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Introduction: Fatigue has attracted broad attention in recent years due to its high 
morbidity rates. The use of functional foods to relieve fatigue-associated symptoms 
is becoming increasingly popular and has achieved relatively good results. In this 
study, network pharmacology and molecular docking strategies were used to 
establish the material basis and mechanisms of Chinese herbal compounds in 
fatigue treatment. According to traditional medicine theories and relevant guidance 
documents published by the Chinese Ministry of Health, four herbal medicines, 
including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, 
Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute 
the anti-fatigue herbal compound that may be suitable as functional food ingredients.

Methods: The major active ingredients in EEPS were identified via comprehensive 
literature search and Traditional Chinese Medicine Systems Pharmacology 
database search. Corresponding targets for these ingredients were predicted using 
SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to 
obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion 
and toxicity properties was performed using the ADMETIab 2.0 database. The anti-
fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 
databases. Then, the potential targets of EEPS in fatigue treatment were screened 
through a Venn diagram. A protein–protein interaction (PPI) network of these 
overlapping targets was constructed, and the hub targets in the network selected 
through topological screening. Gene Ontology and KEGG pathway enrichment 
analyses were performed using the DAVID database and the bioinformatics online 
platform. Finally, AutoDock tools were used to verify the binding capacity between 
the key active ingredients and the core targets.

Results and Discussion: This study identified the active ingredients and potential 
molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation 
for future research on applications of herbal medicines in the functional food industry.
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1. Introduction

Fatigue is a common and complex psychophysiology disease 
involving multiple factors (1–3). Given aging of the global population 
and the accelerating pace of life, fatigue incidences are increasing 
annually (4). Fatigue is an early signal of related diseases but can also 
be  the sequelae of multiple complex diseases. The World Health 
Organization (WHO) has declared that fatigue is a major risk factor 
for human life and health (5). The COVID-19 pandemic aggravated 
the risk of fatigue (6, 7). A large study involving more than 40,000 
patients confirmed that a majority of cases (> 80%) presented at least 
one symptom 4 weeks after being diagnosed (8). Among the symptoms, 
fatigue was the most common, occurring in up to 58% of patients.

Since fatigue is a chronic and complex disease, there is a need to 
exploit novel multitarget therapies for long-term use (9). Functional 
foods were first introduced in Japan in 1984 (10). This class of foods 
is capable of providing nutrition but can also play a role in diabetes 
prevention and treatment (11). With rapid advances of the food 
industry and scientific research, the scope of functional foods has 
been iteratively expanded to include foods with therapeutic, 
prophylactic, and nutritive properties (10). Compared with 
conventional drugs, functional foods have a higher safety profile and 
higher adherence. The functional foods market has rapidly increased, 
attracting attention from consumers and merchants (12). Thus, 
designing novel functional foods has become a topic of focus.

Traditional herbals have a storied history of clinical use, and they 
are known for their characteristics of “multicomponents, multitargets 

and multipathways” (13–18). Therefore, they have attracted increasing 
research attention. Due to their well-defined efficacy and excellent 
safety, some herbal medicines act as drugs and can be used as raw 
materials in functional foods. According to characteristics of 
TCM-defined syndromes, fatigue is primarily driven by ‘xuzheng’. 
Therefore, the use of tonifying medicines can exert the effects of 
reinforcing deficiency and ‘fu zheng’, leading to improved fitness and 
enhanced anti-fatigue abilities (19, 20). Due to the large number of 
‘Qi-tonifying medicines’, it is necessary to develop a strategy for 
identifying the most potent anti-fatigue medicines with low toxicity 
that are suitable for long-term administration. By 2020, more than 200 
varieties of TCM were approved as medicine and food resources by 
the Chinese Ministry of Health (21–28). Throughout the years of 
application, these TCMs were used as major constituents in 
pharmaceutical formulations, and are considered safe and effective 
food additives. Among these TCMs, several classical tonifying 
medicines, including Eucommia ulmoides Oliver bark (EUOB), 
Eucommia ulmoides Oliver male flower (EUOF), Panax notoginseng 
(PN), and Syzygium aromaticum (SA), have attracted our research 
interests and attention (29–32). The traditional medicine theory 
postulates that the herbal combination has better therapeutic efficacies 
than single herbs by rational design (33–35). This theory is widely 
accepted and has become an important research tool for designing 
novel therapeutics for multiple diseases, such as digestive, 
neurological, and respiratory diseases (15, 33). Several types of 
functional foods that use these tonifying medicines or their 
combinations as the main raw materials have been developed, with 
satisfactory results (36–40). Among these products, EUOB has the 
highest frequency and is often used as the main component of related 
products. Traditionally, EUOB is thought to be a major medicinal 
component for prevention and treatment of chronic diseases such as 
osteoporosis, arthritis, and hypertension (41–43). However, slow 
growth of trunk bark has limited the supply of EUOB. In addition, 
peeling off too much bark is likely to lead to the death of EUO trees. 
To ensure optimal use of EUO resources, studies have aimed at 
establishing the significance of other medicinal parts of EUO (42, 44). 
Even though EUOF and EUOB have comparable compositions, there 
are some differences in contents of active ingredients between them. 
For instance, the amounts of flavone compounds in EUOF are much 
higher than those in EUOB. Flavonoids have antioxidant, anti-
inflammatory, and other properties that are anti-fatigue. This shows 
that EUOF is a potential material basis for sustainable applications of 
EUOB (45). Some merchants have already used the EUOF in form of 
tea as novel functional foods. These products have received positive 
feedbacks from consumers. Therefore, utility of EUOF as the raw 
material in functional foods or as an anti-fatigue agent is a research 
direction that is worthy of further exploration. PN is widely distributed 
in Southwest China, Nepal, and Myanmar and has been commonly 
used as a traditional medicine for a long time (46). The Panax 
notoginseng saponins (PNS) are the main active ingredients in PN 
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(47). Lin et al. reported that combining PNS with other types of herbs 
can improve their biological activities (48). Therefore, PN is a good 
candidate as an ideal ingredient in composite prescriptions of 
TCM. SA (cloves) are aromatic dried flower buds of the Myrtaceae 
family. They have been used in China for many years and are regarded 
as being among the most potent medicinal herbs. SA and its 
component (eugenol) have various biological functions, including 
antioxidant and anti-inflammatory activities (49). Supplementation of 
SA can improve the flavor quality of foods and exert antioxidant as 
well as antimicrobial effects (50). Therefore, SA is a potential 
pharmacodynamic constituent and natural preservative in functional 
food formulations. Based on the above findings, we  propose that 
combination prescriptions composed of ‘EUOB, EUOF, PN and SA 
can exert anti-fatigue effects.

Due to complicated constituents of medicinal herbs, it is 
challenging to establish their mechanisms of action. To overcome this 
challenge, Li et al. proposed a network pharmacology strategy (51). 
Through comprehensive applications of pharmacology and systems 
biology, combining polypharmacology, bioinformatics, and computer 
simulations, network pharmacology can systematically explain the 
multicomponent and multitarget mechanisms of action of traditional 
Chinese medicines (52, 53). Molecular docking is also an efficient tool 
for analyzing the affinity, activity, and binding modes of ligands with 
target proteins (54, 55). In this study, we  adopted network 
pharmacology and molecular docking to assess the anti-fatigue 
mechanisms of EEPS and to provide a theoretical basis for applications 
of EEPS as novel functional food additives.

2. Materials and methods

2.1. Collection of active compounds and 
potential targets of EEPS

Most of the active compounds of EUOB, PN and SA were obtained 
from the Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform v2.3 (TCMSP v2.3) database and screened by oral 
bioavailability (OB ≥ 30%) and drug likeness (DL ≥ 0.18) (56–58). To 
comprehensively establish the pharmacodynamic ingredients of EEPS, 
some active compounds were added according to the search results of 
the four databases, ZhiWang, WeiPu, and WanFang. The TCMSP v2.3 
database does not provide any information on EUOF. The active 
compounds of EUOF were only obtained via an extensive literature 
search. All the active compounds were collated by TCMSP v2.3. Then, 
targets of active ingredients in EEPS were collected from TCMSP v2.3, 
and their official gene symbols converted using the UniProt database 
(59). The specific conversion process was performed as follows. Target 
protein names for each herb were collated from TCMSP v2.3 and 
imported into the UniProtKB module of the UniProt database, with the 
status set as “Reviewed” and popular organisms set as “Human.” Then, 
we converted the potential target protein names to their official gene 
symbol names. Targets of active ingredients were also searched in 
SwissTargetPrediction databases (60) with Homo sapiens. Then, all 
potential targets of EEPS, as predicted by the two databases, were 
merged and duplicates were removed to obtain the targets of EEPS. Each 
herbal medicine in EEPS has common and unique active compounds or 
targets. For the convenience of readers, active compounds and targets 
for each herbal medicine were separately imported into the EVenn 

online platform to plot the intersection of compounds and intersection 
of targets in the Venn diagram.

2.2. Identification of anti-fatigue targets

A comprehensive search was conducted in multiple databases 
[Online Mendelian Inheritance in Man (OMIM) (61), Therapeutic 
Target Database (TTD) (62) and DisGeNET 7.0 (63) databases] with 
the keywords “fatigue” and “anti fatigue.” All the targets from 
GeneCards v5.13 (64), OMIM, TTD and DisGeNET 7.0 databases 
were combined, and duplicates were removed to obtain fatigue-related 
targets. To clarify the anti-fatigue targets of EEPS, targets of EEPS and 
fatigue-related targets were entered into the EVenn online platform 
(65). The overlapping targets were considered to be  the potential 
targets for EEPS against fatigue.

2.3. Construction of the H-A-T network

To understand the complex interactions between herbal 
medicines, active compounds, and corresponding targets, the herbal 
medicine-active compound-targetnetwork (H-A-T) was constructed 
using the Cytoscape 3.9.1 (66) software. Crucial nodes with high 
degrees were screened using the “Analyze Network” function, thereby 
obtaining the key anti-fatigue compounds.

2.4. ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) 
analysis of key components

Structures (SMILES format) of active compounds were separately 
imported into the ADMETIab 2.0 database (67). Octanol/water 
partition coefficient (logP), number of hydrogen bond donors (HBD), 
number of hydrogen bond acceptors (HBA) and other physicochemical 
properties were obtained using the ADMET Screening function of 
this database.

2.5. Construction of the PPI network

The STRING 11.5 database (68) was used to construct a protein–
protein interaction (PPI) network for the activities of EEPS against 
fatigue. The biological species was set as “Homo sapiens,” the minimum 
interaction threshold was set to “0.4,” while the rest of the parameters 
were kept at default to obtain the PPI network. Then, visualization and 
analysis of the PPI network were performed using Cytoscape 3.9.1. 
Ultimately, the top ranked targets by network degree were selected as 
the key anti-fatigue targets.

2.6. Go and KEGG pathway enrichment 
analyses

The DAVID v2022 q2 database was used for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses (69). The organism was set to Homo sapiens, and 
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“Gene list” was selected as the list type. Terms enriched with p < 0.01 
and enrichment factor > 1.5 were considered significant. The top 10 
most significantly enriched biological process (BP), cellular 
component (CC), and molecular function (MF) items and top 20 
KEGG terms were selected. The bioinformatics online platform was 
used for data visualization (70).

2.7. Molecular docking

Crystal structures of key targets were obtained from the UniProt 
and RCSB PDB protein databases and saved in the PDB format (71). 
Small molecule ligands and water molecules were removed using 
AutoDock 4.0. The 3D structures of key components were obtained 
from the PubChem database (72). Then, Autodock Tools was used to 
prepare the receptor file, including adding Gasteiger charges, merging 
nonpolar hydrogen atoms, and preparing a pdbqt file. Finally, 
analysis of interactions between targets and key components was 
performed although flexible docking using the AUTOGRID 
program (73).

Enzyme structure inputs were processed, and flexible ligand 
docking performed using the AUTOGRID program, with other 
values set as default parameters. The result of docking is the 
binding energy; the smaller the binding energy, the more stable 

the ligand and receptor are bound and the more likely the 
interactions are to occur (Figure 1).

3. Results

3.1. Active compounds of EEPS and their 
potential targets

Sixty seven active compounds of EEPS were collected from the 
TCMSP v2.3 database and from other search methods 
(Supplementary Table S1). In Supplementary Table S1, even though the 
OB and DL values for chlorogenic acid, geniposide, geniposidic acid, 
rutin, caffeic acid, and ginsenoside rb1 are not yet eligible for screening, 
there is a large body of literature that addresses their relations to fatigue. 
Thus, these compounds were also included in candidate compounds for 
further analyses so that more accurate results could be obtained. After 
prediction and screening by multiple online databases (TCMSP v2.3, 
UniProt and SwissTargetPrediction databases), 817 potential targets of 
the 126 components were identified. All active compounds of EUOB, 
EUOF, PN and SA and their corresponding targets were imported into 
the EVenn online platform to analyze intersections of the datasets 
(Figure 2). In Figure 2A, there were 4 intersections between components 
of EUOB, EUOF, PN and SA; 8 intersections between the components of 

FIGURE 1

Flow diagram of this study.

https://doi.org/10.3389/fnut.2023.1131972
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wu et al. 10.3389/fnut.2023.1131972

Frontiers in Nutrition 05 frontiersin.org

EUOB and EUOF; 3 intersections between the components of EUOB 
and SA; 3 intersections between the components of PN and SA; 3 
intersections between the components of EUOB, EUOF and SA, and 1 
intersection between the components of EUOB, PN and SA. In Figure 2B, 
there were 308 intersections between targets of EUOB, EUOF, PN and 
SA; 35 intersections between targets of EUOB and EUOF; 35 intersections 
between the targets of EUOB and PN; 18 intersections between the 
targets of EUOB and SA; 26 intersections between the targets of PN and 
SA; 34 intersections between the targets of EUOB, EUOF and PN; 42 
intersections between the targets of EUOB, EUOF and SA, and 37 
intersections between the targets of EUOB, PN and SA. These findings 
indicate that the four herbs have some shared active components and 
bioactive targets. However, these herbs also have their own characteristics.

3.2. Fatigue targets of the main compounds 
from EEPS

After searching the GeneCards v5.13, OMIM, TTD and 
DisGeNET 7.0 databases, 2,890 potential fatigue targets were obtained 
after removing duplicate targets. Then, the 817 predicted targets of the 
active compounds of EEPS and the 2,890 fatigue-related disease 
targets were imported into the EVenn online platform to construct the 
Venn diagram. Visual results are shown in Figure 3. A total of 413 
overlapping targets of EEPS with potential anti-fatigue effects were 
obtained for subsequent analyses.

3.3. Construction of H-A-T network and 
key component selection

A total of 67 active components and 817 potential targets of 
EEPS were imported into the Cytoscape 3.9.1 software for 
construction of the H-A-T network. In Figure  4, each node 
represents different active components and targets, and connections 
between nodes represent interactions between active components 
and their targets. Network topology analysis revealed 888 nodes with 
3,103 edges, with an average node degree of 6.597 and 189 nodes 
with a degree greater than the average degree. The larger the node, 
the larger the degree value, indicating more importance in the 
network. The top 8 of the 67 compounds in EEPS were MOL000098 
(Quercetin, EUOB, EUOF,  PN, SA), MOL000422 (Kaempferol, 
EUOB, EUOF, PN, SA), MOL009015 ((−)-Tabernemontanine, 
EUOB), MOL009031 ((9R) Cinchonan-9-al, 6′-methoxy-, (9R)-, 
EUOB), MOL004328 (Naringenin, EUOB, EUOF), MOL011604 
(Syringetin, EUOB), MOL009029 (Dehydrodiconiferyl alcohol 4, 

FIGURE 2

Venn diagrams of active components and predicted targets by TCMSP v2.3, UniProt and SwissTargetPrediction (blue for EUOB, green for EUOF, red for 
PN, and pink for SA). (A) Venn diagram of active components; (B) Venn diagram of potential predicted targets for each herb of EEPS.

FIGURE 3

Venn diagram of EEPS for fatigue: the pink part indicates the potential 
targets of EEPS, the light blue part indicates the disease targets of 
fatigue, while the dark blue part indicates the overlapping targets.
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gamma’-di-O-Beta-D-glucopyanoside_qt, EUOB), and MOL001792 
(DFV, PN). Among them, quercetin was associated with 246 targets, 
such as prostaglandin-endoperoxide synthase 1 (PTGS1), androgen 
receptor (AR), peroxisome proliferator activated receptor gamma 
(PPARG), and prostaglandin-endoperoxide synthase 2 (PTGS2); 
kaempferol was associated with 159 targets, such as nitric oxide 
synthase 2 (NOS2), PTGS1, AR, and PPARG, followed by 
(−)-tabernemontanine, ((9R) Cinchonan-9-al, 6′-methoxy-, (9R)-, 
naringenin, syringetin, dihydrodiconiferyl alcohol 4, gamma’-di-O-
Beta-D-glucopyanoside_qt and DFV), which were also associated 
with 135, 132, 130, 118, 113, and 112 targets, respectively.

3.4. ADMET study of key components

Eight key components were compiled using the ADMET 
screening function of the ADMETIab 2.0 database. Chemical 
structures of these components and predicted results are shown in 
Table 1. According to Lipinski’s Rule of Five (74), the molecular weight 
of the compound should not be greater than 500 (MW ≤ 500), the log 
of the octanol/water partition coefficient should not be greater than 5 
(LogP ≤5), the number of hydrogen bond acceptors in the compounds 
should not be greater than 10 (HBA < 10), and the number of hydrogen 
bond donors (including hydroxyl groups, amino groups, etc.) in the 
structure of compounds should not be greater than 5 (HBD ≤ 5). The 
predicted results suggested that all the key components complied with 
limits of the Lipinski rule, indicating they have good bioavailability.

3.5. Construction of the PPI network and 
key target selection

A total of 413 overlapping targets were imported into the STRING 
11.5 database. After hiding the unrelated nodes, the exported data in 
TSV format were imported into the Cytoscape 3.9.1 software to establish 
the protein–protein interaction (PPI) network diagram. Analysis of 
network topology revealed that the network contained 411 nodes and 
11,117 edges, while the average degree of nodes was 54.097. In Figure 5, 
proteins and protein–protein interactions were represented by network 
nodes and edges. The size of nodes indicates the size of the degree value 
of connections, where the larger the nodes and the darker the color, the 
larger the corresponding degree value (75). Figure 5A shows that the 
closer to the center of the concentric circles, the larger the nodes, and 
the darker the color, which also means that the closer to the center of 
the concentric circles, the more important the nodes. Herein, the 
Cytoscape 3.9.1 software was used to identify the key anti-fatigue targets 
of EEPS by comparing the degree values. In Figure 5B, our topology 
studies revealed that the nodes that ranked high in degree value, 
including AKT serine/threonine kinase 1 (AKT1, degree = 251), 
interleukin 6 (IL6, degree = 237), insulin (INS, degree = 213), epidermal 
growth factor receptor (EGFR, degree = 208), vascular endothelial 
growth factor A (VEGFA, degree = 207), catenin beta 1 (CTNNB1, 
degree = 201), interleukin 1 beta (IL1B, degree = 201), jun proto-
oncogene (JUN, degree = 195), caspase 3 (CASP3, degree = 192), and 
SRC proto-oncogene (SRC, degree = 191), were key targets of EEPS for 
fatigue treatment.

FIGURE 4

The H-A-T network diagram: the green diamond denotes the potential targets of active compounds, the four light blue “V” shapes represent the four 
active compounds of EUOB, EUOF, PN and SA, respectively, the pink octagon represents the active compounds of EUOB, the blue octagon represents 
the active compounds of PN, the purple octagon represents the active compounds of S2, while the yellow octagon represents the common 
compound of 4 herbs.
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TABLE 1 ADMET profile of the key components.

No. Compounds Structure Lipinski rules

MW ≤ 500 LogP 
≤4.15

HBA < 10 HBD ≤ 5 LopS BBB Lipinski’s 
violations

Sascore TPSA 
(Å2)

1 Quercetin 302.24 2.155 7 5 −3.671 0.008 0 2.545 131.36

2 Kaempferol 286.05 2.656 6 4 −3.624 0.009 0 2.375 111.13

3 (−)-Tabernemontanine 354.19 3.359 5 1 −4.145 0.974 0 4.586 62.4

4 Cinchonan-9-al, 6′-methoxy-, 

(9R)-

324.18 2.719 4 1 −2.751 0.868 0 4.516 45.59

(Continued)
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No. Compounds Structure Lipinski rules

MW ≤ 500 LogP 
≤4.15

HBA < 10 HBD ≤ 5 LopS BBB Lipinski’s 
violations

Sascore TPSA 
(Å2)

5 Naringenin 272.07 2.562 5 3 −3.876 0.042 0 2.825 86.99

6 Syringetin 346.07 2.463 8 4 −3.817 0.004 0 2.541 129.59

7 Dehydrodiconiferyl alcohol 

4,gamma’-di-O-beta-D-

glucopyanoside_qt

358.14 1.842 6 3 −3.487 0.438 0 3.429 88.38

8 DFV 256.07 2.5 4 2 −3.892 0.078 0 2.657 66.76

TABLE 1 (Continued)
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3.6. Gene ontology enrichment and KEGG 
pathway enrichment analyses

GO enrichment and KEGG pathway analyses were performed 
using the DAVID v2022q2 database to investigate the biological 
functions of the 413 overlapping targets. A total of 1,636 GO 
enrichment entries were obtained; including 1,232 biological process 
(BP) GO entries, 145 cellular component (CC) GO entries, 259 
molecular function (MF) GO entries, and 189 KEGG signaling 
pathways. Bubble diagram of the GO enrichment results was 
visualized using the bioinformatics online platform. The enrichment 
degree is indicated by color. The darker the color, the more significant 
the enrichment. In Figure 6A, the GO biological process (BP) terms 
were mainly enriched in signal transduction, positive regulation of 
transcription from RNA polymerase II promoter, response to drug, 
protein phosphorylation, and negative regulation of apoptotic 
processes among others. For CC, the major enriched GO terms were 
plasma membrane, cytosol, cytoplasm, and nucleus among others. In 
MF, genes were mainly enriched in protein binding, identical protein 
binding, ATP binding, and metal ion binding among others. To study 
the anti-fatigue mechanisms of EEPS at the pathway level, 20 fatigue-
related pathways were screened and plotted in a bar chart 
Figure 6B. The KEGG enrichment analysis showed that nine signaling 
pathways (PI3K-Akt, MAPK, neuroactivator-receptor interaction, 
calcium, Rap1, TNF, HIF-1, FoxO and ErbB signaling pathways) were 
enriched in environmental information processing metabolic 
pathway; focal adhesion and apoptosis were enriched in the cellular 
process metabolic pathway; the NOD-like receptor, insulin and 
prolactin signaling pathways were enriched in organismal systems 
metabolic pathway; while pathways in cancer, Kaposi sarcoma-
associated herpesvirus infection, human cytomegalovirus infection, 
proteoglycans in cancer, coronavirus disease—COVID-19 and 
melanoma were enriched in the human diseases metabolic pathway. 
Most of the pathways were enriched in metabolic pathway 
Environmental Information Processing, indicating that this metabolic 
pathway plays an important role in anti-fatigue processes. Nine 
pathways enriched in environmental information processing and the 

genes associated with the pathway were imported into a pathway-gene 
network using the Cytoscape 3.9.1 software (accessed on 2nd 
November 2022). In Figure  6C, nodes indicate the pathways and 
genes enriched in these pathways, while the connecting lines between 
the nodes indicate the correlations between pathways and genes. A 
total of 203 nodes and 444 edges were found in the network, with an 
average degree value of connexions of 4.374. In such networks, the 
larger the nodes, the larger the degree. KEGG pathway analysis 
revealed that the top 3 pathways with higher degrees included the 
PI3K-Akt signaling pathway (degree = 81), MAPK signaling pathway 
(degree = 60), and neuroactivator-receptor interaction pathway 
(degree = 55), which were considered active pathways. These hub 
genes and related signaling pathways play important roles in the anti-
fatigue process of EEPS.

3.7. Molecular docking

Molecular docking simulations were performed using the 
AutoDock Tool to verify the reliability of interactions between 
important proteins and key compounds. Crystal structures of AKT1, 
IL6, INS, EGFR, VEGFA, CTNNB1, IL1B, JUN CASP3 and SRC were 
compiled by searching against the UniProt and RCSB Protein Data 
Bank (PDB) databases. The chemical structures of eight key 
components, including MOL000098 (Quercetin), MOL000422 
(Kaempferol), MOL009015 ((−)-Tabernemontanine), MOL009031 
((9R) Cinchonan-9-al, 6′-methoxy-, (9R)-), MOL004328 (Naringenin), 
MOL011604 (Syringetin), MOL009029 (Dehydrodiconiferyl alcohol 
4, gamma’-di-O-Beta-D-glucopyanoside_qt), and MOL001792 (DFV) 
were collated from the PubChem database. Then, molecular docking 
was performed to assess the binding between the top 10 targets and the 
key compounds through AutoDock 4.0 software. The lower the 
binding energy, the more stable the binding between the target and 
compound, and the more likely interactions will occur. The docking 
results shown in Figure 7A; Supplementary Table S2 indicate that all 
the key compounds have good affinity for core targets. We found that 
active ingredients, quercetin and kaempferol, the targets (AKT1, IL6, 

FIGURE 5

The PPI network and a key subnetwork: (A) Protein – protein interaction network (PPI); (B) Hub genes in the PPI network.
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EGFR, VEGFA and 1L1B), showed better effects in the anti-fatigue 
process (Figures 7B,C). The docking results between quercetin and 
kaempferol and 1L1B, AKT1, EGFR, IL6 and VEGFA are shown in 2D 
and 3D. Active components (ligands) are embedded in targets 
(proteins) and interconnected with residues of targets by various 
interaction forces (Supplementary Table S3). Root mean square 
deviation (RMSD) is an important indicator for assessing the reliability 
of interaction patterns calculated by the docking procedure and 
requires RMSD <2.0 Å. In Table 2, all RMSD values are less than 2.0 Å, 
i.e., the receptor–ligand interactions are reliable.

4. Discussion

Fatigue is a long protracted chronic disease that is cannot be easily 
cured within a short time (76). Currently, multiple mechanisms for 
fatigue have been proposed, including the free radical hypothesis, 

metabolite accumulation hypothesis, stress response system 
hypothesis, among others. Due to the complex pathogenesis of fatigue, 
a novel effective therapeutic strategy should be urgently developed. 
Given that fatigued patients often require long-term treatment, the 
adverse effects associated with long-term administration of drugs 
cannot be  ignored (77). Hence, functional foods have become an 
effective alternative. “Homology of medicine and food” is a well-
accepted TCM theory, which implies that some herbal medicines 
share the same origin with food (78). On this basis, we concluded that 
these TCMt can also be used as raw materials to produce functional 
foods due to their well-defined efficacy and excellent safety. According 
to the “Qi and Blood Theory” and the related documents from the 
National Health Commission of the People’s Republic of China, 
we selected four kinds of “Qi-tonifying medicine” herbal medicines, 
EUOB, EUOF, PN and SA, to prepare a herbal medicine compound 
called EEPS. This compound can potentially to serve as an anti-fatigue 
functional food. Although functional foods have been shown to 

FIGURE 6

(A) Bubble diagram of GO enrichment analysis; (B) Bar diagram of KEGG pathway enrichment; (C) Pathway-gene network diagram: green circular 
nodes represent the nine signaling pathways that were mainly enriched in the environmental information processing metabolic pathway, and pink 
diamond nodes represent the genes enriched in each pathway.
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FIGURE 7

(A) Heat map of docking of key compounds with core targets. (B) 3D and 2D maps of quercetin (MOL000098) docking with AKT1, IL6, EGFR, VEGFA 
and 1L1B. (C) 3D and 2D maps of kaempferol (MOL000422) docking with AKT1, IL6, EGFR, VEGFA and 1L1B.
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improve the health of the human body, there are some issues that need 
to be  solved. For instance, the mechanisms of actions for many 
functional foods are not well-defined, especially the species derived 
from natural products. Recently, network pharmacology has been 
shown to be a reliable and efficient tool for exploring the complex 
mechanisms and multiple effects of TCM.

In this study, Network pharmacology and molecular docking 
strategies were employed to investigate the complex anti-fatigue 
mechanisms of EEPS. A total of 67 key compounds with anti-fatigue 
effects were identified through analysis of literature and researching 
several databases. After collecting and collating their potential anti-
fatigue targets, we  constructed a network diagram of ‘herbals-
compounds-targets’. The analysis revealed that most of the candidate 
compounds of EEPS affected multiple fatigue-related targets. 
Subsequently, 8 key active compounds were selected based on their 
degree values. Next, a ADMETLab 2.0 database was used to predict 
drug-like properties of these compounds. The results showed that all 
these key active compounds satisfied the principles of Lipinski’s ‘rule 
of five’, which means that they can be easily absorbed by humans 
when taken orally. We then analyzed the top 8 key active compounds 
based on their chemical structure. It was observed that the 
compounds had various chemical structures including flavonoids, 
lignans, alkaloids, and phenolic acids. The top-ranked active 
compounds were quercetin and kaempferol, both of which are 
flavonoids. Although they were found in both EUOB and EUOF, the 
levels of flavonoids in EUOF were higher than in EUOB (43). In 
addition, they were the main components of flavonoids in SA (79). 
As detailed in previous literature, 3-week-old BALB/c mice were fed 
on 0.005% quercetin for 6 weeks, and then subjected to the weight-
loaded swimming test (80). Experimental results demonstrated that 
quercetin can improve resistance capacity to fatigue by maintaining 
antioxidant capacity, restoring muscle glycogen stores, and improving 
muscle function. In a previous randomized, double-blind, placebo-
controlled, crossover design study on student volunteers by Liu (81), 
it was found that the intake of quercetin altered MDA levels in 
participants and inhibited the disruption to lipid peroxidation, 
thereby postponing the occurrence of fatigue. Meanwhile, quercetin 
has been shown to exert its anti-fatigue capacity by improving the 
antioxidant capacity by increasing the activity of SOD and GSH-Px. 
These results suggested that quercetin may be  a promising anti-
fatigue compound. Kaempferol is another critical flavonoid that is 
found in EUOB, EUOF and SA. This compound is known to possess 

multiple biological activities, such as antioxidant and anti-
inflammatory properties (82). Liu et al., reported that kaempferol not 
only protected beta cells against dRib-induced oxidative damage but 
also inhibited intracellular ROS, apoptosis, and lipid peroxidation 
(81). The in vitro results indicated that kaempferol and quercetin 
alone and in combination can induce antioxidant response elements 
(AREs) and increase Nrf2 protein levels, thereby exert antioxidant 
activity. It is worth mentioning that the free radical scavenging 
activities of kaempferol were enhanced when used in combination 
with quercetin (83). According to the oxidative hypothesis, increasing 
the activity of antioxidative enzymes and alleviating oxidative stress 
can effectively alleviate fatigue. We  further note that Panax 
notoginseng saponins (PNS) are widely considered to be the main 
anti-fatigue active compound of PN (47). With in-depth studies, 
some flavonoids, including quercetin and kaempferol, have also been 
identified in PN. A study based on animal experiments showed that 
combining PNS with other notoginseng flavones increased its 
biological activity (42). This work provided valuable experimental 
evidence and clues for the design of anti-fatiguing compounds. 
Syringaresinol and dehydrodiconiferyl alcohol 4, gamma’-di-O-Beta-
D-glucopyanoside_qt, belong to the lignan class of compounds. In 
Chinese pharmacopeia (2020), the content of lignans is considered 
the quality standard for EUOB. Although few studies have explored 
their anti-fatigue activity, there is little information to guide further 
investigations. For example, in vitro results showed that syringaresinol 
exerted antioxidant activities, hence could affect the pathogenesis of 
fatigue (84). Besides, syringaresinol can activate SIRT1, which 
increases the antioxidant capacity through activation of nuclear 
factor (erythroid-derived 2)-like 2 (85). In general, compounds with 
similar chemical structures tend to have similar biological properties. 
According to this principle, studies on the anti-fatigue activity of 
other lignans from TCM were performed. Jin et al. (86) found that 
after administration of a lignan-rich extract for 30 days increased the 
swimming ability of male Kunming mice significantly. Further 
studies showed that both blood urea nitrogen (BUN) and BLA were 
increased, whereas the GSH levels and activities of antioxidant 
enzymes were decreased. Additionally, based on data mining, two 
alkaloids isolated from EUOB might were found to exert anti-fatigue 
effects of EEPS. As discussed above, the top  8 key compounds 
extracted from different herbs possess diverse chemical structures 
and these compounds may exert anti-fatigue action via multiple 
different mechanisms. Besides, synergy against fatigue was achieved 

TABLE 2 Molecular docking parameters of quercetin, kaempferol, and 1L1B, AKT1, EGFR, IL6, and VEGFA.

Compounds 
(Ligand)

Targets (PDB ID) RMSD (Å) Binding energy 
(kJ/mol)

Center Size

MOL000098 (quercetin)

1L1B (5r8i) 0 −6.8 x = 40.006, y = 8.701, z = 56.427 x = 21, y = 21, z = 21

AKT1 (4gv1) 0 −8.1 x = −20.8, y = 7.36, z = 12.229 x = 21, y = 21, z = 21

EGFR (3poz) 1.953 −8.5 x = 16.656, y = 32.531, z = 18.518 x = 21, y = 21, z = 33

IL6 (4ni9) 0 −7.8 x = 16.922, y = 20.285, z = −0.956 x = 21, y = 21, z = 21

VEGFA (5o4e) 0 −7.2 x = 157.73, y = 8.079, z = 144.882 x = 21, y = 21, z = 21

MOL000422 (kaempferol)

1L1B (5r8i) 1.71 −6.6 x = 4 0.006, y = 8.701, z = 56.427 x = 21, y = 21, z = 21

AKT1 (4gv1) 0 −7.6 x = −20.8, y = 7.36, z = 12.229 x = 21, y = 21, z = 21

EGFR (3poz) 0 −8.3 x = 16.656, y = 32.531, z = 18.518 x = 21, y = 21, z = 33

IL6 (4ni9) 1.44 −7.7 x = 16.922, y = 20.285, z = −0.956 x = 21, y = 21, z = 21

VEGFA (5o4e) 0 −6.8 x = 157.73, y = 8.079, z = 144.882 x = 28, y = 21, z = 21
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when some of the key bioactive compounds were properly combined 
in a hybrid approach. Additionally, we also note that EUOB and 
EUOF contain the largest number of key compounds, suggesting that 
these two herbs could be used as the major ingredients in EEPS.

In our further studies, PPI networks of the EEPS targets and 
fatigue-related targets were constructed to identify 413 potential 
targets of EEPS in the treatment of fatigue. Subsequently, network 
pharmacology analyzes were conducted. The Analysis Network 
function in Cytoscape 3.9.1 was applied to identify the top 10 core 
targets, including AKT, 1IL6, IL1B, EGFR, and VGEFR. Coincidentally, 
the key compounds mentioned in the preceding paragraph were 
found to act on multiple core targets via multiple pathways. AKT1 
showed the highest degree of node, and has been demonstrated to 
regulate many biological processes, including cellular growth, 
apoptosis, survival, and angiogenesis (87–89). It is generally accepted 
that oxidative stress (free radicals) leads to mitochondrial dysfunction 
and cell damage (90), which in turn results in fatigue. Numerous 
studies have proven that mitochondria are particularly susceptible to 
oxidative stress, and mitochondrial oxidative stress in turn promotes 
oxidative stress-induced damage to the cells (91, 92). According to the 
report by Afolayan AJ, AKT1 may be a key regulator of mitochondrial 
oxidative stress and vascular function (93). Animal experiments have 
demonstrated that activation of AKT1 can protect cells against 
oxidative stress and it may play be an effective treatment for fatigue. 
In the O’s study, 50 or 100 mg/(kg·d) ginseng saponin fraction and its 
metabolic products were administered orally to male ICR mice once 
a day for 5 days. This caused significant improvement on the weight-
loaded forced swimming ability (94). Meanwhile, the treatments 
decreased the levels of corticosterone, lactate, and creatinine. This 
study demonstrated that the ginseng saponin fraction may possess 
anti-fatigue effects. Alternatively, in a study conducted by Adachi 
et al., SPFACR mice were used to explore the mechanism and potential 
targets of ginseng. They found that AKT1 levels in muscle tissue were 
increased following oral administration of ginseng saponin. These 
experiments demonstrated that the regulation of AKT1 by herbal 
medicine can improve the anti-fatigue capacity of the organism. 
Among these core targets, EGFR has also attracted our attention. 
Activation of EGFR and its downstream PI3K-AKT–mTOR signaling 
pathway can regulate cell proliferation and survival (95, 96). A 
previous study by Kim et al. demonstrated that EGFR knockdown not 
only affected ROS scavenging function but also damaged 
mitochondrial structures and increased the vulnerability of these cells 
to oxidative stress (97). These findings suggest that targeting AKT1 
and EGFR to attenuate oxidative stress to improve anti-fatigue 
capacity effects.

A review of literature showed a strong relationship between 
oxidative stress and inflammation (98–101). Furthermore, numerous 
preclinical and clinical studies have shown a close association 
between inflammation and fatigue (102). Given the crucial role of 
inflammation in patients with fatigue, several published studies have 
demonstrated the notion that anti-fatigue effects can be achieved by 
regulating inflammatory responses. Among the core inflammatory 
factors targets, both IL1B and IL6 are well recognized as key 
proinflammatory cytokines with a significant proinflammatory 
effect (103). The IL-6 levels in the serum of fatigued rats were 
observed to be increased (104). A similar phenomenon was reported 
in chronic fatigue patients (105). A study of cancer patients showed 
that fatigue severity was significantly associated with IL-6 levels 
(106). Considering that regulation of IL-6 expression can relieve 

inflammation, we believe that IL-6 may be a promising target for the 
treatment of fatigue. VEGFA belongs to the VEGF growth factor 
family and is believed to promote multiple differentiation capabilities 
of angiogenesis, including enhancement of vascular permeability 
and promotion of effects of vascular permeability (107). Recently, 
VEGFA was reported to play an important role in inflammation. For 
example, Wang et al. demonstrated that VEGF was most closely 
related to brain inflammation during the COVID-19 outbreak and 
therefore could be a potential therapeutic target for SARS-CoV-2 
patients with neurological symptoms (108). In another clinical study 
of 28 patients with tuberculosis (Tb), it was found that the levels of 
VEGFA were an important determinant of DS-TB patients’ clinical 
status (109). They proposed that VEGFA was the main factor 
contributing to inflammation and angiogenesis. Moreover, Jin et al. 
found that overexpression of VEGFA in patients with peritoneal 
dialysis (PD) was positively related to the degree of peritoneal 
inflammation (110). Furthermore, an in vivo study demonstrated 
that VEGF blockers could exert anti-inflammatory effects in CIA rat 
models (111). Inhibition of VEGFA through pharmacological agents 
or pharmacological treatment effectively controlled 
granulomatous inflammation.

Subsequently, KEGG and GO pathway enrichment analyses were 
performed to identify the biological functions of EEPS. The results of 
the analysis suggested that EEPS can exert anti-fatigue effects through 
multiple signaling pathways, including the PI3K-Akt signaling 
pathway, the MAPK signaling pathway, and the Rap1 signaling 
pathway. The top KEGG pathway was the PI3K-Akt signaling pathway. 
We  further conducted a literature search on the PubMed using a 
combination of the words ‘PI3K/Akt’, ‘Eucommia ulmoides Oliver’, 
‘Eugenia caryophyllata’ and ‘Notoginseng Radix et Rhizoma’. Previous 
studies have shown that these herbs, their extracts or their 
formulations are affect the PI3K/Akt pathways (112–114). This further 
confirms the anti-fatigue potential of this TCM compound. Another 
key pathway is the MAPK signaling pathway. This pathway has been 
widely acknowledged to be a crucial target for anti-inflammatory 
therapy in many studies. In vitro and in vivo assays have shown that 
multiple compounds in EEPS can suppress inflammation by regulating 
the MARK signaling pathways (115–117). In addition, molecular 
docking studies showed that the key active compounds had strong 
binding affinity to these core anti-fatigue target proteins. Collectively, 
these results confirmed the results of the constructed 
network pharmacology.

This systematic study found that alkaloids, flavonols, and other 
active compounds of EEPS can exert anti-fatigue effects through 
multiple targets and multiple signaling pathways. Among these, the 
antioxidant and anti-inflammatory pathways are two of the most 
important molecular pathways. Overall, our results reveal the 
actual value of network pharmacology tools in mechanistic 
research on functional foods. Besides, our findings contribute to 
the development of the functional foods industry in several ways. 
Firstly, functional foods can reduce consumers’ concerns and 
increase sales for the product. Secondly, for functional food 
manufacturers, identifying the key active ingredients can improve 
the product quality control. Additionally, investigation of potential 
molecular mechanisms increases the awareness of the 
pathomechanism of fatigue, which will help to identify new 
potential targets for development of disease therapies. However, 
further animal experimental verification is needed to validate the 
value of this conclusion.
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5. Conclusion

This study investigated anti-fatigue effects of functional foods 
based on the traditional medicine theories and the relevant guidance 
document published by the Chinese Ministry of Health. In addition, 
four safe herbs suitable for food ingredients were chosen to prepare 
anti-fatigue formulations. Subsequently, network pharmacology and 
molecular docking were performed to identify the potential 
pharmacodynamic substances, the core targets, and the key signaling 
pathways. This study provides scientific proof of the anti-fatigue 
effects of EEPS. In addition, based on the findings of this investigation, 
we suggest that biologically safe herbs can be used as active ingredients 
for the formulation of functional foods.
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