.437 

(1.278–1.614)

2.521 (2.257–2.815) 2.252 

(1.700–2.984)
0.1772

Low DII2

High DII
1

1.542 (1.469–1.619) 1.680 

(1.544–1.827)

2.436 (2.163–2.745) 2.596 

(2.116–3.185)
0.3018

Non-smokers

Smokers
1

1.567 (1.499–1.638) 1.674 

(1.470–1.906)

2.527 (2.267–2.818) 2.354 

(1.724–3.213)
0.0006

Low alcohol3

High alcohol
1

1.591 (1.510–1.677) 1.566 

(1.458–1.683)

2.576 (2.256–2.941) 2.441 

(2.074–2.874)
0.3420

Haplotype
Low-PRS (n =  14,156)

Medium-PRS 
(n =  24,671)

High-PRS (n =  18,874)
Gene-nutrient 

interaction
P value

Low energy1

High energy
1

1.169 (1.096–1.248) 1.256 

(1.159–1.361)

1.945 (1.749–2.163) 1.813 

(1.587–2.072)
0.5180

Low GI2

High GI
1

1.218 (1.143–1.299) 1.182 

(1.089–1.282)

1.928 (1.735–2.142) 1.855 

(1.621–2.123)
0.0025

Low Sulfur2

High sulfur
1

1.203 (1.140–1.270) 1.220 

(1.059–1.404)

1.974 (1.806–2.159) 1.491 

(1.188–1.872)
0.0048

Low DII2

High DII
1

1.202 (1.134–1.274) 1.219 

(1.102–1.348)

1.949 (1.771–2.144)

1.752 (1.483–2.070)
0.2720

Non-smokers

Smokers
1

1.179 (1.118–1.243) 1.436 

(1.227–1.680)

1.887 (1.729–2.060) 2.023 

(1.563–2.620)
<0.0001

Low alcohol3

High alcohol
1

1.138 (1.069–1.211) 1.322 

(1.211–1.444)

1.888 (1.699–2.098) 1.978 

(1.725–2.268)
0.0953

Values represent adjusted odd ratios and 95% confidence intervals. PRS with 4 SNPs of the best GMDR model or haplotype in 11q23.3 was divided into three categories according to the 
number of the risk alleles: ≤ 3, 4–5, and ≥ 6 into Low-PRS, Middle-PRS, and High-PRS, respectively. The reference was the low-PRS. Covariates included age, sex, education, income, energy 
intake, residence areas, daily activity, alcohol intake, smoking status, blood HbA1c, and serum triglyceride concentrations. Cutoff of each variable: 100% for estimated energy requirement 
(EER)1, 33th percentiles2, and 20 g/day3. GI, glycemic index; DII, dietary inflammation index. 1<Estimated energy requirement defined in dietary reference index; 2 < 75th percentiles; < 20 g/day; 
3 < 20 g daily alcohol intake.
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desserts and a low intake of mixed vegetables and legumes face an 
elevated risk of early-onset adenomas and colorectal cancer, with the 
risk being 1.31 and 1.25 times higher, respectively (41, 42). 
Furthermore, recent research has highlighted the influence of sulfur 
microbial diet scores on obesity risk and its impact on metabolic 
processes, based on data from the UK Biobank (20). However, our 
current study yielded some intriguing findings. We  observed no 
significant differences in sulfur microbial diet scores between 
individuals categorized as having Low-HDL and Normal-HDL levels. 
This discrepancy can be attributed to the distinctive dietary habits of 
Koreans, where the average sulfur microbial diet scores were notably 
lower (approximately −35 for men and − 55 for women) compared to 
Europeans (approximately −0.5). This variation arises from the fact 
that Koreans consume considerably fewer processed meats and 
consume more legumes and vegetables than their European 
counterparts (20). Additionally, our study uncovered a noteworthy 
interaction between sulfur microbial diet scores and PRS to affect 
serum HDL concentration. In cases where individuals adhered to a 
low sulfur microbial diet, those with medium-hap-PRS exhibited a 

reduced genetic influence on their serum HDL levels. The impact of 
haplotype genetics was less pronounced in a low-sulfur microbial diet, 
underscoring the intricate interplay between diet and genetics.

Some studies have demonstrated that genetic variants related to 
hypo-HDL-C and lifestyle factors exhibit an interaction to modulate 
HDL-C. For example, total fat intake interacted with the LPL_rs13702 
polymorphism to impact HDL-C (interaction p = 0.041). The 
individuals with the risk allele (G) of LPL_rs13702 have significantly 
higher HDL-C when consuming a high-fat diet (>92 g/day) than those 
on a low-fat diet (p = 0.033) (43). The risk allele of the haplotype in the 
12q23 has a positive association with hypo-HDL-C by 1.65 times 
compared to its non-risk alleles. The risk allele of the haplotype 
interacts with protein, saturated fat, and polyunsaturated fatty acid 
intake (16). However, the PRS with 4-SNP and the haplotype 11q23.3 
had no interaction with protein and fat intake. On the other hand, 
there was an interaction of the PRS with 4-SNP and haplotype 11q23.3 
with energy intake and microbial sulfur diet, respectively. The PRS of 
4-SNP and haplotype did not interact with protein and fat intake but 
with the sulfur microbial diet containing high in meats, mainly 

FIGURE 6

Hypo-HDL cholesterolemia with the polygenic risk score (PRS) according to dietary intake. (A) Energy intake in 4-SNP PRS. (B) Smoking status in 4-SNP 
PRS. (C) Glycemic index (GI) in haplotype(hap)-PRS of 11q23.3. (D) Sulfur microbial diet in hap-PRS of 11q23.3. (E) Smoking status in hap-PRS of 
11q23.3.

https://doi.org/10.3389/fnut.2023.1244185
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hur et al. 10.3389/fnut.2023.1244185

Frontiers in Nutrition 16 frontiersin.org

processed meats, and low in vegetables. Therefore, the genetic variants 
are likely associated with the intake of saturated fat and proteins.

The present study is novel as it has shown that HDL-C was associated 
with not only cholesterol but also triglyceride transfer from triglyceride-
rich lipoproteins. Furthermore, HDL-C was related to the regulation of 
macrophage differentiation derived from foam cells. The PRS of the 
4-SNP and haplotype 11q23.3 interacted with energy and the sulfur-
microbial diet score, respectively, to influence low HDL-C. The 
limitations of the study were as follows: First, the data originated from a 
cross-sectional study, and although it was well-designed, and the data 
collection and measurement were well-controlled, the results could not 
represent cause and effect. Second, HDL subclasses, including HDL 
particle size, composition, and functionality, were not measured to 
understand the genetic impact of HDL metabolism and its interaction 
with lifestyles. Third, daily food intake was estimated from the SQFFQ, 
including 106 common Korean foods and dishes. The SQFFQ included 
some bias for the usual food intake, although it was checked with a 
three-day record four times. Third, genetic variants were estimated with 
a customized K-chip for Koreans (Axiom Biobank plus Genotyping 
Array, KNIHv1.1) (44). The genetic variants might not include some 
genetic variants related to metabolic diseases.

In conclusion, adults with hypo-HDL-C had a 1.4-fold higher risk 
of CVD. Those with a high PRS of ZPR1_rs3741297, CETP_rs708272, 
BUD13_rs180327, and ALDH1A2_rs588136 or the haplotype 11q23.3 
were positively associated with the risk of hypo-HDL-C by about 3 
times. The PRS of the 4-SNPs and haplotypes interacted with energy 
intake and sulfur-microbial scores, affecting hypo-HDL. The wild 
type of APOE_ rs429358 (cys130) lowered the binding energy to 
polyphenols somewhat differently than the mutated ones (130arg). 
Therefore, adults with a genetic risk for hypo-HDL need to modulate 
their diet to reduce their risk. Our study demonstrates the clinical 
relevance of genetic variants associated with hypo-HDL-C in a large 
cohort of middle-aged Asian adults. These findings highlight the 
diagnostic value of incorporating genetic risk assessment into 
managing hypo-HDL-C and, eventually, cardiovascular disease. 
Individuals identified with a genetic predisposition to hypo-HDL-C 
can benefit from targeted interventions, such as lifestyle modifications 
such as low sulfur microbial and glycemic diets and non-smoking and 
early screening, to mitigate their increased risk of myocardial 
infarction and stroke. Implementing personalized risk assessments 
based on genetic factors has the potential to enhance preventive 
strategies and improve patient outcomes in clinical practice.
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