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Background: Current studies have reported conflicting associations between

circulating micronutrient levels and kidney stone disease (KSD). We aimed to

elucidate the causal relationship between circulating micronutrient levels and

KSD by a two-sample Mendelian randomization (MR) analysis.

Methods: Total of 36 single nucleotide polymorphisms (SNPs) from published

genome-wide association studies (GWAS) significantly associated with eight

micronutrients (vitamin B12, folic acid, magnesium, iron, phosphorus, copper,

zinc, and selenium) were used as instrumental variables. The GWAS summary

data associated with KSD (8,060 cases and 301,094 controls) were obtained from

the FinnGen consortium. Inverse variance weighted was the main MR analysis

method. MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), weighted

median and MR-Egger were used to assess pleiotropy and heterogeneity.

Results: Genetically predicted circulating vitamin B12 and zinc levels were

causally associated with the risk of KSD (vitamin B12: OR: 1.17, 95% CI: 1.04–1.32,

p = 0.008; zinc: OR: 1.15, 95% CI: 1.03–1.28, p = 0.015). We found no evidence

that other circulating micronutrients were associated with risk of KSD. p-value for

Cochrane Q test, MR Egger intercept test, and MR-PRESSO were >0.05, indicating

no significant heterogeneity or horizontal pleiotropy in this MR analysis.

Conclusion: Increasing circulating zinc levels may increase the risk of KSD.

More studies are needed to provide evidence on whether genetically predicted

circulating vitamin B12 and zinc levels are a risk factor for KSD.

KEYWORDS

micronutrient, kidney stone disease, Mendelian randomization, risk factor, genome-wide
association study

1. Introduction

Kidney stone disease (KSD) is a common disease worldwide, and the prevalence is
steadily increasing. The prevalence of KSD in the United States population is reported to be
about 10% (1). KSD is highly recurrent, with a recurrence rate of approximately 50% within
5–10◦years (2). In addition, KSD increases the risk of chronic kidney disease and end-stage
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kidney disease, which places a significant burden on both patients
and the healthcare system (3). However, the risk factors for KSD
have not been fully explained. Recent studies have found an
association between micronutrients and the development of KSD
(4–7). However, due to the limitations of observational studies,
the evidence on circulating micronutrients and risk of KSD is
susceptible to reverse causality. In fact, most of these studies
assessed effects by dietary intake, which may be subject to recall
bias and measurement error. Therefore, the causal relationship
between circulating micronutrients and the risk of KSD needs a
more precise explanation.

Mendelian randomization (MR) is a method for assessing
whether there is a potential causal relationship between risk
factors and target diseases using genetic variants as instrumental
variables (IVs) (8). MR uses random assignment of single
nucleotide polymorphisms (SNPs) to simulate randomized trials
in a population and is independent of environmental and
other unknown confounding factors, thus overcoming potential
confounding and reverse causality (9). Two MR studies have
investigated the casual relationship between circulating calcium,
retinol, beta-carotene, α-tocopherol, lycopene, and vitamins B6, C,
D with the risk of KSD (10, 11). In this study, we used a two-sample
MR analysis to assess the causal relationship between some other
circulating micronutrients and the risk of KSD.

2. Materials and methods

2.1. Study design

Our study followed the strengthening the reporting of
observational studies in epidemiology – mendelian randomization
(STROBE-MR) statement used to report Mendelian randomization
(MR) research (12). Previously collected and published data were
applied to this study and analyzed. Therefore, no additional ethical
approval was needed. An overview of the study design is presented
in Figure 1.

2.2. Genetic instrument selection

We searched the PubMed and the genome-wide association
studies (GWAS) catalog1 for published GWAS on circulating levels
of various micronutrients and obtained summary statistics for eight
micronutrients: vitamin B12 (13), folate (13), phosphorus (14),
magnesium (15), iron (16), copper (17), selenium (17), and zinc
(17). Then we screened SNPs that were significantly associated
with circulating micronutrient levels and were not in a chain
imbalance by a genome-wide significance threshold (p-value < 5E-
08). All SNPs were clumped based on linkage disequilibrium (LD),
defined by r2 < 0.001 with clumping window > 10,000◦kb. The
detailed information of GWAS related to eight exposures are
listed in Supplementary Table 1. In addition, we searched the
PhenoScanner database2 to exclude SNPs that might be associated
with confounding factors (threshold of p-value = 5E-08, r2 = 0.8)

1 www.ebi.ac.uk/gwas

2 www.phenoscanner.medschl.cam.ac.uk

(18). The confounding factors we observed that might be associated
with outcome included sodium in urine (19), glomerular filtration
rate creatinine (20), serum urate (21), glycated hemoglobin (22),
and serum calcium (10) (Supplementary Table 2). We searched
SNiPA3 to find the proxy-SNP (r2 > 0.8) when SNPs couldn’t be
found in the outcome dataset.

2.3. Data source for kidney stone disease

Genome-wide association studies summary data on kidney
stone disease (KSD) were obtained from the FinnGen consortium.4

8,060 cases (defined by N20-N23 in ICD10) and 301,094 controls
were used in the seventh release of the FinnGen consortium,
which removed individuals with unclear gender, high genotype
deletion rates (> 5%), excess heterozygosity (±4 SD) and non-
Finnish ancestry.

2.4. Statistical analysis

After harmonizing single nucleotide polymorphisms (SNPs)
with the same allele, we employed inverse variance weighted
(IVW), MR-Egger and weighted median to perform two-sample
MR analysis. We applied the random-effects IVW method as the
main statistical model, which is similar to a meta-analysis of single
SNP-specific Wald ratio (23). MR-Egger and weighted median
method are used as secondary statistical models only when the
number of SNPs is greater than three. MR-Egger tolerates potential
pleiotropy and provides conservative estimates of causal effects
(24). Weighted median allows for 50% invalid IVs and provides
reliable estimates of causal effects (25). When only one SNP is
available, the Wald ratio method is used to deduce the effect of a
single IV on KSD. Considering the possible sample overlap between
exposure and outcome data, we calculated the F-statistic to measure
the strength of the IVs (26). Cochrane’s Q test was used to assess
heterogeneity and p-value < 0.05 indicated heterogeneity. MR-
Egger intercept was used to assess pleiotropy and p-value < 0.05
indicated pleiotropic bias. The leave-one-out analysis and the MR-
Pleiotropy Residual Sum and Outlier method (MR-PRESSO) were
used to assess whether the results were influenced by outlier
SNPs. In addition, forest plots of MR analyses were also provided.
All analyses were performed using the packages TwoSampleMR
(version 0.5.6) and MR-PRESSO (version 1.0) in R (version 4.2.1).

3. Results

3.1. Mendelian randomization estimates

The Mendelian randomization (MR) estimates obtained by the
inverse variance weighted (IVW) method suggested that predicted
circulating micronutrient concentrations of Vitamin B12 (OR: 1.17,
95% CI: 1.04–1.32, p = 0.008) and zinc (OR: 1.15, 95% CI: 1.03–
1.28, p = 0.015) were suggestively associated with a high risk of KSD

3 http://snipa.helmholtz-muenchen.de/snipa3/

4 www.finngen.fi/en
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FIGURE 1

Overview and assumptions of the Mendelian randomization study design.

FIGURE 2

Forest plot showing results of each SNPs from Mendelian randomization analyses of vitamin B12 and zinc and risk of kidney stone disease. SNPs,
single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted.

(Figure 2). We found no evidence that circulating micronutrient
concentrations of folate (OR: 1.10, p = 0.507), magnesium (OR:
388.09, p = 0.076), iron (OR: 0.96, p = 0.816), phosphorus (OR:
0.45, p = 0.199), copper (OR: 1.08, p = 0.145), and selenium (OR:
0.99, p = 0.893) are associated with the risk of KSD (Figure 3 and
Supplementary Table 3).

3.2. Sensitive analysis

As shown in Supplementary Table 4, the total F statistics of
SNPs for vitamin B12 and zinc are 219.21 and 28.78, respectively.
Cochrane’s Q test and MR-Egger intercept showed no heterogeneity
or horizontal pleiotropy in analyses of vitamin B12 and zinc (both

p-value > 0.05). In MR-PRESSO analysis, no single SNP showed
an abnormal effect on kidney stone disease (p-value = 0.791).
Scatter plot, funnel plot, and leave-one-out plot showed that the
results from Mendelian randomization analyses of vitamin B12
and risk of KSD was robust under different sensitivity analyses
(Supplementary Figure 1).

4. Discussion

Kidney stone disease is a disease with a high incidence and
recurrence rate. To explore possible preventive measures furtherly,
we performed a two-sample MR analysis of large GWAS summary
data on eight circulating micronutrients levels. Finally, we found
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FIGURE 3

Forest plot showing results from Mendelian randomization analyses of eight circulating micronutrient concentrations and risk of kidney stone
disease. SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted.

that genetically predicted circulating vitamin B12 and zinc may be
potential risk factors for KSD.

Vitamin B12, also known as cobalamin, is often involved
in biochemical reactions as a cofactor and the production of
red blood cells (27). Previous studies have shown that it may
be associated with hematological disorders and neurological
disorders and cardiovascular disease (28, 29). There are few clinical
studies on vitamin B12 and KSD. A single-center retrospective
study found more oxalate crystals in renal tubular epithelium
cells (RTECs) in burn patients treated with hydroxocobalamin
(30). Hydroxocobalamin is an active form of vitamin B12. If
hydroxocobalamin promotes the production of oxalate crystals in
RTECs, it may support our analysis that circulating vitamin B12
levels are a potential risk factor for KSD. However, most current
studies are more supportive of a protective role of circulating
vitamin B12 in the kidney. Homocysteine is a non-essential,
sulfur-containing amino acid that is involved in the metabolism
of methionine. Normally, approximately 50% of homocysteine

is remethylated to methionine via the folate/B12 pathway (31).
Vitamin B12 deficiency can lead to hyperhomocysteinemia,
promoting kidney injury by inducing oxidative stress and
inflammatory responses. Therefore, vitamin B12 may inhibit
kidney stone formation by promoting homocysteine metabolism
and reducing oxidative stress and inflammatory damage, which
contradicts the result of our analysis. In addition, although our
study excluded SNPs associated with confounding factors, the
association between vitamin B12 and KSD may be confounded
by the consumption of foods of animal origin. The European
Association of Urology guidelines consider high animal protein
intake to be an important risk factor for KSD. But vitamin B12
is mainly concentrated in animal tissues, and humans need to
consume foods of animal origin to obtain vitamin B12. The amount
and type of protein also determines the degree of vitamin B12
absorption (32). We speculated that this contradictory result may
be due to the release of vitamin B12 from RTECs injury. Before
the formation of kidney stone, RTECs are often already damaged
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under the influence of multiple factors. The liver and kidney are
the main storage organs for vitamin B12, which is released when
RTECs are damaged, resulting in an increase in circulating vitamin
B12 levels. Therefore, the causal relationship between circulating
vitamin B12 levels and KSD may be confounded by the causal
relationship between RTECs injury and KSD. In conclusion, with
the available evidence, we cannot directly determine that genetically
predicted circulating vitamin B12 levels are a potential risk factor
for kidney stone formation.

Zinc is an essential trace metal required for biological growth
and is involved in the regulation of immunomodulatory functions
(33). Previous findings on the association between zinc and
KSD were contradictory. A randomized controlled trial enrolling
3,640 subjects showed that men who received high doses of zinc
supplementation had a higher risk of KSD compared to the
placebo group (34). This is similar to the result of our study.
A cross-sectional study enrolling 15,444 subjects showed that
higher zinc intake was associated with an increased risk of KSD
(35). In contrast, cross-sectional data from adult participants in
the NHANES showed that dietary zinc intake and serum zinc
levels were negatively associated with the prevalence of KSD (6).
Another case-control study including 30 adolescents found that
reduced dietary zinc intake was independently associated with the
occurrence of KSD (36). However, a prospective study of three
cohorts did not report any association between zinc intake and
risk of KSD (37). A recent systematic review similarly reported
no significant effect of zinc intake on the risk of stone formation
(5). The inconsistency of the above results may be due to some
limitations. First, these studies used dietary zinc levels rather
than circulating zinc levels as an indicator. The results may be
affected by the absorption levels of different subject populations.
Second, these studies were mainly observational studies and the
results may be affected by measurement error, subject recall bias,
potential confounders and reverse causality. Third, different zinc
concentrations may have different effects on crystal formation. Low
concentrations of zinc can inhibit the growth of calcium phosphate,
while at higher concentrations zinc can promote its formation (38).
The exact mechanism of zinc in KSD is still uncertain, but several
studies have identified a potential role for zinc in kidney stone
formation. Carpentier et al. (39) found a dramatic increase in zinc
in Randall’s plaque, suggesting that zinc could promote interstitial
calcium phosphate deposition. Ozgurtas et al. (40) suggested that
urinary zinc increased excretion may act as a trigger for crystal
formation, which may then cause urolithiasis. Bazin et al. (41)
found that zinc and strontium accounted for 91% of the heavy
metal composition of kidney stones, and zinc can replace calcium
in crystals because of similarity in charge and size. Chi et al.
(42) repressed the zinc transporter protein gene and inhibited
stone formation in a Drosophila melanogaster model for ectopic
calcification, suggesting that zinc may play a key role in driving
heterogeneous nucleation.

This study has several strengths. First, we added to the causal
relationship between circulating micronutrients and Kidney stone
disease (KSD) and reported for the first time that circulating
vitamin B12 and zinc levels are potential risk factors for KSD.
Second, this study is a two-sample MR analysis and excludes SNPs
that may be associated with outcomes, overcoming the limitations
of observational studies, including confounders, reverse causality,
and recall bias. Third, the bias caused by sample overlap in this

study was small. Even though the vitamin B12 and zinc exposed
populations overlapped completely with the outcome population,
the overlap rates were 14.7 and 0.8%, respectively. According to
Burgess’ simulations, the Type I errors were both less than 0.05 (26).

Our study has some limitations. First, we did not adjust for
animal protein intake as a potential confounder, which may have
caused pleiotropy bias. Second, the sample was limited to European
populations to reduce the possible effect of stratified populations.
Third, the statistical power was less than 80% due to the small
sample size. Finally, due to the paucity of currently available GWAS
data on circulating micronutrient levels, our findings are based on a
small number of IVs. More comprehensive GWAS data are needed
to refine this study in the future.

5. Conclusion

This study provides genetic evidence for a causal relationship
between circulating micronutrient concentrations and KSD risk.
Increasing circulating zinc levels may increase the risk of
KSD. More studies are needed to provide evidence on whether
genetically predicted circulating vitamin B12 and zinc levels are a
risk factor for KSD.
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