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The gut microbiota is a rich and dynamic ecosystem that actively interacts with 
the human body, playing a significant role in the state of health and disease of 
the host. Diet, exercise, mental health, and other factors have exhibited the ability 
to influence the gut bacterial composition, leading to changes that can prevent 
and improve, or favor and worsen, both intestinal and extra-intestinal conditions. 
Altered gut microbial states, or ‘dysbiosis’, associated with conditions and 
diseases are often characterized by shifts in bacterial abundance and diversity, 
including an impaired Firmicutes to Bacteroidetes ratio. By understanding the 
effect of lifestyle on the gut microbiota, personalized advice can be generated 
to suit each individual profile and foster the adoption of lifestyle changes that 
can both prevent and ameliorate dysbiosis. The delivery of effective and reliable 
advice, however, depends not only on the available research and current 
understanding of the topic, but also on the methods used to assess individuals 
and to discover the associations, which can introduce bias at multiple stages. 
The aim of this review is to summarize how human gut microbial variability is 
defined and what lifestyle choices and diseases have shown association with gut 
bacterial composition. Furthermore, popular methods to investigate the human 
gut microbiota are outlined, with a focus on the possible bias caused by the 
lack of use of standardized methods. Finally, an overview of the current state of 
personalized advice based on gut microbiota testing is presented, underlining its 
power and limitations.
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1. Introduction

The human gut is inhabited by an estimated 1014 microorganisms, represented by a mixture 
of bacteria, archaea, fungi, and protozoa that start colonizing the gut at birth and evolve with 
the hosts throughout their lifespan. This population of organisms is referred to as the ‘gut 
microbiota’ and it represents the result of thousands of years of coevolution and mutualistic 
relationship with the human body (1). The genomic content of the gut microbiota, termed ‘gut 
microbiome’, accommodates at least 100 times the genetic content of the human genome, and 
with the recent advances in technologies like DNA sequencing, it provides a window into the 
composition of the gut ecosystem (2).

By contributing to host nutrient metabolism, protection from pathogens, host immunity 
regulation, and maintenance of a healthy intestinal epithelium, the gut microbiota has emerged 
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as a key-player in multiple aspects of host health (3–5). The gut 
microbiota synthesizes vitamins such as vitamin K and most water-
soluble vitamins B, including biotin, cobalamin, folates, nicotinic acid, 
pantothenic acid, pyridoxine, riboflavin, and thiamine (6, 7). It also 
produces neurotransmitters and hormones that function as signals to 
the central nervous system and can affect mood and cognition (8, 9). 
The human gut microbiota is also involved in the degradation and 
fermentation of fibers and the biotransformation of bile acids 
produced by the liver, promoting nutrients absorption and 
metabolism, and therefore influencing the overall state of health of the 
host (10–12). States of altered microbial composition called ‘dysbiosis’ 
have been associated with multiple disorders, including inflammatory 
bowel disease (IBD), inflammatory bowel syndrome (IBS), obesity, 
diabetes, asthma, psoriasis, cancer, and neurological conditions 
(13, 14).

Regardless of the level of conservation of the human gut 
microbiota composition, shaped by millennia of mutualistic 
coevolution and natural selection, daily lifestyle choices, including diet 
and exercise, have revealed to play a role in the relative abundance of 
gut bacteria. This, in turn, signifies that individuals have the power to 
adapt their lifestyle to prevent or improve states of dysbiosis (1, 15, 16).

Given the effect of dysbiosis in human health, improving 
knowledge around gut bacteria and their function opens the way to 
gut microbial testing and personalized lifestyle advice aimed at 
preventing diseases and promoting health. As a result, multiple 
companies have started offering gut microbial tests to a wider 
population. However, to effectively deliver gut-microbiome-based 
advice and have control over interventions and their outcome, clarity 
is required on what can affect the gut microbiota and how its 
composition is defined, allowing accurate testing and formulation of 
personalized advice based on scientific evidence.

This review aims at summarizing the present knowledge around 
human gut microbial variability, its association with health and disease 
and the effect exerted by lifestyle factors, with a focus on diet, 
xenobiotics, exercise, and mental health. The most popular available 
methods to define gut microbiota composition are also highlighted, 
taking into consideration pros and cons and the current lack of 
standardization. Finally, this review offers an overview of the current 
status of personalized advice based on gut microbial testing, 
underlining its power and limitations, as well as ethical issues.

2. Gut microbial composition

The analysis of gut microbiome studies revealed that 90% of the 
phyla found in humans belong to Bacteroidetes and Firmicutes, with 
Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia 
representing a large part of the remaining 10%. Most of the Firmicutes 
are gram-positive bacteria and are represented by Clostridium (95%), 
Lactobacillus, Bacillus, Enterococcus, and Ruminicoccus, while 
Bacteroidetes are gram-negative bacteria mainly constituted by 
Bacteroides and Prevotella. On the other hand, the Bifidobacterium 
genus is the main representative of the Actinobacteria (5, 17).

Individual gut microbial composition can be influenced during 
infancy by factors such as being born preterm or full term, by vaginal 
delivery or caesarean, and being fed human milk (18–20). It also varies 
with the age, from childhood (up to 1 year old) to adulthood and over 
70, and it can be greatly affected by antibiotic treatments, Body Mass 

Index (BMI), exercise, and diet (5, 18, 21, 22). Metagenomic data from 
healthy individuals with different ancestry also showed that the impact 
of diet and environment on the gut microbial composition and 
function is greater than the influence of inherited genes (23).

Wide variation in microbial composition between individuals has 
been highlighted by important metagenomic projects such as the 
Human Microbiome Project (HMP) and the European Metagenomics 
of the Human Intestinal Tract project (MetaHIT) (24, 25). Attempts 
were made to define a basic gut microbiome profile including a 
collection of microbes present in all individuals (common core), 
although more similarities were identified from a genetic and therefore 
functional point of view rather than taxonomic (26, 27). Data from a 
cohort of 124 European individuals (healthy, overweight, or with IBD) 
revealed 18 species present in all the individuals and 57 in more than 
90% of the participants, with inter-individual variability from ~10 to 
~2000-fold due to high variation in microbial abundance. The same 
study showed that, regardless of bacterial variability, common 
identified functions were related to genes involved in bacterial fitness 
in the gut and genes important for interaction with the host, including 
degradation of complex polysaccharides and synthesis of short chain 
fatty acids, indispensable amino acids, and vitamins (25).

Further studies allowed the identification of clusters of 
microbiome variation that indicate the presence of a limited number 
of balanced microbial states, termed ‘enterotypes’. The analysis of 
variability of the gut microbiota composition and function in 33 
individuals identified three distinct clusters in which one of three 
genera has different abundance, with Bacteroides dominant in 
enterotype I, Prevotella in enterotype II and Ruminococcus in 
enterotype III. Comparison with other studies revealed similar 
clustering, especially for enterotypes I  and II, with a third group 
driven by Clostridiales-related groups. Strong correlations between the 
distribution of the dominant genera and the other genera present in 
the same individual were also observed. In the same investigation, a 
deeper analysis of the enterotypes functional profiles highlighted that 
different enterotypes may rely on different routes to generate energy 
(fermentation from carbohydrates for enterotype I, from mucin 
glycoproteins for II and III) and show different level of vitamins 
production (17).

The existence of enterotypes has however been questioned as 
other studies found that most of the available data seem to support the 
presence of continuous gradients of variation rather than simplified 
discrete enterotypes (28, 29). Associating an enterotype cluster to a 
disease could lead to loss of perspective on intra-cluster variation 
compared to using predictive methods based on taxon-relative 
abundance. Machine learning-based classifiers performed better when 
classifying, for example, lean adults versus individuals with obesity 
and healthy people versus patients with Crohn’s disease (27, 29, 30). 
Another limitation of the concept of enterotypes is represented by the 
assumption that an individual gut microbiota composition is stable 
during adulthood, while data suggest that healthy subjects’ 
microbiomes can, over time, vary as much as the variability observed 
between different individuals (17, 29). This variation can be due to, 
among others, diseases, dietary changes, the use of medications, and 
other lifestyle changes that will be discussed in more details further 
ahead in this review (31). Recent attempts to settle the debate around 
the validity of enterotypes included a meta-analysis of gut microbial 
composition data obtained from three large datasets (HMP, MetaHIT, 
and a Chinese study). It was found that groups of samples tend to 
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cluster around preferred genus level compositions, resulting in some 
more frequent relative abundance profiles. However, this should not 
limit the pursuit of more complex analyses (24, 32–34). The 
importance of enterotypes is therefore highlighted as a way of 
capturing similar microbial patterns that may be relevant for clinical 
approaches and dietary interventions. However, better definition, 
improved methods, and standardization may be required to identify 
samples that do not fit in the defined clusters. A classifier developed 
from the abovementioned meta-analysis, to be used with caution, is 
available at [http://enterotypes.org] (accessed on 06/02/23) (32).

3. Lifestyle

3.1. Diet and gut microbiota

Among the factors capable of influencing the gut microbiota 
composition, diet appears to have a major effect, both in the short and 
long term. The analysis of fecal samples and dietary habits from 98 
individuals revealed a strong association between protein and animal 
fat-rich diets with Bacteroides-driven microbiome profiles (enterotype 
I), and carbohydrate-rich diets with Prevotella-abundant profiles 
(enterotype II). Specifically, Bacteroidetes and Actinobacteria positively 
correlated with fat but negatively with fiber, while Firmicutes and 
Proteobacteria behaved in the opposite way. In the same study, a 
10-day high-fat/low-fiber or low-fat/high-fiber monitored diet 
revealed a shift in microbiome composition as soon as 24 h after the 
beginning of the diet, but not enough to change enterotype or to 
match the inter-individual differences (35). Another study showed 
that an exclusively plant-based diet can rapidly alter human gut 
microbial composition and gene expression, with significant changes 
detected 2 days after the adoption of the diet and return to baseline 
composition 2 days after the end of the 5-day diet (21). As previously 
observed, Prevotella showed positive correlation with fiber intake, 
while a high-fat animal-based diet led to an increase in bile-resistant 
microorganisms like Bilophila and Bacteroides, recreating patterns 
observed in herbivorous and carnivorous mammals’ gut profiles (21, 
35, 36). Rapid and reversible changes in gut bacterial composition 
were also observed in relation to diets high in resistant starch or 
non-starch polysaccharides and a reduced carbohydrate diet provided 
to overweight individuals, causing detectable changes as soon as 
3–4 days after the adoption of the diet. In the same study, individuals 
on a diet high in resistant starch exhibited an increase in the 
percentage of Ruminococcus bromii and Eubacterium rectale-related 
bacteria, even if inter-individual differences were predominant (37).

The comparison of children from rural Africa and Europe showed 
a higher amount of the Bacteroidetes genera Prevotella and Xylanibacter 
in the African fiber-rich diet, compared to a higher amount of 
Firmicutes and Enterobacteriaceae bacteria found in European 
children, whose diet is more animal-based and richer in sugar (38). 
Carbohydrates that can be used as source of energy for gut microbes, 
known as microbiota-accessible carbohydrates (MACs), are mainly 
represented by dietary fibers/plant polysaccharides and they are 
abundant in the African diet. On the contrary, the Western diet, which 
is typically low in these carbohydrates (low-MACs diet), has been 
associated with lower microbial gene richness and decreased diversity 
(26, 39–42). Furthermore, African children’s fecal samples showed 
higher abundance of short chain fatty acids (SCFAs), which are the 

product of the fermentation of complex carbohydrate such as resistant 
starch and inulin (38, 43).

SCFAs, which include acetate, propionate, and butyrate, represent 
a source of energy for colonocytes, promoting intestinal motility and 
a healthy epithelial barrier. These fatty acids have also been associated 
with anti-inflammatory properties and inhibition of cancer cells 
growth (38, 43, 44). In addition, they have been shown to stimulate 
hormonal and neuronal signals involved with the suppression of 
appetite (45). The most investigated SCFA is butyrate, which can 
be obtained directly through consumption of food like butter and 
cheese or indirectly through bacterial fermentation of dietary fiber, 
fermentation of acetate and lactate produced by certain microbial 
species, or degradation of mucin carried out by some Clostridia 
species (46). Butyrate represents over 70% of the colonocytes energy 
source and impaired butyrate metabolism has been observed in 
pathologies such as colitis and colon cancer (44, 47, 48).

The consumption of single dietary components has also been 
associated with specific changes in gut microbial composition. A 
recent metagenomic sequencing of fecal samples obtained from more 
than 1,100 United Kingdom and United States of America (USA) 
individuals showed, among others, the following associations: full fat 
yoghurt consumption and increased Bifidobacterium animalis and 
Streptococcus thermophilus; coffee consumption and butyrate-
producing Lawsonibacter asaccharolyticus; healthy plant-based food 
and butyrate-producing bacteria such as Roseburia hominis, 
Agathobaculum butyriciproducens, Faecalibacterium prausnitzii, and 
Anaerostipes hadrus; ‘less-healthy’ plant-based and animal-based 
foods and Clostridium species. The same study also showed that gut 
microbiome profiles of healthy animal-based diets cluster separately 
from diets involving less-healthy animal-based food (49).

An overview of specific nutrients and diets and their relationship 
with health and disease states is discussed in Section 5.

3.2. Environment and gut microbiota

3.2.1. Geography and ethnicity
As emerged from the comparison between African and European 

children’s samples, the effect of diet on the gut microbiota is apparent 
when comparing gut signature profiles of people living in different 
countries. To provide another example, the comparison of the fecal 
microbiota composition of Korean and USA adult twin pairs revealed 
some signature biogeography, likely influenced by diet and other 
environmental factors, with significantly different bacterial 
compositions between the two countries. The same study showed 
greater differences, within each country, between the microbiota of 
individuals from different families rather than those from the same 
familial group, which could be due to similar habits, environment, 
and/or similar genetics. Moreover, lean American and Korean 
individuals showed greater microbial differences compared to obese 
individuals, highlighting weight and lifestyle choices as a confounding 
factor (50).

The analysis of fecal microbiota of 2,084 individuals with different 
ethnicities but living in the same cities highlighted ethnicity as an 
important factor influencing interindividual differences. In this 
context, even though the genetic component could determine the 
initial establishment of gut profiles, environmental factors, diet in 
particular, are expected to contribute to differences in a higher degree 
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than genetics (51). In fact, a survey comparing the gut microbiome of 
1,046 healthy individuals with different genetic ancestry but sharing a 
common environment showed a limited role of host genetics in 
determining the gut microbial composition (23).

Further evidence of the influence of the country of residence on 
gut microbiome diversity and function has been reported after 
observation of the effect of immigration on Thai individuals relocating 
to the USA. Migrating to the USA has been associated not only with 
an increase in metabolic disease and obesity rates, but also with rapid 
changes in the gut microbiota composition. These changes include loss 
of native gut microbial species, loss of diversity, and increase in 
Bacteroides at the expense of Prevotella strains, with progression 
following the time spent in the USA (52). The reasons behind this 
could be partially explained by cultural adaptation to a Western diet 
and increased sedentary lifestyle, and as a result of a history of food 
insecurity (53, 54).

3.2.2. Living with pets
Among the environmental factors that might affect the gut 

microbiota, living with pets appears to play a role. The analysis of stool 
samples from 332 adult participants from households with or without 
pets revealed no differences in bacterial diversity but significant 
differences in the abundance of certain phyla, predominantly 
Firmicutes (55). Exposure to furry pets has also been linked to changes 
in gut microbiota profiles of infants, with an increase in Ruminococcus 
and Oscillospira, which have been associated with obesity and 
predisposition to allergies (56). However, it has also been hypothesized 
that exposure to pets in infants might be  linked to allergy 
predisposition through modulation of gut microbiota, with 
preliminary data indicating a protective effect (57). Further research 
is therefore necessary to clarify the relationship between pets and 
gut bacteria.

3.3. Xenobiotics, alcohol, and gut 
microbiota

Among the substances that individuals are exposed to daily, drugs, 
environmental pollutants, and food additives should also be taken into 
consideration as potential modifiers of the gut microbiota 
composition. Overall, these foreign compounds are referred to as 
‘xenobiotics’, which are voluntarily or involuntarily ingested by 
humans. Once in the intestine, the xenobiotics can interact with gut 
bacteria by affecting their growth and functions. Furthermore, they 
can be  metabolized by the bacteria resulting in molecules with a 
different role, toxicity, and persistence than the initial compound 
(58–60). However, this interaction is quite complex and not yet fully 
understood (61).

3.3.1. Prescription and recreational drugs
A plethora of host-targeted drugs are modified by gut bacteria, 

even if the implications and mechanisms are still not fully 
comprehended (62, 63). In this regard, a study comparing the effect of 
6 host-targeted drugs and 8 antibiotics showed little impact of the 
host-targeted drugs on the microbial physiology. Antibiotics, however, 
caused significant differences in the structure of the microbial 
community, especially in the Firmicutes taxonomic group. Besides, the 
bacterial gene expression for drug resistance and metabolism changed 

significantly with both types of treatment (62). By either killing or 
inhibiting bacterial growth or reproduction, antibiotics can have a 
profound effect on the gut microbiota, causing perturbations that can 
have serious impact on the state of health of an individual. Antibiotics 
such as vancomycin, ampicillin, streptomycin, and metronidazole 
have all been associated with changes in the gut microbial 
composition, causing, for example, reduced microbial diversity and 
altered gram-positive over gram-negative ratio, with an increase in 
gram-negative species (64). The use of antibiotics can also lead to 
increased susceptibility to Clostridium difficile infection, which 
represents a major issue for hospitalized elderly patients. C. difficile, 
which forms spores that can persist in the environment, can thrive in 
the gut of patients with antibiotic-related dysbiosis and often causes 
reinfection, with mortality rates higher than 10% in patients over 
80 years of age (65–67). On the other hand, treatments with the 
antibiotic rifaximin have been found to increase the levels of the 
beneficial bacteria Bifidobacterium, Faecalibacterium prausnitzii, and 
Lactobacillus (68). On a side note, it is relevant to mention that 
antibiotics may not always be ingested consciously. In fact, veterinary 
antibiotics administered to animals ultimately accumulate in both 
aquatic and terrestrial ecosystems. This occurs through various 
pathways, including, for example, soil fertilization, eventually leading 
to the inclusion of antibiotics in the food chain (69–72).

The use of recreational drugs, including marijuana, has also been 
linked to gut microbial changes, including dysbiosis (73). The 
Prevotella:Bacteroides ratio was found to be 13 times lower in chronic 
marijuana users than non-users, and this change appeared to 
be correlated with reduced cognitive functions. However, the possible 
impact of a different diet, low in fresh produce, on marijuana users, 
could have contributed to the differences reported in the study. 
Therefore, this association should be further investigated (74). On the 
other hand, preliminary studies have shown a potential anti-
inflammatory effect of cannabidiol (CBD), a major cannabinoid found 
in cannabis, in the human gut (75). Studies in mice using CBD and/
or tetrahydrocannabinol (THC), another primary cannabinoid, also 
showed reduced inflammation, amelioration of dysbiosis, increased in 
beneficial gut bacteria, and potential protection from, for example, 
diabetes, obesity, and cardiovascular conditions (76–79). The 
mechanism of action of cannabinoids is related to the activation of 
cannabinoid receptors expressed in the nervous system, including the 
enteric nervous system, in some immune cells, and in epithelial cells. 
In the gut, the activation of the endocannabinoid system has been 
linked to intestinal motility modulation, promotion of endothelial 
membrane integrity, and prevention of inflammation. The 
psychoactive effect of THC, and not of CBD, should, however, be kept 
in mind when evaluating the use of cannabis or cannabinoids for 
therapeutic purposes (80). Regardless of the expected positive impact, 
studies on the potential beneficial effects of CBD and THC on 
non-alcoholic fatty liver disease showed contrasting results, which 
highlight the need for better standardization. In fact, different 
cannabis variety may contain different numbers and amounts of 
bioactive compounds, potentially leading to different effects (81, 82). 
A systematic review and meta-analysis has also found inconsistent 
results regarding cannabis’ impact on the gut microbiome across 
studies, highlighting the need for more comprehensive research to 
decipher the precise mechanisms and consequences of cannabis on 
gut microbiota (83). Furthermore, cannabis consumption has 
demonstrated potential benefits in ulcerative colitis patients, such as 
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altering endocannabinoid tone and inducing mucosal healing, but the 
involvement of gut microbiota in these effects remains unclear (84). 
Other recreational drugs, such as cocaine and methamphetamine, 
have been linked to negative changes in gut microbial composition 
(85, 86). However, more research is necessary to evaluate the full range 
of consequences of recreational drugs on gut health.

3.3.2. Environmental pollutants
Environmental pollutants such as heavy metals and pesticides 

have also been shown to alter the gut microbiota composition, leading 
to dysbiosis and negative health effects (64, 87, 88). For example, lead, 
cadmium, and arsenic exposure in mice has been reported to cause a 
change in bacterial community structure and relative abundances, 
causing shifts in the Firmicutes to Bacteroidetes ratio (64, 89–91). 
Besides, gut bacteria offer not only a physical barrier to the absorption 
of heavy metals, but also provide enzymes that can contribute to the 
detoxification of these compounds. In particular, probiotics, live lactic 
acid bacteria such as Lactobacillus and Bifidobacterium contained in 
fermented food, have shown the ability to significantly reduce the 
toxic effect of heavy metals by limiting their absorption, providing 
detoxification, maintaining gut barrier integrity, and reducing the 
expression of metal transporters (92–94). Pesticides such as herbicides, 
insecticides, and fungicides are all being explored for their impact on 
the gut microbiota, generally revealing shifts in relative abundances in 
the model organisms used, but sometimes yielding contrasting results 
(95). More research is therefore needed in this field to clearly outline 
the functionality and impact of these compounds on intestinal bacteria.

3.3.3. Food additives
Food additives, such as artificial sweeteners, emulsifiers, 

preservatives, and colorants are also being investigated to shed light 
on the possible impact on the gut microbial community structure. 
Artificial sweeteners such as aspartame, acesulfame, saccharine, 
sucralose, and cyclamate showed the capability to induce changes in 
the gut microbiota, reducing the bacterial diversity and impairing the 
glucose metabolism (96, 97). However, the dosage of sweeteners used 
in these studies does not always seem to represent the average daily 
intake in the normal population. Surveys on the Belgian population 
above 15 years of age and Irish pre-school children both showed an 
average daily intake of artificial sweeteners well below the acceptable 
daily intake (ADI), defined as the threshold below which no adverse 
effect on human health would be expected over a lifetime (98–100). 
Regardless, some studies may use a sweetener dosage that matches or 
surpasses the ADI. For example, a 2017 study on the effect of 
acesulfame potassium on mice showed shifts in gut bacterial 
composition after administration of 37.5 mg/kg body weight/day of 
the sweetener, which has an ADI of 15 mg/kg body weight/day (96, 
101). Because of the variable dosage used in different studies, as well 
as the characteristic effect showed by each sweetener and the scarcity 
of investigations on humans, it is important to be cautious in the 
evaluation of the significance of these studies for human health. 
Emulsifiers have also appeared to influence the gut microbiota and 
have been linked to increased inflammation (15, 102). Little research 
has focused, to date, on the effect of preservatives and colorants on the 
gut microbiota, with initial data showing a certain degree of impact 
on the gut microbial community structure (96). However, further 
investigations are required to deepen our understanding of these 
compounds and their impact on gut microbiota and overall health.

3.3.4. Cigarettes
Cigarettes and e-cigarettes smoking studies consistently revealed 

low gut bacterial diversity, while conflicting results were obtained in 
terms of what bacterial phyla or genus was more or less represented in 
the group of smokers compared to non-smokers, even if significant 
differences were often present (103). The mechanism of action is still 
unclear, but the multiple toxic substances contained in cigarette 
smoking are likely to play a role. Polycyclic aromatic hydrocarbons, 
aldehydes, nitrosamines, benzene, and heavy metals, among others, 
may reach the gut and act as antimicrobial, as well as change the pH, 
affect organic acids production, and be metabolized by gut bacteria 
creating further toxic compounds. These molecules may favor some 
bacterial species while negatively affecting others, leading to dysbiosis 
(103, 104). Nicotine itself has been linked to changes in gut microbial 
population structure, leading to an increase in Proteobacteria and 
Bacteroidetes phyla and a reduction in Actinobacteria and 
Firmicutes (105).

3.3.5. Alcohol
Alcohol has also been identified as a cause of microbiota variation. 

Dysbiosis has been observed in individuals suffering from alcohol 
dependance, and the gut microbiota is also believed to play a role in 
the pathogenesis of alcoholic liver disease. Specifically, altered 
abundance of Bacteroidetes and Enterococcaceae has been observed in 
patients affected by alcoholic liver disease (106, 107). A study in mice 
revealed bacterial overgrowth, Enterobacteriaceae in particular, and 
intestinal inflammation after alcohol administration for 7 days, 
indicating an effect of alcohol even with acute rather than prolonged 
exposure (107). The mechanism causing alterations in the gut 
microbiota appears linked to the production of acetate: ethanol does 
not seem to be metabolized by gut bacteria, but instead an increase in 
acetate levels generated by host enzymes is likely to play a role (108). 
Given the link found between alcohol and gut bacteria, multiple 
studies have suggested that probiotics may be employed to improve 
the levels of liver-associated enzymes (109).

3.4. Physical exercise and gut microbiota

Physical exercise has shown potential to independently alter the 
composition and function of the gut microbiota. Exercise has been 
associated with increased butyrate production in animals and 
transient and reversible changes in the gut microbiome in humans 
(110–112). For instance, when compared to sedentary controls, 
athletes exhibited different gut microbiome profiles with increased 
diversity and different relative abundance, with elevated proportions 
of Firmicutes and lower amount of Bacteroidetes. However, the 
difference in dietary habits of athletic individuals compared to 
sedentary people, e.g., increased protein consumption, is likely to have 
played a role in the observed differences (113). In another study, 
pre-menopausal women performing at least 3 h of exercise a week 
showed higher levels of butyrate producers compared to women not 
reaching the same threshold of exercise, even though different diet 
regimens (e.g., significantly more fibers in the active group) might 
have had an impact on the results (114).

In the first controlled longitudinal study aimed at evaluating the 
independent effect of exercise on the gut microbiota, sedentary 
individuals, lean or with obesity, adopting consistent dietary patterns 
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during a 6-week endurance training, faced differing transient gut 
microbiome and metabolic alterations: lean individuals experienced 
an increase in SCFAs production, increase in Faecalibacterium, and 
decrease in Bacteroides, while the microbiome of individuals with 
obesity shifted in the opposite direction (110). In another attempt to 
distinguish between the effect of diet and the effect of exercise, 24 
previously sedentary men with the same nutritional profile were 
divided into exercise and control groups, with the exercise group 
following a 10-week moderate aerobic training. Results showed that 
the exercise-induced increase of oxygen uptake correlated with higher 
gut microbial diversity and higher relative abundance of Roseburia, 
Sutterella, and Odoribacter genera (115).

The intensity of exercise has also been linked to the gut microbiota 
composition: aerobic exercise on amateurs has been associated with 
improved gut microbial diversity and positive influence on gut health, 
while endurance, exhaustive exercise on athletes has been correlated 
with an increase in adverse effects, including reduced microbial 
diversity and elevated intestinal distress and inflammation (16). On 
another note, young people exercising daily exhibited increased gut 
microbial diversity, with higher levels of Firmicutes, suggesting that 
the frequency of exercise itself could also influence the gut microbiota 
composition (5, 116).

Among the mechanisms of interaction between exercise and gut 
microbiota, it has been proposed that communication mediated by the 
autonomic nervous system signals through the vagus nerve, 
neuroendocrine signaling through the hypothalamic–pituitary–
adrenal axis, and serotonin regulation could play a role (117, 118). 
However, several other mechanisms have been suggested, including 
the effect of exercise on the intestinal integrity, permeability, and 
motility, and the effect of raised body temperature and reduced 
intestinal blood flow (111, 119–121). Intense exercise, in particular, 
can increase the permeability of the intestinal wall and reduce the 
thickness of the gut mucus, potentially allowing pathogens in the 
bloodstream and increasing systemic inflammation (122). This may 
also promote contact between gut bacteria and mucosal immune cells, 
affecting the microbial balance (111). Also, the altered gut motility 
resulting from exercise, including reduced transit time and improved 
gas movement, may induce physical changes in the gastrointestinal 
tract that affect pH, mucus secretion, biofilm formation, and nutrients 
availability, with a consequential effect on the bacterial composition 
(111, 123, 124).

3.5. Brain activity and gut microbiota

3.5.1. Mental health
Psychological stressors, even with short exposure, displayed the 

ability to modify the gut microbiota composition in mice, causing a 
significant reduction in Lactobacillus, which presence has been 
associated with health benefits, including immunomodulation and 
reduction of inflammation (125–127). Besides, certain neuropeptides 
produced in the gut have displayed antimicrobial activity, while 
hormones such as adrenaline, noradrenaline, and cortisol produced 
through activation of the hypothalamic–pituitary–adrenal axis have 
been correlated with bacterial pathogen’s growth (128, 129). In 
addition, a study on mice revealed that the colonization of the gut with 
microbes can lead to an increased anxiety-like behavior compared to 
germ-free mice, indicating that the gut microbiota may contribute to 

regulate emotions (130). This is likely attributed to the bi-directional 
interaction between the central nervous system and the enteric 
nervous system via the vagal nerve, commonly referred to as the 
gut-brain axis. It could also be due to the neuropeptides generated by 
endocrine cells and the neurotransmitters potentially produced by gut 
bacteria (129, 131–133). Gut bacteria could also influence the central 
nervous system thorough SCFAs production. SCFAs have been shown 
to influence epigenetic regulation, which has been linked, in turn, to 
the development of brain and behavior (134). It is also believed that 
SCFAs may affect the permeability of the gut epithelium and reach the 
brain through the bloodstream, affecting it directly (135). Interestingly, 
another study on mice revealed that highly caloric diets rich in fat and 
sugar could be  linked to changes in microbial composition that 
adversely affect mood (136).

The abundance of animal studies on the subject have helped 
identify the possible mechanisms involved in the correlation between 
mental health and gut microbiota in humans. Human studies have 
mainly focused on the administration of bacterial strains such as 
Lactobacillus and Bifidobacterium, showing improvement in 
depression, stress, and cognitive functions (137, 138). A study on 
students subjected to academic stress, in fact, revealed a reduction in 
fecal lactic acid bacteria during periods of high stress levels (139). 
Human studies also showed that anxiety and depression correlate with 
IBS symptoms severity, that depression caused by stressful events may 
be  linked with increased abundance of Enterobacteriaceae, while 
psychological stress may be related to low levels of Lactobacilli spp. 
and higher levels of Escherichia coli and Pseudomonas spp. (140, 141). 
There is also evidence that stress and depression may increase the 
permeability of the gut barrier, leading to bacterial translocation into 
the blood stream and increased systemic inflammation (142, 143). The 
mechanism involved in stress-related increased permeability appears 
linked to the release of cortisol and the activation of mast cells via 
corticotropin-releasing hormone (144). Stress-induced preference for 
unhealthy food and metabolic changes triggered by stress and 
depression may also influence the gut microbiota through a change in 
diet and food digestion efficiency (142, 145, 146). Gut bacteria may, in 
turn, influence food choices through the production of molecules that 
resemble or interfere with peptides and hormones involved in appetite 
regulation, or by influencing mood and eating behavior via the 
gut-brain-axis (142, 147–149).

3.5.2. Sleep and circadian rhythm
The gut-brain-axis has not only been associated with mental 

health disorders, but also with sleep regulation. Microbial metabolites, 
as well as the serotonergic system, the vagus nerve, and the immune 
system have all emerged as vehicles of communication between the 
gut and the brain involved in regulating sleep (150). Recent studies 
have revealed a daily rhythmicity in the composition of gut microbiota 
and relative metabolites, primarily influenced by feeding patterns, as 
well as other circadian cues, e.g., light/dark cycles (151, 152). While 
host circadian-rhythm parameters can influence the gut microbiota, 
gut bacteria may in turn modulate host rhythms through metabolites 
production (152). A disturbance of the equilibrium caused, for 
example, by traveling, has been linked to gut microbial changes likely 
caused by jet lag and sleep loss which impact the diurnal rhythms, 
and, consequently, the composition and function of gut microbes 
(153, 154). Dysbiotic gut microbial profiles have been observed in 
people affected by sleep disturbances, indicating the possible role of 
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bacteria in the pathogenesis of such conditions, and opening the way 
to gut-microbiota-targeted solutions (155). Dietary supplementation 
including, for example, probiotics and vitamins, and increased 
attention to the time of feeding have the potential to improve 
maintaining the regularity of the circadian rhythm and consequently 
improve sleep (150–152).

4. Disease and gut microbiota

4.1. Intestinal disorders

The gut microbial composition and metabolic profiles have been 
extensively studied in relation to multiple conditions and diseases, 
from intestinal disorders to extra-intestinal illnesses (25, 156). It is 
generally accepted that the ratio between the two main phyla 
Firmicutes and Bacteroidetes represents an important indication of gut 
health, with a shift in this ratio being referred to as dysbiosis (157, 
158). A decrease in obligate anaerobes and increase in facultative 
anaerobes including pathogens such as E. coli, Salmonella, Proteus, 
Klebsiella, and Shigella have also been highlighted as a common 
characteristic of dysbiosis in humans and animals (43).

Gut bacterial dysbiosis has been shown in both constipated and 
diarrheal patients (159, 160). Patients with IBS have shown significant 
microbiome shifts compared to healthy individuals, with lower 
diversity, increased Firmicutes to Bacteroidetes ratio, less Lactobacilli, 
Faecalibacterium and Bifidobacteria and more Veillonella, Streptococci, 
Ruminococcus spp. and Enterobacteriaceae (5, 140, 161). In IBD, 
including Crohn’s disease and ulcerative colitis, dysbiosis and reduced 
bacterial diversity have been reported, with lower numbers of 
Firmicutes and a relative increase of potentially pathogenic bacteria of 
the Enterobacteriaceae family, such as Escherichia coli, compared to 
commensals (25, 156, 162).

Celiac disease, an autoimmune intestinal condition triggered by 
dietary gluten, has also been linked to gut microbiota dysbiosis, with 
increased numbers of rod-shaped and gram-negative bacteria (163, 
164). It is also hypothesized that the gut bacteria might contribute to 
the development of the disease by interacting with the same receptors 
responsible for the activation of innate immunity (165). The use of 
probiotics bears potential in reducing inflammation and improve 
symptoms in celiac disease, but further studies are required to better 
evaluate their therapeutic power (163).

Food allergies, including cow’s milk, peanuts, and eggs, have also 
been associated with dysbiosis, even if no specific bacterial taxa have 
so far been consistently identified in correlation to specific allergies. 
However, increasing evidence is supporting the role of dysbiosis in the 
pathogenetic process, especially during early-life gut colonization and 
immune development (166, 167). Use of antibiotics, for example, can 
affect gut microbial balance and increase the risk of allergies, as 
microbial molecules can affect oral tolerance by interacting with 
pattern recognition receptors on immune cells. On the other hand, 
SCFAs can protect from allergies by leading to an increase in T 
regulatory cells, by regulating the expression of enzymes involved in 
immune tolerance, and by reducing the production of 
pro-inflammatory cytokines (166, 168).

Lactose intolerance, which is thought to be  caused by a 
combination of diet and the genetic profile of the individual, e.g., 
functional variation in the lactase gene, has also been linked to the gut 

levels of Bifidobacterium and other bacteria that perform lactose 
fermentation (169, 170). The ability of gut bacteria to ferment lactose 
influences the amount of lactose and its metabolites present in the 
intestine, contributing to the osmotic effects responsible for the 
symptoms (171). Abundance of Bifidobacterium has been observed in 
lactose intolerant individuals consuming dairy products and a positive 
correlation with symptoms has been established, suggesting a role of 
Bifidobacterium in mediating gastrointestinal effects of lactose 
intolerance (169). However, in another study, an increase in 
Bifidobacterium mediated by supplementation with purified short-
chain galacto-oligosaccharides correlated with an improvement in 
lactose intolerance symptoms (172). These contrasting findings 
indicate that more investigations are required to evaluate the real 
impact of gut bacteria in mediating lactose intolerance symptoms.

Colorectal cancer has been associated with a reduction in 
butyrate-producing Lachnospiraceae bacteria and an enrichment in, 
for example, Fusobacterium spp., Escherichia/Shigella, Klebsiella, 
Streptococcus, Peptostreptococcus, and opportunistic pathogens (5, 173, 
174). Gut dysbiosis has also been identified as potential trigger of 
colorectal cancer, contributing to its development and pathogenesis 
(175, 176). Other forms of gastrointestinal cancer, including gastric 
cancer, esophageal cancer, liver, and pancreatic cancer have been 
linked to the gut microbiota and their metabolites, which may 
contribute to carcinogenesis by triggering inflammation, altering the 
immune system regulation, and affecting pharmacodynamics 
(177, 178).

4.2. Extra-intestinal disorders

Intestinal disorders aside, multiple extra-intestinal disorders have 
also been associated with gut microbial dysbiosis, including metabolic 
disorders, autoimmune diseases, skin conditions, and central nervous 
system disorders (5, 179–181).

Obesity has been associated with altered Bacteroidetes:Firmicutes 
ratio, with greater relative abundance of Firmicutes, and with a higher 
proportion of genes related to SCFAs production, which underlines a 
higher capacity of obtaining energy from food (182, 183). However, 
there is also evidence of a shift in the Bacteroidetes to Firmicutes ratio 
in the opposite direction (184). Obesity has also been linked to the 
microbiota alterations caused by diet and antibiotics, to altered bile 
acid metabolism, to chronic inflammation and enrichment in specific 
bacterial groups such as Prevotellaceae and Enterobacteriaceae 
families, Enterobacter and Roseburia genera (185).

Type 2 diabetes has been typically linked to less Firmicutes and 
Clostridia, increased Bacteroidetes to Firmicutes ratio, less butyrate-
producing bacteria and more sulfate-reducing bacteria as 
Desulfovibrionaceae spp. (5, 34, 186). Sulfate reducing bacteria, which 
levels are influenced by the availability of inorganic sulfates/sulfites 
and dietary amino acids and mucins, have also been associated with 
the onset of IBD, IBS, and colorectal cancer (187).

The gut microbiota composition and function have been identified 
as potential contributor to cardiovascular diseases, which include, 
among others, hypertension, coronary artery disease, and 
atherosclerosis. These are of prime relevance as they also represent the 
main cause of death in developed countries (188, 189). High blood 
pressure variability, a risk factor for cardiovascular incidents, has been 
linked to increased abundance of Prevotella spp. and Clostridium spp. 
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and lower levels of Alistipesfinegoldii and Lactobacillus spp., indicating 
a possible involvement of the gut microbiota in the regulation of blood 
pressure (190). Positive correlation between high blood pressure and 
Klebsiella spp. and Streptococcaceae has also been shown, together with 
reduced microbial diversity (191, 192). These correlations may 
be  explained by the anti-inflammatory effect linked to SCFAs 
production and the direct regulation of blood pressure by SCFAs 
through surface receptors. They could also be a result of the action of 
metabolites produced by the gut microbiota, which act as an endocrine 
organ both locally and on distant organs (188, 191, 193). 
Hyperlipidemia, characterized by elevated levels of total cholesterol, 
low-density lipoprotein cholesterol, and triglycerides, and a low level 
of high-density lipoprotein cholesterol, has also been associated with 
gut microbial composition. For example, individuals with 
hyperlipidemia have been observed having lower levels of SCFA-
producing bacteria. This relationship could be explained by the gut 
microbiota ability to regulate the lipid metabolism in the host through 
production of metabolites including bile acids, SCFAs, and 
lipopolysaccharides (194). Atherosclerosis, a chronic inflammation of 
the arteries wall characterized by lipid accumulation, is linked to high 
levels of cholesterol in the blood and could therefore be linked to gut 
microbial composition, because of the above-mentioned capability of 
gut metabolites to influence blood lipid levels (195). Furthermore, 
certain bacteria that are predominant in the gut have been found in 
atherosclerotic plaques, indicating that these bacteria might be able to 
cross the intestinal barrier and reach the blood stream, where they can 
contribute to the development of atherosclerosis (196).

The metabolic syndrome is defined by a combination of 
physiological, biochemical, clinical, and metabolic factors linked to an 
increased risk of cardiovascular disease and type 2 diabetes. Among 
the factors that constitute the syndrome are visceral fat, hypertension, 
hyperlipidemia, and chronic inflammation often associated with 
obesity and diabetes (197). The metabolic syndrome has been linked 
to dysbiosis, characterized by low abundance of probiotics such as 
Bifidobacterium, Lactobacillus, and Roseburia and high abundance of 
lipopolysaccharides-producing bacteria (194, 198, 199). The 
production of a bacterial toxin such as lipopolysaccharide results in a 
local and systemic low-grade state of inflammation that in turn 
promotes obesity and insulin resistance (198, 200). As a result of this 
and the important role of the gut microbiota in, among others, host 
food digestion and energy harvest, epithelial homeostasis 
maintenance, and protection against pathogens, dysbiosis has been 
proposed as potential pathogenic contributor to the development of 
the disease (198). The chronic systemic inflammation that 
characterizes the metabolic syndrome has also been proposed as a 
possible promoter of osteoarthritis, indicating a potential correlation 
between gut microbial dysbiosis and this degenerative cartilage 
deterioration condition (201).

Gout, a condition characterized by elevated levels of uric acid, 
arthritis, and inflammation in the joints has been associated with high 
levels of Prevotella, Fusobacterium, and Bacteroides and low levels of 
Enterobacteriaceae and butyrate-producing bacteria (202, 203). These 
changes lead to a lower degradation of uric acid, increased uric acid 
production, and increased inflammation (202, 204). Gut microbial 
dysbiosis, with low microbial diversity and reduced Firmicutes, has 
been highlighted in other forms of inflammatory joint conditions, 
including rheumatoid arthritis, ankylosing spondylitis, and psoriatic 
arthritis, which are all autoimmune diseases (202, 205, 206).

Dysbiosis has also been observed in other autoimmune 
conditions, such as insulin-dependent diabetes mellitus (type 1 
diabetes), multiple sclerosis, and systemic lupus erythematosus (207, 
208). Bacterial translocation, bacterial metabolites, and increased 
intestinal permeability appear as possible promoters of autoimmunity, 
highlighting the potential role of the gut microbiota in the 
pathogenesis of autoimmune diseases (208–210).

Apart from gastrointestinal cancer, other forms of cancer have 
been associated with gut microbial dysbiosis, including lung cancer 
and breast cancer (211–214). Patients with lung cancer have shown 
different gut microbial composition when compared to controls, 
including higher abundance of Enterococcus and lower levels of 
Actinobacteria and Bifidobacterium, lower amount of Firmicutes and 
Proteobacteria, and more abundant Bacteroidetes and Fusobacteria 
(211, 215, 216). Dysbiosis has also been observed in patients with 
breast cancer, involving a category of estrogen-metabolizing bacteria 
that can affect estrogen levels and influence the development and 
prognosis of the breast carcinoma (217, 218).

Skin conditions such as psoriasis, atopic dermatitis, and acne have 
also been linked to gut dysbiosis. For example, patients with psoriasis 
have displayed gut microbiome profiles that resemble the gut changes 
observed in IBD patients. Atopic dermatitis patients have exhibited 
low levels of Akkermansia, Bacteroidetes, and Bifidobacterium, while 
individuals with acne have shown decreased Firmicutes and increased 
Bacteroides (180, 219).

Respiratory conditions have also been associated with intestinal 
bacteria. Atopic asthma, for instance, has exhibited depletion of 
Faecalibacterium, Akkermansia, and Lachnospira, and has been 
associated with the gut colonization during infancy, influenced, for 
example, by birth delivery route and environmental exposure (13).

Neurological disorders have also been linked to gut microbial 
dysbiosis, with the gut-brain axis communication system likely to play 
a role (220, 221). Gut microbial dysbiosis has been shown in, among 
others, autism, Alzheimer’s, Parkinson’s, Attention Deficit 
Hyperactivity Disorder (ADHD), and schizophrenia (5, 138, 222). 
Autism spectrum disorder has been associated with increased 
Firmicutes/Bacteroidetes ratio and elevated levels of Escherichia/Shigella 
and the yeast Candida, while Alzheimer’s disease has been connected 
to increased Escherichia/Shigella, increased Bacteroidetes, and reduced 
Firmicutes, Bifidobacterium, and E. rectale (5, 14). Parkinson’s has been 
related to a reduction in Prevotella and an increase in Bifidobacterium 
and Lactobacillus, which are associated with reduction in ghrelin, a 
gut hormone involved in neuronal functions that has low 
concentration in all patients with Parkinson’s (223). ADHD, the most 
common neurodevelopmental disorder in young people, is mainly 
characterized by inattention, hyperactivity, and impulsivity, with 
gastrointestinal symptoms also appearing as a common characteristic 
among the patients (224). Multiple studies have investigated the 
relation between gut microbial profiles and ADHD, showing, for 
example, low abundance of Faecalibacterium and association with 
Neisseria and with Desulfovibrio, and sometimes showing or not 
showing significant differences in microbial diversity indices 
compared to controls. The heterogeneity of the results could 
be explained by the limitations that characterize the different study 
designs, e.g., use of medications, small sample size, and participants 
selection criteria. These limitations therefore underline the necessity 
of following standardized methods during investigations (225, 226). 
The role of the gut microbiota has also been extensively studied in 
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schizophrenia, a chronic, complex psychiatric disorder (227). 
Neurotransmitters dysregulation, alterations of the immune system 
functionalities, and irregular neurodevelopment have all been 
associated with the pathogenesis of schizophrenia. Because of the 
important role played by the gut microbiota in modulating these 
neurological and immunological factors, the intestinal bacterial are 
expected to have an impact in the pathogenesis of this psychiatric 
condition (228). Patients affected by schizophrenia have also shown 
higher abundance of Actinobacteria and lower of Firmicutes compared 
to healthy controls, while the severity of symptoms have been 
associated with Succinvibrio and Corynebacterium abundance (229).

5. Health improvement through gut 
microbiota

The advantage offered by the link found between health and 
disease and gut microbial composition is that, targeting the intestinal 
microbiota, for example by following specific diets and/or taking 
appropriate supplements, could be employed as a preventive measure 
or therapy. A summary of lifestyle factors that may impact the gut 
microbiota, and, consequently, the state of health or disease, is given 
in Figure 1.

When in abundance in the diet, plant proteins, for example, have 
been shown to induce increased levels of Bifidobacterium and 
Lactobacillus, reduced number of pathogenic species, raised amount 
of SCFAs, and therefore increased intestinal health. Conversely, 
animal proteins have been associated with an increase in bile-tolerant 

anaerobic bacteria such as Bacteroides, Alistipes, Bilophila, and 
Ruminococcus, and a reduction in Bifidobacterium and SCFAs, and 
therefore increased risk of gastrointestinal diseases (182, 230).

High fat diets have been linked to an increase in Bacteroides and 
decrease in lactic acid bacteria such as Lactobacillus and Streptococcus. 
However, differences have been observed between diets rich in 
unsaturated rather than saturated fats, with unsaturated fats inducing 
an increase in lactic acid bacteria and Bifidobacterium and a reduction 
in blood cholesterol levels, and saturated fats increasing Bacteroides 
and Bilophila, lowering Bifidobacterium and Lactobacillus, and 
promoting an increase in cholesterol levels and a reduction in insulin 
sensitivity (182, 230, 231).

Digestible carbohydrates (e.g., sugar and starch) have been linked 
to increased relative abundance of Bifidobacteria and reduced 
Bacteroides, while non-digestible carbohydrates (fibers, referred to as 
prebiotics, sources of MACs) have been shown to promote bacterial 
abundance, with an increase in Bifidobacteria and Lactobacilli and 
higher SCFAs levels, benefitting the host organism health (14, 182). A 
diet rich in fiber and butyrate resulting from bacterial fermentation 
has also been associated with improved brain health (232).

Probiotics have displayed a beneficial role in intestinal health, 
improving symptoms of, for example, IBD, IBS, gastroenteritis, 
obesity, cardiovascular diseases, arthritis, and furthermore, stress, 
anxiety, and depression (14, 43, 137, 191, 198, 233). Supplementation 
with the probiotic Akkermansia muciniphila has also been employed 
as treatment for obesity, where the beneficial effect can be explained 
through modulation of insulin sensitivity and glucose metabolism 
(234). Furthermore, probiotics such as Lactobacillus rhamnosus are 

FIGURE 1

Example of lifestyle factors impacting the gut microbiota, favoring health or disease. Factors reported in green have been linked to positive, health-
oriented changes, while factors reported in red have been associated with negative alterations of the gut microbiota, linked with dysbiosis and disease 
states. Elements reported in orange font are factors with an impact that may be either positive or negative. Yoga and hypnotherapy have been marked 
with a question mark since it is still not clear if the positive health effects may be linked to gut microbiota changes.
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more frequently being employed in anti-cancer immunotherapy to 
ameliorate dysbiosis, reduce inflammation, and improve host 
immunity (235, 236).

Fermented food such as kefir, a source of probiotics, has shown 
benefits in cases of lactose malabsorption and in the eradication of 
Helicobacter pylori infection (237–239). However, human clinical trials 
focusing on the health effects of other fermented foods, such as 
kombucha tea, fermented soy and vegetable products, and sourdough 
bread are lacking and should be explored to either confirm or dismiss 
the promising health effects showed by in vitro and animal 
studies (237).

The xenobiotic rifaximin has also emerged as an effective method 
to reduce inflammation and improve IBD and diverticulitis 
symptoms (240).

Several vitamins have been shown to increase the abundance of 
certain gut microbial commensals, including SCFAs-producing 
bacteria. By promoting bacterial diversity and richness, and increasing 
SCFAs production, health is also promoted (231, 241). For example, 
antioxidants such as polyphenols, vitamin B2, and vitamin C have 
shown potential in improving dysbiosis when increased in the diet 
(137, 182). Polyphenols found in tea, coffee, red wine, berries, and 
vegetables have been shown to promote the abundance of butyrate 
producers, Bifidobacteria, Lactobacillus, Bacteroides vulgatus, and 
Akkermansia muciniphila, and to reduce the numbers of 
lipopolysaccharide producers (199, 242, 243). High daily consumption 
of coffee, which is rich in polyphenols, has been associated with higher 
abundance of Bacteroides–Prevotella–Porphyromonas, which could 
be useful in the treatment of conditions where Bacteroides species are 
generally depleted, such as obesity (244). In another study, coffee 
consumption led to an increase in Bifidobacterium spp. after 3 weeks 
with a daily dose of 3 cups, indicating favorable effects on host health 
(245). Regardless of these findings, coffee consumption should take 
into consideration individual variability in response to caffeine, as 
some people may experience increased sensitivity and lower quality 
of sleep (246). Certain individuals have also appeared to be more 
sensitive to the effect of coffee on colonic motility (247, 248). 
Furthermore, coffee consumption has been associated with higher 
probability of IBS and worse IBS symptoms in certain groups of 
people (249).

The Mediterranean diet, in general, high in fibers, antioxidants, 
and unsaturated fats and low in red meat, has been associated with 
increased lactic acid bacteria in the gut, lower cardiovascular risks, 
lower obesity, and increased protection against cancer. On the 
contrary, the Western diet, high in animal fats and proteins, has been 
linked to higher levels of Bacteroides and Enterobacteria, higher 
inflammation levels, and increased health problems (44, 182, 250).

The vegetarian diet has been proven beneficial to the immune 
system and capable of inducing a change in the gut microbiome 
composition, while the vegan diet, rich in dietary fibers and 
antioxidant, has been associated with health benefits in relation to 
medical disorders such as diabetes and hypertension. However, strict 
diets may also pose a health risk if not well planned, as individuals 
may suffer from nutritional deficiencies (251, 252).

The ketogenic diet, exceptionally low in carbohydrates and high 
in fat, characterized by the induction of low insulin levels and a state 
of ketosis in the body, has been identified as beneficial for protection 
against cancer, epilepsy in infants, autism, and multiple sclerosis (44). 
However, little is known about the effect of the ketogenic diet on the 

gut microbiome composition, with some studies reporting negative 
and other positive effects (253).

The low FODMAP (fermentable oligosaccharides, disaccharides, 
monosaccharides, and polyols) diet, characterized by a reduction in 
the consumption of food containing short-chain carbohydrates which 
are poorly absorbed in the gut, has been proven beneficial in reducing 
IBS symptoms in 50–80% of patients (254). Gut microbiome changes 
associated with this diet have also been observed, including a 
reduction in relative abundance of Bifidobacterium, likely caused by 
the decreased intake of prebiotics such as fructans and galacto-
oligosaccharides (255, 256). The reduction in prebiotics intake 
indicates that following a strict low FODMAP diet could 
be counterproductive, leading to reduced Bifidobacterium strains and 
dysbiosis. However, the clinical significance is currently unknown and 
should take into consideration the recommendations of following a 
strict low FODMAP diet for a maximum of 2–6 weeks (257, 258). On 
the other hand, individuals with IBS microbiota profiles characterized 
by pathogenic properties (low bacterial diversity, low levels of 
Bacteroidetes commensals, and enriched Firmicutes, including 
pathogens) exhibited a marked change in microbiota composition 
(increased Bacteroidetes/decreased Firmicutes) associated with fewer 
IBS symptoms after 4 weeks of following a low FODMAP diet (259). 
Further studies are therefore needed to fully understand the impact of 
the low FODMAP diet on the gut microbiota and maintain control 
over the drawbacks.

In addition to the specific diet adopted, dietary timing has also 
displayed the ability to affect the gut microbiota. Intermittent fasting, 
an eating pattern composed of periods of fasting alternated with 
period of eating, has been linked to gut microbiota changes in mice 
and health promoting effects in humans (260–262).

Besides dietary interventions and probiotics and prebiotics 
supplementations, the more invasive fecal microbial transplantation 
(FMT) has also been used as a form of therapy directed at the gut 
microbiota. FMT is a technique that allows a donor to receive gut 
microbes from a healthy individual and has been proven effective not 
only to contrast C. difficile infection, but also against IBD, metabolic 
syndrome, and autism (13, 14). However, careful donor screening and 
caution are required to reduce the probability of side effects, as long-
term outcomes are still not fully understood (263).

Given the demonstrated effect on the gut microbiota composition, 
exercise has also been proposed as a potential therapeutic method for 
conditions such as IBD. However, the negative effects revealed by 
exhausting exercises and the positive effects showed by aerobic 
exercise, especially when adopted for a duration of more than 
12 weeks, should be kept in mind (264, 265). IBS also appeared to 
benefit from increased physical exercise over a period of 12 weeks, 
which led to an improvement of symptoms in a 2011 randomized 
controlled trial (266). However, the causes of these benefits may not 
rely on the gut microbiota composition but more so on improved 
intestinal motility, reduced blood flow in the gut, or on the general 
improvement of the quality of life of the study participants performing 
regular exercise (267).

Along with diet and exercise, the emotional state of individuals, 
e.g., stress has been shown to affect intestinal conditions such as IBD 
and IBS, triggering a worsening of the symptoms (268). Methods for 
managing stress levels including yoga have, in fact, been proven 
effective in reducing IBS symptoms (269). Hypnotherapy directed to 
the gut, called gut-directed hypnotherapy (GDH), has also been 
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gaining popularity as a treatment for IBS symptoms, showing efficacy 
comparable to the adoption of a low FODMAP diet (270). As a result 
of the success obtained with GDH, the American College of 
Gastroenterology has added this practice among the clinical guidelines 
for IBS management (271). However, the involvement of gut 
microbiota changes in mediating some of the positive effects of 
relaxation techniques and GDH has still not been clarified. The first 
study investigating the effect of GDH on the gut microbial composition 
of patients with IBS showed only small microbial changes, while the 
symptoms of IBS reduced significantly, indicating that GDH-mediated 
effects might be independent from the microbiota composition (272).

6. Personal genomics

6.1. Popular investigative methods

The analysis of microbiota composition has evolved from lengthy 
culture-based method to high-throughput next-generation sequencing 
techniques that enable a relatively fast analysis of the genomic content 
of the microbes contained in stool samples (273). To obtain consistent 
and comparable results, care should be  taken in deciding what 
processing method to use as bias could be  introduced at various 
stages, starting from the choice of collection method and storage 
conditions (274). If fresh fecal collection is chosen, it is generally 
recommended to promptly transfer the collected specimen to the 
laboratory on dry ice within 24 h of collection (275). This is to limit 
bacterial growth between collection and processing, as bacterial taxa 
differences have been observed as little as 15–30 min after stool 
deposition at room temperature. Nevertheless, other sources showed 
no significant changes in sample composition within 24–48 h from 
collection at room temperature (276–278). The current gold standard 
for fecal storage consists in freezing the samples at −80°C as soon as 
possible after collection, but this represents an obvious challenge for 
participants collecting their samples at home (279). To ease collection, 
preservation buffers are also available, including the popular, user-
friendly OMNIgene GUT (DNA Genotek). Collection with this kit has 
showed good comparability with both fresh and freshly frozen 
samples, with some data also suggesting greater DNA yield and quality 
compared to fresh samples, due to improved DNA shearing (280–
284). During sample collection it is also important to consider the 
uneven distribution of bacteria on a deposited fecal sample, which 
requires the definition of a standardized approach. This might include 
homogenization or mixing of the sample prior to processing (277, 
285–287).

When estimating the effect of sample storage, extraction method, 
biological variability, and sequencing method, it has been shown that 
the DNA extraction process may have the biggest impact on the results 
(274). In a 2019 study comparing 6 extraction methods, different 
extraction techniques resulted in not only dissimilar DNA yield, but 
also differing microbial profiles with significant variation in 
Firmicutes, Bacteroidetes, and Actinobacteria distribution (279). 
Furthermore, some extraction protocols have demonstrated higher 
efficacy at retrieving genomic content from thick-walled gram-
positive bacteria compared to others (288). On this regard, the 
introduction of a mechanical disruption process through bead beating 
has been proven beneficial to increase microbial cell lysis and improve 
DNA recovery, and it is therefore often recommended (288, 289). In 

an attempt for standardization, the International Human Microbiota 
Consortium (IHMC) started the International Human Microbiota 
Standards (IHMS) project comparing 21 DNA extraction protocols 
for human stool. Out of these, the best performing in terms of quality, 
transferability, and reproducibility was Protocol Q (274, 290, 291). 
This protocol was also assessed along with other 4 methods in a 2019 
study and it appeared to perform better than the other procedures 
(292). Likewise, another study showed increased performance of this 
protocol compared to QIAamp PowerFecal Pro DNA Isolation kit 
(Qiagen) (293). On the other hand, when compared to a simple and 
economic method called MetaHIT, Protocol Q showed lower 
performance (279). In this same study, the choice of extraction 
method had more impact on the results compared to different short-
term sample storage, confirming previous findings (274, 279).

One of the most common methods to define gut microbial 
composition is the targeted sequencing of the bacterial 16S small 
subunit ribosomal RNA (rRNA) hypervariable regions, which allows 
taxonomical classification based on similarities of the targeted region 
(294, 295).

The 16S rRNA genetic sequence, a 1,550 bp-long sequence found 
in prokaryotes, contains both conserved regions and nine 
hypervariable regions, V1–V9. These sequences can be targeted for 
amplification using universal conserved primers to create sequencing 
libraries. The sequencing results can then be  used to identify the 
microbial composition of the sample through comparative taxonomy 
(294, 295). Nonetheless, it has been shown that targeting different 
regions of the 16S rRNA gene can affect the results as different regions 
provide different discriminatory power for taxonomic classification 
(296). Most studies on the human gut microbiome have been carried 
out using V3 or V4, or a combination of two or more hypervariable 
regions, most commonly the V3/V4. However, the Metagenomics of 
the Human Intestinal Tract (MetaHIT) consortium and the Earth 
Microbiome Project have highly recommended V4 as the gold 
standard (297). The taxonomic discrimination efficacy obtained when 
targeting different hypervariable regions showed that either paired 
end V3 or V4 regions, with sequencing length of only 100–120 
nucleotides, deliver the best results, even though an underestimation 
of species richness was reported when using V3 compared to V4 (295, 
298). The sequencing platform available should also be taken into 
consideration as different platforms may allow for different sequencing 
length. For example, the MiSeq System (Illumina) sequencing 
platform, a widely used instrument for microbial sequencing, allows 
for a 300-base pair (bp) x2 read length, providing accurate and 
efficient characterization of up to 600 nucleotide targets sequence. 
Other sequencing platforms, however, are limited to 150 bp x2 read 
lengths (299, 300). Among the different hypervariable regions, V4 has 
the advantage of being short enough to allow for 150 bp x2 sequencing 
and create an overlap of around 50 bp (301). For instance, the universal 
primers 515F and 806R generate a 254 bp-long amplicon in the V4 
region, allowing the use of 2×150 bp sequencing [Figure 2; (302)]. 
These are also suggested by Illumina as the primers to use when 
employing 2×150 bp sequencing using the MiSeq platform (303).

Targeting bacteria only, rather than including fungi, protozoa, and 
viruses, can be justified with the fact that more than 90% of the genes 
obtained with metagenomic approaches are of bacterial origin (17, 
25). The 16S rRNA method has the advantage of being cost-effective, 
fast, and applicable to low-biomass samples contaminated with host 
DNA. However, it can introduce bias due to variable primer affinity, 
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amplicon size, and number of PCR cycles. In addition, targeting short 
16S rRNA regions often leads to lack of discrimination at the species 
level (275, 304).

Nevertheless, with the use of more recent long-read technologies, 
full-length 16S rRNA sequencing is also possible, with resolution 
down to the species level. An example is provided by the MinION 
Nanopore (Oxford Nanopore Technologies), which records the 
differences in voltage across an electro-resistant membrane caused by 
the passage of nucleic acids through nanopores (305, 306). Other 
advantages of the Nanopore are the cheap cost, the possibility of 
visualizing results in real-time, the option of processing small sample 
numbers with contained costs, and the quick library preparation time. 
However, disadvantages are also present, including the high amount 
of starting nucleic acid material required (few micrograms of DNA) 
and the low accuracy compared to Illumina platforms, even if rapidly 
improving with new versions (307).

In alternative to 16S rRNA sequencing, the whole-genome 
shotgun metagenomic approach is frequently used. The whole-
genome shotgun metagenomic method, which targets all the nucleic 
acid present in the sample (bacterial, viral, eukaryotic, and host DNA), 
can provide a more reliable estimate of the microbiome composition 
as it does not introduce PCR-dependent bias and it can discriminate 
down to the species and even strain level. Given the genes relative 
abundance, it can also provide potential functional information (275, 
299, 304, 308). However, shotgun sequencing is more expensive and 
time consuming, which represents a limitation for commercial use or 
clinical testing (275, 308). Also, the use of different whole genome 
sequencing protocols, instruments, and bioinformatic analysis has 
been associated with different relative abundance of species for the 
same samples, introducing bias (309).

A limitation of these metagenomic approaches compared to 
culture-based method is the potential loss of information on 

low-abundance strains as well as low strain-resolution accuracy, 
problems that can be addressed by combining metagenome-assembled 
regions with newly discovered single-cell metagenomic methods. 
However, these methods remain prohibitive in terms of costs and 
analysis challenges (310, 311). New microfluidic methods based on 
droplets containing microbial cells from fecal samples are also under 
evaluation to produce complete and precise microbial characterization 
that would enable an improved definition of overall microbial function 
(311, 312).

A step further is represented by the metatranscriptomic approach, 
which provides information relative to only actively expressed genes 
and therefore distinguishes between dead and alive organisms. In spite 
of this, it can be a difficult method from both a technical and analytical 
point of view, and it is not cost-effective (275, 308).

Metaproteomic and metabolomic analyses, which are commonly 
based on Mass Spectrometry analyses, can also be employed. These 
techniques allow for the definition of the gut microbiome sample 
functional profile and metabolic activity and can be  used in 
combination with bacterial taxonomic identification to better 
understand the role of bacteria in the gut (313).

The direct analysis of stool consistency and pH has also been shown 
to offer an indication of the gut microbiome and metabolic composition.

The Bristol Stool Chart (BSC), a scale of stool density which is widely 
used as a method to assess intestinal transient time, consists of a 1 to 7 
scale, from very hard stool to gradually increased water content [Figure 3; 
(314, 315)]. It has been shown that the higher the BSC score is, the lower 
the bacterial richness and the higher the Bacteroidetes:Firmicutes ratio 
are. Prevotella enterotype was found to be more abundant in individuals 
with higher BSC score, while Ruminococcaceae-Bacteroides (RB) 
enterotype was more commonly associated with lower BSC score. 
Within the RB enterotype, Methanobrevibacter and Akkermansia 
appeared higher with longer colon transit time, while microbiota growth 

FIGURE 2

Example of V4 16S rRNA sequencing workflow, from fecal sample collection to generation of personalized lifestyle report, including dietary 
suggestions, physical exercise, sleep, mental health, xenobiotics, and alcohol use recommendations. In the example, the 254  bp long V4 region is 
amplified with 515F and 806R primers.
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potential (the ability of bacteria to grow fast) was found to be higher with 
higher BSC scores (316). The degree of variability determined by the BSC 
has also been identified as a potential, important confounding factor in 
the obtained gut microbiota composition. In fact, the latter is affected by 
the ability of different bacterial species to grow quickly in unstable 
environments, e.g., diarrhea and is also affected by the time available to 
adhere to the intestinal mucosal layer (317, 318).

The stool pH has also been identified as an indicator of intestinal 
parameters such as dietary fiber intake and butyrate levels. In the gut, 
bacterial fermentation converts soluble fibers into SCFAs, which are 
weak acids, causing a reduction in stool pH and therefore leading to a 
negative relationship between butyrate and pH (319, 320). The 
increased intestinal transit rate caused by dietary fibers could also lower 
the stool pH as a result of the reduced time available for absorption and 
consequent elevated SCFAs concentration in the stool (321). Fiber-rich 
vegan diet, for example, showed an association with fecal pH of ~6.4 
compared to ~6.7 of omnivore diet (322). It is also believed that high 
pH may be associated with higher risk of colonic cancer, while people 
at lower risk consuming high amount of fiber produce more acid and 
solid stool (323). Low pH may also affect bacterial growth and increase 
the levels of SCFAs-producing bacteria. Given the important role of 
SCFAs in gut health and their effect on the gut pH, lower pH values 
could therefore be associated with better intestinal health (321, 322).

6.2. Personalized healthcare

A wide variability of gut microbial composition can be observed 
in the population, depending on genetics, but also, lifestyle choices, 

age, diseases, medications, and other factors. On top of this, the role 
of intestinal bacteria in defining the overall health state of an 
individual appears crucial. As a result, the opportunity to characterize 
someone’s profile to provide personalized lifestyle indications has 
arisen (15, 261, 318, 324, 325).

More and more laboratories worldwide are starting to offer gut 
microbiome testing to provide, for example, health scores of microbial 
composition, nutritional advice, and supplementation suggestions. 
Personalized nutrition, in particular, aims at applying specific diet 
changes to individuals with known microbial composition in order to 
trigger the desired change, with health in mind (261). However, 
potential limitations in methodologies and current knowledge should 
be taken into consideration to evaluate the significance of such testing. 
As discussed above, from a methodological point of view, bias could 
be introduced during testing at several stages. Collection method, 
storage conditions, extraction method, sequencing protocol, data 
processing, and analysis are all variables that can affect the analysis of 
gut microbiota composition from fecal samples. Additionally, the lack 
of use of standardized methods leads to reduced comparability of the 
results and reduced confidence over the meaning of the observed 
variability. The lack of methodological consistency in gut microbiome 
studies therefore represents a significant limitation, generating 
possible bias and affecting reproducibility (261, 318). Methods should 
be  chosen carefully and consistently, taking into consideration 
feasibility, cost, time, and accuracy. In addition, attempts to define a 
gold standard workflow for gut microbiome testing should proceed 
and be adopted.

Another prime aspect to consider for the delivery of personalized 
advice is how microbial variability is defined and what elements 
should be  considered to produce such advice, i.e., Firmicutes/
Bacteroidetes ratio, presence/absence of specific bacteria. The adoption 
of enterotypes, for example, has helped in defining differences in 
microbial composition (17). However, especially when considering the 
gut microbiota of healthy individuals, there is still a high degree of 
variability due to genetic and environmental factors that is yet to 
be fully explained (318).

An aspect that should not be overlooked in personalized nutrition 
is represented by the emerging realization that the response to dietary 
intervention is variable between individuals and may be affected by 
factors such as host physiology, age, gender, dietary habits, and 
baseline microbiota composition. In this regard, initial microbial 
diversity, microbial stability, and gene richness could all affect the 
outcome of planned interventions (15, 326). For example, individuals 
with enterotype characterized by high Prevotella to Bacteroides (P/B) 
ratio appeared more prone to body fat loss when consuming a high 
fiber diet for 6 months compared to individual with low P/B ratio 
(327). Similarly, improved glucose metabolism was observed in 
individuals with a higher baseline P/B ratio after 3 days of a diet rich 
in barley kernel-based bread (328). In another example, the presence 
of Eubacterium ruminantium and Clostridium felsineum correlated 
with increased health benefits in individuals with obesity subjected to 
simple dietary changes (329). The success of a low FODMAP diet 
administered to individual affected by IBS may also be influenced by 
the initial gut microbial composition, even if the achievement of a 
prediction method is limited by differences in the study designs that 
can affect the results (330). The different interindividual response to 
interventions could be  due to the different ability of bacteria to 
metabolize the food present in the provided diet. As bacteria compete 

FIGURE 3

Feces types on the Bristol Stool Chart.
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for nutrients, specific interactions between microbial species may also 
have an effect. Additionally, it has been shown that bacterial species 
could be depleted and could face extinction after prolonged unhealthy 
diets, leading to requirements for probiotic and prebiotic interventions 
coupled with healthy diets to increase the chances of observing 
positive outcomes (15, 331). However, there is still lack of knowledge 
in the variables that could impact the response to dietary changes and 
more research is required to evaluate each factor and maximize the 
results of interventions (326).

In order to evaluate the specific response of an individual gut 
microbiota to different dietary components, gut-on-a-chip bioreactor 
system technology could also be employed. The response, evaluated 
as changes in SCFAs production, would allow for personalized 
prescription of food type and quantity that leads to higher SCFAs 
levels. However, this complex technology is still recent and requires 
further research to overcome the current limitations (332, 333).

In an attempt to predict how the human gut microbiota 
composition influences the response to dietary, prebiotic, and 
probiotic interventions, in silico approaches are starting to 
be employed, including artificial intelligence, statistical modeling, 
and mechanistic modeling. Given the possibility of putting together 
gut microbiota data with clinical information, genetic information, 
blood parameters, dietary habits, and any other useful data about an 
individual, in silico approaches employing artificial intelligence are 
emerging as the future of microbiome-based personalized healthcare 
(332). With the aim to improve the power of personalized nutrition, 
the National Institutes of Health (NIH) has started Nutrition for 
Precision Health, powered by the All of Us Research Program, to 
build algorithms able to predict the individual response to dietary 
interventions (334). The European Union-funded PROTEIN project 
(PeRsOnalised nutriTion for hEalthy living) also aims to develop a 
mobile phone application that utilizes user data, such as health status, 
eating behavior, physical exercise, physiological parameters, genetic 
and gut microbiota data to deliver real-time personalized dietary and 
physical activity advice (335). The concept includes the use of sensors 
to monitor physical activity, bowel movements, food intake, glucose 
levels, and volatile organic compounds, the latter contributing to 
define the gut microbiota composition (335, 336). The PROTEIN 
project emerges as an effort from experts in the field to provide 
advice based on sound science, in a world were m-Health (mobile 
health) applications providing nutritional and fitness guidance are 
increasing in popularity (335). The Stance4Health (Smart 
Technologies for personAlised Nutrition and Consumer 
Engagement) Nutritional APP is also a project funded by the 
European Union, through the Horizon 2020 research and innovation 
program, with the objective to develop mobile technologies for 
personalized nutrition (337, 338). The aim of the APP is to generate 
menus tailored to the user’s characteristics, including a gut microbiota 
module based on 16S rRNA sequencing from fecal samples. A 
preliminary study showed promising results, providing nutritional 
education and useful interventions advice that could have a positive 
impact if used for a prolonged period of time (337). The mobile 
application Zoe has also recently emerged and gained popularity, 
providing personalized nutritional advice based on blood fat and 
sugar, and gut microbiome testing (339). As a collaboration of 
scientists from renowned institutions (Massachusetts General 
Hospital, Stanford Medicine, Harvard T.H. Chan School of Public 
Health, and King’s College London), Zoe has published numerous 

studies, called the Personalised Responses to Dietary Composition 
Trial (PREDICT) studies, in support of the testing and advice offered 
(340). These examples represent efforts to generate mobile 
applications and softwares backed by science amid the multitude of 
mobile applications that are emerging, some of which might not be as 
attentive to proper evaluation. Health-related apps have become 
increasingly popular, but the majority of them still appear to be made 
available to the public without the necessary preliminary scientific 
evaluation (341).

Personalized diet could therefore be provided in two ways: by 
identifying specific relationships between the gut microbial profile and 
host metabolic properties, e.g., presence/absence of specific bacteria 
or genes that could be introduced by adapting the diet; by creating 
specific algorithms; by using machine learning and artificial 
intelligence to combine multiple host data. The latter is a very powerful 
method as it overcomes the lack of knowledge on the underlying 
mechanisms by taking into account variables that otherwise would 
be difficult to capture. However, not understanding the reasons behind 
the delivery of a specific diet can be seen as a disadvantage, and it 
underlines the importance of using an integrated approach to advance 
in the field (261). Successful prediction of the glycemic response after 
meals has been achieved by using machine learning to combine blood 
parameters, gut microbial information, dietary habits, physical 
activity, and anthropometrical data, followed by personalized 
nutritional interventions to lower the postprandial blood sugar level 
(342). Interestingly, the same study showed that the exclusion of data 
such as blood tests and medical questionnaires results in only a small 
loss of accuracy in prediction, highlighting the relevance of gut 
microbiome information and the possibility of performing gut 
microbiome analysis only to provide sufficient nutritional advice 
(342, 343).

The plasticity of the gut microbiota and related analysis would also 
allow for follow up and repeat testing, enabling the evaluation of the 
effect of the adopted interventions, which can cause changes in the gut 
microbiota community that might require reassessment and 
readjustment until an equilibrium is reached (343).

In the context of personalized advice, it is imperative to integrate 
microbiome information with individual human genome 
characteristics, which determine the host’s nutrient metabolism. In 
this regard, nutritional genomic studies provide insights into the 
genetic profile associated with, for example, lactose intolerance, 
caffeine sensitivity, and vitamin metabolism. Dietary advice modeled 
on genetic differences therefore allows for a more complete definition 
of each individual’s nutritional requirements and their reaction to 
certain dietary elements (344–346). Integration of genomic results 
with gut related proteomic and metabolomic information could also 
be  used to provide additional information on gut microbial 
functions (313).

When it comes to exercise, there is still a lack of resources 
combining the gut microbiome to specific personalized advice. 
However, human genetic markers have already been used to provide 
personalized recommendation in terms of endurance ability, muscle 
performance, injury recovery, and motivation to exercise (347). 
Further studies in the relationship between gut microbiota and fitness 
should be undertaken to eventually be able to combine genetic factors 
and microbial data to provide accurate personalized advice.

Because of the scarcity of data available on the bidirectional 
influence between gut microbiota and emotional states in humans, 
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more research is still required to fortify the identified possible links 
and be  able to include specific stress management activities as 
promoter of healthy gut microbiome composition.

6.3. Ethical considerations

While personal genomics and microbiome research hold immense 
promise to advance our knowledge of health and disease, they also 
give rise to significant ethical and privacy considerations that demand 
careful attention. These concerns span multiple domains. Ethically, 
participants must be  granted comprehensive informed consent, 
understanding both the research and testing nature and potential risks 
and benefits, alongside their right to withdraw and knowledge about 
data utilization and sharing. Particular attention should also be given 
to the type of data that might be obtained through such testing, which 
should guarantee the expectations of the users are not betrayed. If an 
individual is signing up for personalized lifestyle advice, for example, 
they might not want to receive any clue on the presence of genetic or 
pathogenic conditions that might impact their overall health. In the 
case these are collaterally identified by the laboratory, procedures 
should be in place on how to treat this type of information, according 
to what was initially agreed with the client and the type of informed 
consent that was signed for (348–350).

The principles of privacy and confidentiality are paramount, 
necessitating rigorous data protection measures such as 
de-identification or anonymization. Researchers also bear the 
responsibility of ensuring fairness and equity in the distribution of 
research benefits and risks, particularly across diverse populations, 
while avoiding the exploitation or exclusion of vulnerable groups. 
Moreover, the delicate balance between data sharing advantages and 
re-identification risks calls for ethical and responsible practices. 
Privacy concerns emerge in the form of sensitive genetic and 
microbiome information, affecting health, employment, and 
insurance, necessitating participant awareness and control over their 
data. Furthermore, safeguarding against data breaches, given the 
attractiveness of such information to malicious actors, is of utmost 
importance (351, 352).

In essence, as personal genomic and microbiome research and 
testing advance, researchers must forge close partnerships with 
participants, regulators, and stakeholders to conduct ethical research 
that upholds the rights and dignity of all involved parties. Private 
testing companies must keep in mind users’ rights and have policies 
in place focused on avoiding any type of harm or unnecessary distress 
to the people involved in the testing.

7. Conclusion

The recent advantages offered by next-generation sequencing 
methods have opened the way to relatively fast and detailed 
investigations of the gut microbiota composition, leading to 
numerous studies focused on the associations between the gut 
microbiome and human health. It soon appeared that human guts are 
mainly inhabited by Bacteroidetes, Firmicutes, Actinobacteria, 
Proteobacteria, Fusobacteria, and Verrucomicrobia phyla, but that 
wide variation in composition and relative abundance is present 

among different individuals. Further analyses suggested the possibility 
of grouping different profiles in 3 clusters of variation, enterotype 
I  (rich in Bacteroides), II (rich in Prevotella) and III (rich in 
Ruminococcus), but more studies highlighted the limitation of such 
system and introduced more complex classifiers. The difficulties 
encountered in gut microbial profiles classification is relevant in the 
context of diagnosis and development of personalized lifestyle advice, 
since defining gut microbial variability and establishing discrete 
groups facilitate the discovery of association. Hence, more efforts are 
needed to define the spectrum of gut microbiome healthy and 
diseased signature states and achieve standardization during 
study design.

Significant differences have been observed among different 
populations observing different diets, shaped by the relative intake of 
fiber, fat, and proteins. Fiber-rich diets have been associated with high 
abundance of Prevotella strains, increased gut microbiome diversity, 
and increased production of SCFAs, butyrate in particular, promoter 
of intestinal health. Saturated fat and animal protein rich diets have 
been associated, on the contrary, with an abundance of Bacteroides 
and reduced gut health. The realm of macro and micronutrients, 
however, is ample and there is further need to evaluate potential 
association with any type of food to increase the knowledge on their 
effect on the gut microbial structure. The effect of geography, 
environment, and ethnicity should also be taken into consideration as 
their influence on the gut microbiota might not be negligible and 
could affect studies focused on investigating other parameters. The use 
of medications and the exposure to heavy metals and other xenobiotics 
may also exert a negative effect on the human gut microbiota, but 
further research is required to fully understand the type and dosage 
of substances that would significantly affect the gut bacteria. All these 
factors, diet in particular, lead to not only differences between people, 
but also differences within the gut microbiota of the same person in 
different moments of their lives.

Altered gut microbial composition, i.e., dysbiosis, has been 
associated with several conditions and diseases, from intestinal related 
to neurological. Generally, the gut microbial profile of individuals 
affected by intestinal disorders and by several other extra-intestinal 
conditions has exhibited low bacterial diversity, an altered number of 
lactic acid and SCFAs-producing bacteria, and an altered Firmicutes 
to Bacteroidetes ratio. The direction of shift of this ratio appears to 
relate to certain conditions rather than others: for example, obesity 
and IBS are often characterized by an increased ratio, with more 
Firmicutes and less Bacteroidetes, while conditions such as IBD and 
type 2 diabetes tend to correlate with less Firmicutes and more 
Bacteroidetes. This indicates how increasing the knowledge on diseases 
and their gut signature profiles can provide fundamental information 
on gut-directed treatments. In fact, a specific mixture of probiotics 
and specific diets could be designed to restore balance specifically to 
the desired effect, as they might promote and hinder the growth of 
certain bacterial strains rather than others. However, contrasting 
results have also been identified, with the same conditions being 
associated to a reduced or increased ratio in some studies rather than 
others, increasing the need for individual testing and 
personalized interventions.

In general, increasing the levels of Bifidobacterium and 
Lactobacillus through a diet rich in plant proteins, unsaturated fats, 
non-digestible carbohydrates, and with probiotic supplementations 
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has been proven beneficial for intestinal health. Several special diets 
could also promote health, but caution should be  applied when 
adopting strict diets such as vegan or low FODMAP, especially when 
followed for an extended period of time, as negative collateral effect 
could undermine the positive outcomes.

Exercise has also emerged as a contributor to gut microbiome 
variation, with amateur aerobic exercise yielding improvements such 
as increased gut microbial diversity and an increase in SCFAs-
producing bacteria. Exhaustive exercise performed by athletes, on the 
other hand, has been linked to negative effects on gut health. However, 
difficulties in distinguishing between the effect of exercise and diet in 
athletic individuals has represented a limitation for several studies. 
More research is therefore needed to standardize studies and to define 
the type, frequency, and duration of exercise associated with benefits 
rather than detrimental health outcomes.

The emotional state of individuals, including mood, stress, and 
anxiety, has also appeared to influence the gut microbiota composition, 
and vice versa. Multiple animal studies have investigated the potential 
mechanisms behind this correlation, while human studies show 
significant variations and positive effect of probiotics. Even if specific 
associations between bacterial species and mental health conditions 
are still not clear, the link with dysbiosis in humans is strong and calls 
for increased attention toward the gut microbiota and lifestyle choices 
that can improve mental health. The bidirectional link found between 
circadian rhythm and gut bacteria also reinforces the need for careful 
choices not only on the food type, but also on the eating timing, and 
highlights the impact of jet lag, insufficient and disturbed sleep, on the 
gut balance. The impact of mental health and sleep disturbances on 
the gut and the role of the intestinal microbiota in regulating overall 
health also indicates that by controlling them, general health could 
improve. Stress management methods such as yoga and hypnotherapy 
have been employed to contain the symptoms of, for example, 
IBS. However, the link with changes in the composition of the 
microbiota in the gut is still unclear.

The possibility of detecting individuals’ gut microbiota 
composition coupled with knowledge around the impact of lifestyle 
on the gut microbiome opens the way to personal genomics and 
personalized lifestyle advice aimed at improving gut, and therefore 
overall, health. However, the challenges and limitations surrounding 
this field are still abundant. All the variability in gut microbial 
composition between and within individuals, and the variable effect 
observed with certain interventions according to the baseline gut 
microbiota of the people involved, generate a layer of complications 
to personalized testing that needs to be  investigated and better 
understood to generate useful advice.

From a methodological point of view, it is important to know 
what techniques are available and the possible bias introduced with 
different approaches. The lack of adoption of standardized methods 
leads to loss of control over variability and comparability of results and 
encourages the gut microbiome research community to adopt 
consistent gold standards to improve reliability. Pros and cons of each 
method should be considered to establish what is the best choice with 
the resources available (time and finances) and for the result desired 
(e.g., genera vs. species-level identification, bacteria vs. all 
microorganisms, dead or alive organisms, etc.). Quick checks as stool 
consistency and pH level could also be evaluated to suggest enterotype 
and SCFAs abundance, indicating if more fibers are needed in the diet.

Apart from the processing methods used, the analysis of the 
results represents an additional challenge. Nutritional advice could 
be defined on the basis of gut microbial taxonomic information only 
or by taking into account interpersonal variability, the effect of diet, 
medications, exercise, and other personal parameters to seek the 
production of a more complete report. More research is needed to 
define the more suitable approach and to progress in the definition of 
the interactions between lifestyle and gut microbiome. Furthermore, 
any inference made should be based on sound scientific research and 
caution should be employed when considering interactions identified 
on animal studies only.

In the technological world we live in, mobile phones can be used 
as a tool to monitor our health and provide advice in real-time. Studies 
involving the use of such applications, coupled with user’s information, 
including eating habits, health conditions, blood parameters, genetic 
and gut microbiota testing, as well as adding the use of sensors, have 
shown some promising results, allowing the real-time adaptation of 
recommendations and providing nutritional education. With this 
purpose, many companies have been creating their own algorithms to 
provide nutritional and lifestyle advice in the form of user-friendly 
applications. Even if these tools have shown potential to improve 
people’s lifestyle and health, the reliability of some of these applications 
is questionable as they may not be based on sound scientific research. 
Even when based on scientific data, the plethora of factors influencing 
the gut microbiota composition represents a challenge, complicated 
by the presence of occasional contradicting results. These could be due 
to study design, methodological, or biological differences, among 
other confounding factors. On top of these inherent complications, 
personalized targets might be difficult to achieve, not only because of 
individuals’ biological differences, but for psychological factors that 
may also come into play. In fact, an individual’s adherence to the 
provided advice might not always be thorough, potentially affecting 
the desired outcome. Because of all these potential issues, it is even 
more fundamental that softwares and algorithms for personalized 
nutritional advice are thoroughly validated before use.

The other aspect to keep in mind with the advancement of 
technological approaches is the use of the generated data and the 
possibility of data leaks. Personal genomics and microbiome research 
offer significant potential for advancing our understanding of health 
and disease. However, they also raise important ethical and privacy 
issues that require careful consideration. As personal genomics and 
microbiome research progresses, researchers must collaborate closely 
with participants, regulators, and stakeholders to conduct ethical 
research that respects the rights and dignity of all involved parties.

The future direction of gut microbiome testing is a dynamic realm 
of active research and development, encompassing several promising 
avenues. Precision medicine stands at the forefront, as scientists strive to 
unearth biomarkers capable of tailoring medical interventions according 
to an individual’s gut microbiome composition, potentially 
revolutionizing treatment strategies for diverse conditions. Concurrently, 
the integration of microbiome-based therapeutics has solidified its 
position within modern medicine, necessitating a rigorous assessment 
of current capabilities and the identification of fundamental research 
areas to propel future advancements. Metagenomic profiling, driven by 
advances in sequencing technologies, has enhanced our understanding 
of microbial communities and their associations with disease phenotypes, 
as cost-effective profiling becomes increasingly accessible, paving the 
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way for wider application. Envisioned on the horizon is the integration 
of molecular analysis of microbiomes into clinical settings, promising 
enhanced diagnostic precision and personalized treatment. Additionally, 
ongoing research is paving the path for the development of potential 
screening tools, enabling clinicians to gather pertinent information 
before embarking on comprehensive gut microbiome sequencing. In 
essence, the future of gut microbiome testing is highly promising, poised 
to impact not only the world of personalized lifestyle, but also precision 
medicine, microbiome-based therapeutics, and more, offering a beacon 
of hope as innovative approaches continue to evolve in our quest to 
comprehend and harness the potential of the gut microbiome.

In short, there is an extensive amount of research correlating 
lifestyle factors with gut microbial composition and general health. 
However, methodological standardization and more studies focused 
on identifying causal relationships between lifestyle choices and gut 
microbiota changes should be undertaken to be able to employ the 
power of the gut microbiome to improve health and lifestyle. Caution 
should be exercised when relying on gut microbiome testing services 
and lifestyle applications to ensure that they are backed up by scientific 
research and that personal data are used respectfully. It is also 
important that users have knowledge of the state of the art and 
understand the current risks and limitations, so they can use these 
tools with the right confidence.
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