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Background: Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals 
with MS frequently present symptoms such as functional disability, obesity, and 
anxiety and depression. Axonal demyelination can be  observed and implies 
alterations in mitochondrial activity and increased inflammation associated 
with disruptions in glutamate neurotransmitter activity. In this context, the 
ketogenic diet (KD), which promotes the production of ketone bodies in the 
blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic 
alternative that has shown promising results in peripheral obesity reduction and 
central inflammation reduction. However, the association of this type of diet 
with emotional symptoms through the modulation of glutamate activity in MS 
individuals remains unknown.

Aim: To provide an update on the topic and discuss the potential impact of KD on 
anxiety and depression through the modulation of glutamate activity in subjects 
with MS.

Discussion: The main findings suggest that the KD, as a source of ketone bodies 
in the blood, improves glutamate activity by reducing obesity, which is associated 
with insulin resistance and dyslipidemia, promoting central inflammation 
(particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This 
improvement would imply a decrease in extrasynaptic glutamate activity, which 
has been linked to functional disability and the presence of emotional disorders 
such as anxiety and depression.
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Introduction

Multiple sclerosis (MS) is a neurodegenerative disease characterized by multifocal and 
temporally dispersed damage to the central nervous system (CNS) (1, 2), affecting approximately 
2.3 million people worldwide, with an increasing incidence (3). Currently, there is no specific 
treatment to cure the disease and the disease-modifying treatments administered aim to improve 
symptoms and slow down disease progression (4).
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Prominent among the clinical presentations are fatigue and 
progressive muscular atrophy (5) resulting in functional disability (6, 
7), along with notable cognitive and behavioral issues such as anxiety 
and depression (8).

At the central level, three pathogenic mechanisms are involved: 
excessive buildup of intra-axonal Ca2+ (9), axonal demyelination 
causing degeneration due to the lack of trophic support provided by 
myelin (10), and an inflammatory process triggered by immune 
system alterations mediated by reactive T and B lymphocytes (11). 
These mechanisms ultimately disrupt mitochondrial activity, 
resulting in decreased ATP production and increased oxidative stress. 
Demyelination and neurodegenerative changes are more commonly 
observed in deep gray matter, which directly impacts atrophy and 
clinical deterioration (12, 13).

Functional disability emerges as a prominent clinical factor 
directly associated with gray matter atrophy (14). This disability is 
quantified using the Expanded Disability Status Scale (EDSS), which 
represents a reliable tool for assessing life expectancy (15). 
Furthermore, it has been established that functional impairment, as 
assessed by the EDSS, directly influences emotional well-being of, 
particularly in relation to the presence of depression and anxiety 
(16–18). Therefore, it appears relevant to identify the factors that 
contribute to disability and their correlation with different variables, 
with obesity emerging as notably significant.

Most MS individuals are obese, and greater levels of obesity 
correlate with increased disability (19–21). Excessive adiposity has 
been linked not only to insulin resistance but also to an altered profile 
of various lipoproteins in the bloodstream (22, 23). It should 
be  emphasized that these metabolic changes resulting from 
hyperinsulinemia may be  responsible for the inflammatory 
process (24).

Inflammation is a prevalent feature in all MS subjects, 
prompting endeavors to identify inflammatory mediators as 
potential diagnostic biomarkers (25). While numerous markers 
have been discovered, certain proinflammatory interleukins hold 
particular significance in the inflammatory process. Specifically, 
elevated levels of IL-17, IL-6, and IL-1β have been highlighted by 
several authors (26). The rise in IL-17 levels in both the serum 
and cerebrospinal fluid (CSF) correlates with disease activity (27, 
28). Furthermore, the synthesis of IL-17 is less sensitive to 
hydrocortisone inhibition compared to IL-6, and its levels are 
more significantly associated with active brain lesions in MS (29). 
The relationship between IL-6 and IL-17 is also interesting, as 
IL-6 is involved in the induction of IL-17-producing T cells, even 
during the remission phase. This leads to increased levels of 
IL-17, which positively correlate with disease severity according 
to the EDSS. This highlights the particular relevance of IL-6 in 
the pathogenesis of MS (30). In fact, elevated levels of IL-6 
interfere with synaptic plasticity mechanisms, thereby affecting 
the ability to compensate for the clinical manifestation of new 
brain lesions in individuals with relapsing–remitting multiple 
sclerosis (RRMS) (31). Furthermore, IL-6 has been identified as 
an important mediator in the association between body mass 
index (BMI), adiposity, and risk of MS (32). Regarding IL-1β, 
although there are many aspects that require further investigation, 
it appears to be clearly related to the pathogenesis of the disease, 
as it acts on subsets of human TH cells expressing the IL-1R 
receptor (33).

Inflammation in MS and anxiety and 
depression

Considering the significance of inflammation in the development 
of mental disorders, a direct association between elevated levels of 
inflammatory cytokines in the bloodstream and the presence of 
depressive and anxiety symptoms (34–37) has been established by 
numerous studies. Among these pro-inflammatory interleukins, IL-6, 
IL-1β, and IL-17 are particularly relevant in their association with 
emotional disturbances (38). According to Lee STH (39), IL-6 is 
associated with depression as a predictive factor, on average 6 years 
prior to its onset, and is positively correlated with its increase (40, 41), 
as well as the presence of anxiety symptoms (42, 43). The link between 
interleukin and these symptoms has been attributed to oxidative stress 
triggered by elevated levels of IL-6, which directly influence the 
normal functioning of the brain (44, 45), through hyperstimulation of 
the hypothalamic–pituitary–adrenal (HPA) axis (46). This oxidative 
stress and increased depression lead to demyelination and cerebral 
atrophy, accompanied by elevated concentrations of inflammatory 
mediators such as tumor necrosis factor (TNFα) and specifically 
interleukin IL-6, along with IL-1α and IL-1β, in the serum and CSF 
(47). Among the two IL-1 s, however, the role of IL-1β appears to 
be more relevant, particularly in relation to anxiety and depression. In 
fact, improvement of these symptoms following pharmacological 
treatment has been directly associated with a significant decrease in 
this interleukin (48), identifying it as a therapeutic target for the 
treatment of depression in individuals with MS. Finally, regarding 
IL-17, its elevated levels have recently been associated, along with IL-6, 
with subjects with first-episode depressive disorder (FDD) (49), and 
it also stands out among the various interleukins as being most 
strongly associated with the presence of anxiety, being considered as 
a severity indicator (50). Furthermore, it is interesting to highlight that 
in autoimmune diseases such as psoriasis, it may be a link between 
immune dysregulation, the predominant obesity in the condition and 
depression (51). In this regard, it is worth recalling the autoimmune 
nature of MS and the direct association between obesity (52) and 
functional disability in individuals (53).

Relationship between glutamate and 
the incidence of anxiety and 
depression in multiple sclerosis

Many studies have focused on the role of cytokines, chemokines, 
and classical inflammatory mechanisms in the pathogenesis of MS 
(54). However, recent research has shown the importance of some 
inflammation-independent neurodegenerative mechanisms 
associated with mitochondrial dysfunction, iron deposition, and 
oxidative stress (55). In line with this, evidence also highlights the 
significance of neurotransmission systems in the onset and 
development of MS. For instance, it is known that an excess of 
glutamate is related to MS symptomatology. In fact, modulation of 
glutamate release and transport, as well as blocking its receptors, may 
be  relevant targets for future therapeutic interventions (56). As 
commonly known, glutamate is the major excitatory neurotransmitter 
in the CNS and appears to play a central role in the communication 
between different brain cells; not only neurons but also 
oligodendrocytes, astrocytes, endothelial cells, and immune cells (57).
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Glutamate excitotoxicity is a hypothesis that posits that excess 
glutamate leads to neuronal dysfunction and degeneration. In fact, 
glutamate excitotoxicity has been associated with various chronic 
neurodegenerative disorders (58). Specifically, in relation to MS, 
alterations in extracellular glutamate concentration, glutamate 
receptors, or the glutamate transporter could be associated with the 
disorder (55, 59), and these alterations could potentially explain the 
recently observed relationship between glutamate and functional 
disability in MS as a prognostic marker for the disease (60).

Additionally, excessive levels of glutamate appear to be directly 
related to the emotional aspects of dementia and psychiatric disorders. 
Metabotropic glutamate receptors (mGluRs) are attractive targets for 
therapies aimed at treating anxiety disorders (61). In various 
psychiatric disorders, glutamate has been associated with the 
perception of anxiety and depression (62). Similarly, this 
neurotransmitter has demonstrated its role in anxiety and depression 
in neurodegenerative disorders such as AD (63).

In fact, common mechanisms have been seen between depression 
and MS, including alteration of brain-derived neurotrophic factor, 
dysregulation of the hypothalamic–pituitary-thalamic axis, and 
inflammation or dysregulation of serotonin, norepinephrine, and 
glutamate (64). In relation to inflammation and glutamate 
dysregulation, a clear link has been established, as proinflammatory 
cytokines contribute to excitotoxicity in gray and white matter by 
impairing glutamate reuptake through astrocytes and 
oligodendrocytes, as well as monoaminergic neurotransmission in MS 
(65, 66). Specifically, IL-17A appears to be particularly relevant. In 
fact, a direct correlation has been observed between IL-17A and 
glutamate levels. IL-17A levels have also been associated with 
neutrophil expansion in CSF and disruption of the BBB, suggesting 
that Th17 cells may enhance and utilize glutamate excitotoxicity as an 
effector mechanism in the pathogenesis of MS (67).

Besides, these same authors further investigated the importance 
of IL-17A, observing its effect on the ability of astrocytes to metabolize 
and release glutamate. IL-17A may promote glutamate excitotoxicity 
by reducing the uptake capacity of astrocytes and converting glutamate 
into non-toxic glutamine, but also by stimulating Ca2 + −dependent 
glutamate release. Thus, the potential link between inflammation and 
neurodegeneration during the pathogenesis of MS becomes evident, 
identifying astrocytes as a potential target for achieving 
neuroprotective effects in the disease (68).

Interestingly, a relationship has also been seen between IL-1β and 
glutamate toxicity, with a decrease in glutamate toxicity when 
inflammation in the cerebral cortex is attenuated through elevated 
levels of IL-1β (69).

Ultimately, it is also noteworthy that by antagonizing the 
N-methyl-D-aspartate (NMDA) glutamate receptor, a rapid reduction 
in circulating levels of IL-6 is achieved, which in turn leads to a 
significant decrease in elevated levels of depression caused by 
glutamate over activity (70).

Therefore, considering all the mechanisms described and depicted 
in Figure 1A, antagonizing the action of this neurotransmitter could 
improve depression, among other symptoms, by reducing 
inflammation. However, regarding MS, there is not enough evidence 
to support the efficacy of memantine (an antagonist of AMPA 
glutamate receptors) in preventing cognitive decline or fatigue, despite 
memantine’s potential to reduce glutamate toxicity (71). However, the 
association between glutamate, emotional state, and neurodegenerative 

disorders is clear (72), highlighting the need to find alternatives to 
drugs in order to improve symptoms by modulating glutamate activity.

Discussion

It is evident that MS is the result of a combination of genetic and 
certain environmental factors, including nutrition (73, 74). In this 
study, individuals with MS present a clear imbalance in the intake of 
macronutrients associated with obesity (especially abdominal obesity) 
and elevated levels of IL-6 (75). These imbalances are characteristic of 
the Western diet (high in energy, saturated fats, and sugars), which 
promotes inflammation associated with insulin resistance (76).

Ketogenic diet were initially designed to mimic the biochemical 
effects of intermittent fasting on the body (77). They involve restricting 
carbohydrate intake to a minimum while increasing the intake of fats, 
all while ensuring adequate protein intake (78).

The reduction in blood glucose, and consequent decrease in 
glycolysis, result in improved mitochondrial function by reducing the 
production of reactive oxygen species (79, 80). Additionally, there is 
an increase in blood ketone bodies, which, along with the low glucose 
availability, appears to have a neuroprotective effect by reducing 
inflammation (81, 82).

The first disease in which the effects of KD were studied was drug-
resistant epilepsy (83). However, it was later observed that 
neurodegenerative diseases, such as amyotrophic lateral sclerosis, 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s 
disease, and MS share some pathogenic mechanisms and may also 
benefit from the effects of this diet (84). This is mainly because KD not 
only helps modulate mitochondrial function by reducing oxidative 
stress but also reduces neuroinflammation and promotes autophagy, 
regulates central and peripheral metabolism, and affects the intestinal 
microbiome in these diseases (85). All these mechanisms appear to 
have a particular relevance in MS, as KD have been shown to promote 
axonal remyelination (86). In fact, there is already clinical evidence of 
the benefits of this diet in people with MS. A randomized parallel-
group three-arm pilot trial (NCT01538355) was conducted in RRMS 
subjects, where a slight reduction in EDSS scores was observed. 
Additionally, in a population sample of 65 individuals with relapsing 
MS, significant reductions in fat mass were observed after 6 months of 
treatment with a KD, leading to improvements in fatigue, depression, 
neurological disability, and inflammation (87). Moreover, it has been 
seen that following a KD for 6 months also significantly reduces serum 
neurofilament light chain (sNfL) levels, which are related to the impact 
on neuroaxonal damage in subjects with RRMS (88).

Finally, it is worth noting that, despite the study by Lee et al. (89), 
where the administration of a KD based on high amounts of medium-
chain triglycerides (MCT) provided by coconut oil did not achieve a 
significant clinical improvement, positive changes in the development 
of the disease have also been seen following the intake of coconut oil 
(as a source of ketone bodies) combined with the administration of 
epigallocatechin gallate (EGCG). Specifically, it was seen that the 
intervention resulted in anthropometric improvements, characterized 
by a decrease in waist-to-hip ratio and body fat percentage, and an 
increase in muscle mass percentage. Additionally, the increase in 
paraoxonase 1, a marker associated with low levels of oxidative stress 
and inflammation, as well as serum albumin, also contributed to the 
reduction of cardiac risk in individuals with MS (90, 91). Furthermore, 
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FIGURE 1

Interaction of central glutamate activity in anxiety and depression alterations, characteristic of Multiple Sclerosis (MS).(A) Peripheral and central 
pathogenic mechanisms in MS. Individuals with MS have a high prevalence of obesity, which is associated with insulin resistance. Obesity is directly 
linked to the characteristic functional disability of the disease and with increased central inflammation. This inflammation is primarily mediated in MS by 
an increase in IL-1β and its receptor (IL-1R), as well as an increase in IL-6, which stimulates T-cell activation and promotes IL-17A production, 
specifically related to functional disability. Disability, as well as inflammation in the CNS mediated primarily by these three interleukins, is associated 
with glutamate activity. Increased levels of glutamate are observed in areas of greater demyelination and axonal degeneration in MS. Finally, 
dysregulation of glutamate is associated with increased depression and anxiety, as the increased activity of IL-1β, IL-6, and IL-17A reduces glutamate 
uptake by astrocytes and stimulates its release at the extrasynaptic level. (B) Proposed mechanisms of action of a ketogenic diet (KD) in improving the 
perception of anxiety and depression in subjects with MS. The production of ketone bodies resulting from KD intake reduces obesity and improves 
insulin resistance, thereby enhancing functional capacity. This activity, along with the ability of ketone bodies to cross the BBB, may explain central 

(Continued)
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these changes were accompanied by improvements in functional 
capacity and anxiety (92).

Given the previously established relationship between functional 
disability and obesity, and the association of obesity with insulin 
resistance and dyslipidemia, functional improvement may 
be attributed to the regulation of these variables by ketone bodies. KD 
that promote these metabolites, when followed under the supervision 
of a healthcare professional, are a safe and effective treatment for 
weight loss in obese subjects, including those with comorbidities such 
as chronic kidney disease (93).

These diets are more effective in males than in females. However, 
due to potential hormonal influences in women, the effectiveness is the 
same for both sexes when reaching menopause (94). Thus, from an 
anthropometric perspective KD act by reducing visceral fat mass. On a 
serological level, they decrease fasting insulin levels by increasing 
insulin sensitivity (95), and regulate triglyceride levels, total cholesterol, 
glucose, and glycosylated hemoglobin (96). In fact, in animal models, it 
has been seen that a 3-day intervention with a KD leads to a decrease in 
fasting insulin levels, resulting in glucose intolerance, which may 
be  associated with increased lipid oxidation (97). In this type of 
low-carbohydrate diet, it can be assumed that the excess lipids will 
be oxidized to provide energy in response to glucose scarcity, and the 
decrease in insulin levels is likely reversible and unrelated to any organic 
damage (97). The improvement in lipid profile is associated with a 
reduction in inflammation in obese individuals (98), with particular 
relevance placed on the decrease in interleukin IL-17, which is directly 
linked to the disease (99), as elevated levels of IL-17 are associated with 
disruptions in glucose and insulin metabolism (100).

Additionally, it should be noted that insulin resistance is common 
in MS and has been positively associated with functional disability 
determined by the EDSS (99, 101).

Ketone bodies and their role in 
inflammation, depression, and anxiety in 
multiple sclerosis

Regarding the activity of ketone bodies in relation to inflammation, 
there is abundant scientific evidence supporting their role both 
peripherally and centrally (102–104). Furthermore, focusing on the key 
interleukins associated with the pathogenesis of MS, namely IL-6, IL-1β, 
and IL-17, the particularly active role of β-hydroxybutyrate (βHB) 
should be highlighted. This metabolite, capable of crossing the BBB, 
exerts protective effects against microglial activation, thereby reducing 
neuroinflammation and, specifically, IL-6 both in vitro and in vivo (105).

Its anti-inflammatory action also includes IL-1β activity 
modulation. βHB may suppress NLRP3 inflammasome activation and 
improve various inflammatory diseases. In fact, in human placental 
tissue cultures, treatment with βHB has been shown to suppress the 
secretion levels of inflammatory cytokines, such as interleukin IL-1β, 
IL-6, and IL-8. Additionally, βHB reduced the secretion of IL-1β and 
the amount of mature IL-1β protein induced by lipopolysaccharide 
(LPS) stimulation in the placenta. Furthermore, in the same study, it 

was also seen that βHB inhibited the secretion of IL-1β in human 
trophoblastic cells (106). It is important to recall that the direct 
involvement of the NLRP3 inflammasome in the onset and 
development of MS has been demonstrated in the experimental 
autoimmune encephalomyelitis (EAE) animal model, which justifies 
the particular relevance of IL-1β in MS (107).

Finally, it is interesting to mention that, when attempting to 
establish the mechanisms by which βHB determines the activation 
processes of BV2 microglial cells, it was observed that this metabolite 
had a neuroprotective effect on BV2 cells, significantly reducing the 
levels of expression of the proinflammatory interleukin IL-17 and 
increasing the levels of the anti-inflammatory interleukin IL-10. Thus, 
βHB appears to play a fundamental role in neuroprotection and the 
prevention of neurodegenerative diseases (108).

Individuals who consume unhealthy or Western-style diets rich 
in fat, sugar, and ultra-processed products are at a higher risk of 
depression and anxiety, with inflammation as the primary mechanism 
linking diet to these behavioral variables (109, 110). Specifically, one 
of the interleukins that stands out in this link is IL-6 in excess (111–
115). In this context, KD in animal models have been shown to 
be effective in reducing depression, specifically through the restoration 
of microglial inflammatory activation and neuronal excitability (116). 
Furthermore, ketone bodies have shown to be efficient in reducing the 
perception of anxiety, as evidenced that in AD and in elderly humans 
the KD exhibited an anxiolytic effect (117, 118). Finally, it is significant 
to mention that this type of diet has shown to be particularly effective 
in reducing both depression and anxiety in PD (119, 120).

Impact of ketone bodies on glutamate 
activity and the improvement of anxiety 
and depression in MS

Excessive extracellular concentrations of L-glutamate (L-Glu) can 
be neurotoxic and contribute to neurodegenerative processes in MS 
(121). L-Glu levels in CSF are lower in individuals with MS, correlating 
with functional disability (EDSS scale) in RRMS. Particularly relevant 
is also the relationship between L-Glu and levels of inflammatory 
molecules interleukin (IL)-2 or IL-6; thus, altered L-Glu is associated 
with disability progression and inflammation (122).

This inflammation can be promoted by obesity, since a clear link 
has been established between obesity and central inflammation, which 
in turn contributes to functional disability in MS. Thus, obese 
individuals with RRMS show greater clinical disability, as evidenced 
by elevated levels of proinflammatory molecules such as IL-6 and 
leptin in CSF, along with reduced concentrations of the anti-
inflammatory cytokine IL-13. Interestingly, these subjects also show a 
positive correlation between CSF IL-6 concentrations and serum 
triglyceride levels, as well as the TC/HDL-C ratio, indicating that 
obesity and altered lipid profiles are associated with increased central 
inflammation and greater clinical disability in RRMS (19).

In line with this, a relationship has been established in individuals 
with AD between obesity and alterations in glutamate activity at the 

glutamate activity, particularly at the extrasynaptic level, and through the reduction of IL-1β, IL-6, and IL-17A levels. Ultimately, these changes have an 
emotional impact, leading to a decrease in the perception of anxiety and depression characteristic of this pathology.

FIGURE 1 (Continued)
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central level, specifically an increase in its binding to the extrasynaptic 
NMDA receptor. These alterations are mediated by insulin resistance 
linked to obesity, which in turn is associated with leptin resistance, 
ultimately contributing to the increased extrasynaptic activity of the 
neurotransmitter (123). It is interesting to note that this increase in 
extrasynaptic glutamate activity also explains the elevated levels of 
anxiety and depression in subjects with AD (63).

All these processes are shown in Figure 1B.
In summary, based on the analysis reported in this study, improving 

glutamate activity may be  achieved by reducing obesity, which is 
associated with insulin resistance and dyslipidemia. These processes are 
further linked to a decrease in central inflammation, which is associated 
with dysfunctional extrasynaptic glutamate activity and emotional 
disturbances (124). Specifically, interleukins IL-1β, IL-6, and IL-17 
appear to be particularly relevant, as they decrease following significant 
increases in blood βHB levels. Therefore, modulation of glutamate 
activity would imply an improvement in functional disability (60), 
associated with a reduction in the characteristic anxiety and depression 
experienced by these subjects. In the absence of effective pharmacological 
treatments, KD have shown to be particularly effective in achieving an 
anti-inflammatory effect through the modulation of glutamate activity. 
However, it is important to highlight that the administration of these 
diets must be guided by experts who monitor the individual’s response, 
as secondary issues such as constipation, nausea, vomiting, decreased 
appetite (125–127), and even transient hyperlipidemia (128), 
characterized by initial elevations in fasting serum total cholesterol, 
triglycerides, and low-density lipoproteins (LDL), have been 
reported (129).
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