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Nowadays, the human population is more concerned about their diet and very

specific in choosing their food sources to ensure a healthy lifestyle and avoid

diseases. So people are shifting to more smart nutritious food choices other

than regular cereals and staple foods they have been eating for a long time.

Pseudocereals, especially, amaranth and quinoa, are important alternatives to

traditional cereals due to comparatively higher nutrition, essential minerals, amino

acids, and zero gluten. Both Amaranchaceae crops are low-input demanding and

hardy plants tolerant to stress, drought, and salinity conditions. Thus, these crops

may benefit developing countries that follow subsistence agriculture and have

limited farming resources. However, these are underutilized orphan crops, and

the e�orts to improve them by reducing their saponin content remain ignored

for a long time. Furthermore, these crops have very rich variability, but the

progress of their genetic gain for getting high-yielding genotypes is slow. Realizing

problems in traditional cereals and opting for crop diversification to tackle

climate change, research should be focused on the genetic improvement for low

saponin, nutritionally rich, tolerant to biotic and abiotic stresses, location-specific

photoperiod, and high yielding varietal development of amaranth and quinoa to

expand their commercial cultivation. The latest technologies that can accelerate

the breeding to improve yield and quality in these crops are much behind and

slower than the already established major crops of the world. We could learn

from past mistakes and utilize the latest trends such as CRISPR/Cas, TILLING, and

RNA interference (RNAi) technology to improve these pseudocereals genetically.

Hence, the study reviewed important nutrition quality traits, morphological

descriptors, their breeding behavior, available genetic resources, and breeding

approaches for these crops to shed light on future breeding strategies to develop

superior genotypes.
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1. Introduction

Crops that store carbohydrates in the perisperm are called
Pseudocereals, unlike true cereals, where carbohydrates are stored
in the endosperm and both are sources of energy in the human
diet (1). These days with the health-conscious human population,
people are more interested in healthier diet opportunities and
more focused on micronutrient supply to their food other than
usual food sources through major cereal crops. With the increasing
trend to add more nutrition to the diet, the rise in demand
for pseudocereals, grain amaranth, and quinoa’s popularity is
increasing daily in the market, resulting in their increasing
cultivation (2, 3). Therefore, to meet the demand, there is a need
for genetic improvement of these crops. Amaranth and quinoa
are gaining space in the markets among other grains such as
Buckwheat, Chia, and Wattle seeds due to their high nutritional
qualities (4).

The grain amaranth (Amaranthus spp.) is valued as leaf
vegetables, nutritional grain, and ornamentals by people
worldwide. The “Amaranth” is a Greek word called “everlasting”
as it is hardy; thus, it is famous for cultivation. It is the main
staple food in many parts of the world such as Mexico, and it
is consumed as a multipurpose crop in the form of grain and
leaves, and in many places as forage for livestock using some
amaranths (5). It is also used for natural dyes, as lubricants, and in
the pharmaceutical industry. Amaranth flour is gluten-free, so it
is a good food source for people with gluten allergies. Amaranth
leaves are anti-cancerous, it stops the irregular growth of cancer
cells in the breast, colon, and liver, thus are also suitable for
cancer patients (6). In addition, many products are famous in the
market made from amaranth grains (7). Among dicotyledonous
plants, amaranth is one example that uses the C4 pathway for
photosynthesis and could be a model plant in genetic regulation
studies for photosynthesis (8). Amaranth is resistant to all abiotic
and biotic stresses, including stress, drought, and insect-pest
attacks, and needs less care, thus easy to cultivate in a wide range
of agro-climatic regions (9). It is thought of as a saprophytic
halophyte and is tolerant to high salinity; thus, it is suited for
subsistence agriculture (9).

Another one, quinoa (Chenopodium quinoa Willd.) is a
nutritious grain modern crop and old enough to have originated
from the Andean area of South America (10). It was cultivated
in earlier times in countries such as the Andean region, Bolivia,
Peru, and Chile. About 7,000 years ago, the report of the first
domestication was from Lake Titicaca, fromwhere it spread further
from South America and to around the world (11, 12). In Chile,
cultivation of the quinoa plant began as early as 5,000 BC. Presently,
about 250 different Chenopodium species are known all over the
world (13). Since then, it has been a major staple grain for the Inca
civilization, known in their native Quechua language as “chisiya
mama” or “Mother Grain.” It is categorized either on the plant’s
color, shape, and fruit (14, 15). In the Andean region, quinoa has
various names within the same community; it was famous for
names such as kinua, quinhua, and jupha in the Aymara language,
depending on the diversity in the color of its grains. Quinoa grows
well in poor soil of rainfed conditions, has superior adaptability
to varied agro-climatic conditions, and has unrealized commercial
potential in India (16, 17). Quinoa’s exceptional adaptability to

various agro-ecological zones can be grown in all regions (2, 18)
with water scarcity, from hot to dry deserts and in arid, semi-
arid, and even tropical locations with humidity up to 88% and
temperatures ranging from 8 to 40◦C (19). It can also grow on
varied topography, both in plains or high mountainous regions
up to sea level (4,000m), and thus it is a significant crop from
an agricultural point of view to grow in a wide range of regions
(18). Numerous European nations took part in the 1993-approved
initiative titled “Quinoa-A Multipurpose Crop” which was most
popular to be used for “Agricultural Diversification” (20). Quinoa
is super famous these days in modern supermarkets due to its super
nutritional quality of grains and leaves and is available as processed
products in fancy packaging to attract customers as an alternate
food to regular sources of carbohydrates instead of major cereals
in the modern diet.

Food security is a major concern for future generations. These
crops can be grown in most countries’ environmental conditions
and are easily available plant sources of micronutrients to alleviate
micronutrient malnutrition (21). There is a need for their genetic
improvement and to explore the breeding behavior of these crops,
possibilities to create variations in population, and the use of
molecular markers to study diversity in amaranth and quinoa
(22–24) (Table 3). We have reviewed genetic mapping studies
and DNA barcoding to understand the gene sequence of these
crops (Table 3). Gene mapping studies could help us target those
particular genes to express desirable traits such as high nutritional
and low antinutritional factors that can improve the genetics of
both crops. Thus, the current review was undertaken to compile
all the breeding studies, available germplasm, and other genetic
resources to accelerate the process of genetic improvement in
these crops to create varieties with low antinutrient factors and
tolerance to biotic and abiotic stresses. The genetics of qualitative
and quantitative characters would help breeders to adopt better
breeding methods (25, 26).

2. Nutritional and nutraceutical
qualities

Many reviews about the nutritional benefits of amaranth and
quinoa showed higher protein content, higher fiber, low saturated
fat, and balanced amino acid composition of their seeds than other
major cereals (27, 28) (Tables 1, 2; Figure 1). The grain amaranth
has many essential micronutrients such as calcium, magnesium,
iron, vitamin C, β carotene, and folic acid (54, 55). The young
leaves of amaranth are consumed (56, 57). The amaranth grain has
great nutraceutical value and thus is known to be a new-millennium
crop (58). Ripen seeds of amaranth are very famous in hills. The
grain amaranths seed is high in crude protein (22.5%), dry fiber
matter (8%), and high lysine content (0.73–0.84%)more thanmaize
(3–3.5 times) and wheat (2–2.5 times) (36, 59). The amaranth seeds
have mainly high methionine and lysine contents and high levels of
squalene which play a precursor for all steroids. The most studied
nutritional aspect concerning the food value of grain amaranth
is the identification of the limiting amino acids of the protein
component. Out of 20, 17 amino acids such as isoleucine, leucine,
lysine, cysteine, phenylalanine, tyrosine, threonine, methionine,
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TABLE 1 Nutritional composition of grain amaranth.

S.
No.

Constituents Type of
grain
species

Content
(%)

References

1. Carbohydrates – 65.25 (29)

2. Fiber – 6.7 (29)

3. Moisture – 11.29 (29)

4. Protein

Yellow

13.56
14.1

(29)
(30)

5. Lipid – 7.2 (29)

6. Ash – 2.88 (29)

7. Oil content

White Red

6–10
8.5–11
11–14

(31)
(32)

8. Iron – 0.761 (29)

9. Zinc – 0.287 (29)

10. Magnesium – 0.248 (29)

11. Manganese – 0.0033 (29)

12. Potassium – 0.508 (29)

13. Calcium – 0.159 (29)

14. Polyunsaturated
fatty acids

– 77
76

(33)
(34)

15. Oleic acid Red, White 26.5–31
34

19–35

(32)
(35)
(34)

16. Palmitic acid Red, White 14–20
19

12–25

(32)
(35)
(34)

17. Stearic acid Red, White 2–3.5
3.4
2–8.6

(32)
(35)
(34)

18. Linoleic acid Red, White 32–41
50
33

0.3–2.2

(32)
(33)
(35)
(34)

19. Docosahexaenoic
acid (DHA)

Red, White 7–21
9

(32)
(35)

20. High saponification
value

Red, White 130–190 (32)

21. Iodine value Red, White 100–113 (32)

22. Unsaponifiable
matter

Red, White 5–7 (32)

23. Crude protein – 22.5 (36)

24. Dry fiber matter – 8 (36)

25. Lysine content –
–
Yellow

0.73–0.84
4.9–6.1
5.1–6.4

(36)
(37)
(30)

26. Methionine Yellow 0.4–1.0 (30)

valine, alanine, arginine, glutamic acid, aspartic acid, glycine,
histidine, proline, and serine are present in amaranth (28).

The unique gel characteristics of amaranth starch are also the
reason for the increasing demand for amaranth (60). The starch

granules in grain amaranth are polygonal, having a diameter (1–
3µm) and a very high swelling power (61). Waxy and non-waxy
starch granules were present in amaranth (62). Amaranth germ
contains 6%−10% of oil (31, 33, 63), mostly unsaturated oil (76%)
having high linoleic acid, which is necessary for the human diet.
Amaranth is a good source of energy food as it contains high
protein and high-fat content, thus is a potential source of high
calories. Milled and toasted amaranth products are perfect for
digestion and absorption (64). Only high-protein rice is considered
to satisfy protein and energy needs than other cereals (28,
65). The main constituent, amarantin substance (C29H31N2O19),
is alkaloids-betalains, present in amaranths derived from grain
species of amaranth (Amaranthus caudatus L., Amaranthus tricolor

L., and Amaranthus cruentus L.) and are also used as medicine (66)
and as food colorants (67, 68) having antioxidant properties (69).

Amaranth has many antinutritional factors which make it
less popular to be used as major food grains. It has phytates,
phenolic compounds, trypsins inhibitors, chymotrypsin inhibitors,
and amylase inhibitors as unwanted constituents which need to
be reduced by processing or by developing varieties having less
amount of these factors (70). The phytates levels (0.52%−0.61%)
were higher than in rice but much less than in corn and wheat, and
tannins levels (0.043%−0.116% catechin equivalents) were much
lesser than in sorghum and millet (71). Tender leaves from young
Amaranth plants are consumed in Mexico and Kenya and used as
an ingredient in common meals.

Amaranthus dubius, Amaranthus viridis, and A. tricolor leaves
are known for their medicinal and nutraceutical properties
(72). Amaranth has active ingredients that act as phytochemical
compounds from its leaves (73, 74). These active components are
tannins, saponins, phenols, flavonoids, cardiac glycosides, steroids,
and triterpenoids (75). These chemicals have antipyretic, anti-
inflammatory, antihepatotoxic, antiulcer antiallergic, and antiviral
activity (75). In traditional medicines, it is used to reduce labor pain
(75). In Spain, Amaranthus leaves and root paste is used directly
on the skin to cure eczema, psoriasis, gonorrhea, menorrhagia,
bruises, burns, and rashes (76). It is also used to cure urinary tract
diseases, treat intestinal worms, and gastric ulcers, and as a laxative
to improve digestion problems. It is good to improve appetite.
It is also good for treating eye infections and breathing-related
problems like asthma (75). Amaranth leaves are used as protective
food due to their curative properties having strong antioxidant and
phytochemical compounds present in them (73, 77, 78). If boiled
leaves are given to patients suffering from jaundice, rheumatic
pains, and stomach aches, it works wonders to cure them. The
paste of the root is also possessing several beneficial effects when
used internally and externally. The paste of roots of Amaranth
controls vomiting and is thus good for dysentery patients, and
the paste with black pepper is given to rabies patients (79). Its
seeds can be consumed directly to stop internal bleeding, excessive
menstruation, and diarrhea. It also works externally as a poultice
for broken bones. The whole plant of Amaranth is also helpful in
treating cholera, piles, and snake bites (80).

For centuries, Chenopodium spp. has been cultivated by human
populations in a few parts of the world, among them few species
were used as leafy vegetables (Chenopodium album) and a few
species as grain crops (C. quinoa and C. album). It is good for
the human diet due to its high protein content (14.1%) with
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TABLE 2 Nutritional composition of Chenopodium quinoa seeds.

S. No. Composition Content References

1. Carbohydrate (%) 69
68.84–75.82

63
55.3
69.0
74.7%
69.7
60.0

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

2. Ash (%) 3.33
13.96–15.47

3.2
3
3.8
3.2
3.0
3.7

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

3. Protein (%) 13.8
3.04–5.46

16.4
11.7
16.5
16.7
15.6
12.5

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

4. Fat (%) 5.4
4.69–6.85

6.3
12.4
6.3
5.5
7.4
8.5

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

5. Crude fiber (%) 12.88
1.92–3.38

6.3
2.2
3.8
10.5
2.9
1.92

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

6. Histidine (g/100 g) 3.2
2.0
2.7
3.1

(42)
(45)
(46)
(43)

7. Isoleucine (g/100 g) 4.4
7.4
3.4
3.3

(42)
(45)
(46)
(43)

8. Leucine (g/100 g) 6.6
7.5
6.1
5.8

(42)
(45)
(46)
(43)

9. Lysine (g/100 g) 6.1
4.6
5.6
6.1
6.6

(42)
(45)
(46)
(43)
(47)

10. Methionine+
cysteine (g/100 g)

4.8
4.5
4.8
2.0
2.4

(42)
(45)
(46)
(43)
(47)

(Continued)

TABLE 2 (Continued)

S. No. Composition Content References

11. Phenylalanine+
tyrosine (g/100 g)

7.3
7.5
6.2
6.2

(42)
(45)
(46)
(43)

12. Threonine (g/100 g) 3.8
3.5
3.4
2.5

(42)
(45)
(46)
(43)

13. Tryptophan
(g/100 g)

1.2
1.1
1.1

(42)
(46)
(47)

14. Valine (g/100 g) 4.5
6.0
4.2
4.0

(42)
(45)
(46)
(43)

15. Calcium (mg/100 g) 86.9
32.9
56.5
148.7
94
87.4
127.4
27.5
56.5
102

(48)
(49)
(50)
(42)
(46)
(51)
(52)
(45)
(53)
(47)

16. Magnesium
(mg/100 g)

502
206
176
249.6
270
26
176

(48)
(49)
(50)
(42)
(46)
(51)
(53)

17. Phosphorus
(mg/100 g)

732
468.9
383.7
140
530
386.9
424.4
468.9
140

(48)
(50)
(42)
(46)
(51)
(52)
(45)
(53)
(47)

18. Iron (mg/100 g) 15.0
5.5
14.0
13.2
16.8
8.1
2
2.6
1.4
10.5

(48)
(49)
(50)
(42)
(46)
(51)
(52)
(45)
(53)
(47)

19. Potassium
(mg/100 g)

732
1,193.0
926.7
1,200
696.7
1,193
822.5

(48)
(50)
(42)
(51)
(52)
(53)
(47)

20. Copper (mg/100 g) 5.1
3.7
1
0.2

(42)
(46)
(51)
(53)

(Continued)
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TABLE 2 (Continued)

S. No. Composition Content References

21. Oleic (g/100 g) 23.3
26.0
24.8

(42)
(46)
(51)

22. Linoleic acid
(g/100 g)

53.1
50.2
52.3

(42)
(46)
(51)

23. Linolenic acid
(g/100 g)

6.2
4.8
3.9

(42)
(46)
(51)

24. Thiamine
(mg/100 g)

0.38
0.4

(42)
(51)

25. Riboflavin
(mg/100 g)

0.39
0.2

(42)
(51)

26. Folic acid
(µg/100 g)

78.1 (51)

27. Vitamin C
(µg/100 g)

16.4
4.0

(51)
(42)

28. Vitamin E
(Alpha-tocopherol;
mg/100 g)

5.37
2.6

(42)
(51)

29. Vit A (mg RE/100 g) 0.2 (51)

30. Naicin (B3) 1.06 (42)

31. Total dietary fiber 13.56–15.99 (39)

32. Sugar content in
Quinoa (g/100 g dry
matter)

6.20 (39)

high lysine (5.1%−6.4%) and methionine (0.4%−1.0%) contents
(30, 81). Amaranthus caudatus is also used as animal feed. Quinoa
has high fiber (7.0%), vitamins (thiamine and niacin), and minerals
such as phosphorus and potassium (82–85). Due to layers of
calcium oxalate on leaves, quinoa plants can tolerate droughts. As
such grains cannot be consumed due to the unpleasant taste of their
grains containing saponin (a glycoside), but nowadays, some types
of grains are selected that no longer have that flavor (86).

Quinoa can be used instead of rice, as a hot breakfast cereal
or for making baby cereal by boiling it in water. Even popping
the seeds like popcorn is an option. Seeds can be sprouted or
processed and used as flour. Sprouts must turn green before
being put into salads (84). Ancient populations discovered the
excellent nutritional content of quinoa, called it “golden grain,”
and considered it an auspicious food on good occasions (87). The
protein in pseudo cereals, such as quinoa, is mostly located in the
endosperm. Albumin and globulins make up around 44%−77%
of the protein fraction, whereas prolamins, a group of proteins
associated with gluten, make up just a very small percentage of
the protein fraction (0.5%−7.0%) or are completely absent in
other kinds (88). Quinoa is rich in phosphorus which is five times
more than cow milk and rice (89). Value additions in breads and
snack food such as oats use quinoa. It may be either consumed
as whole flour directly or mixed with other cereals like rice or
in other recipes in combinations. Its beer can also be produced
by a fermentation process similar to malt (90). Chenopodium

quinoa is a rich source of all goodies such as minerals (calcium,

magnesium, iron, phosphorus, potassium,manganese, zinc, copper,
and sodium), high fiber, vitamins E and C, and vitamin B complex
[such as thiamine (B1), riboflavin (B2), niacin (B3), and folic acid
(B9)]. Quinoa has more nutrition than other traditional cereals
such as barley, maize, rice, and wheat (14, 91–94).

The consumption of quinoa as a grain is less due to the presence
of the antinutritional factor saponin in it that is present in the
seed coat to protect the plant from the attack of insects and
pests, but it needs to be removed before consumption (95, 96). To
make quinoa worldwide staple food, we need to work on quinoa
processing to reduce the saponin content of the quinoa seeds
(97–101). Improved varieties had been developed called “Sweet”
varieties with less saponin content but are less protected from
insects, pests, and certain herbivores attack (102, 103). Many other
factors such as phytic acids, tannins, and protease inhibitors are also
present in quinoa. Phytic acids are present in the outer layers and
the endosperm of quinoa seeds. Phytic acid binds minerals, thus it
reduces the absorption of minerals in our body.

Quinoa has saponin, which acts as anticarcinogenic and
hypocholesterolemic and is useful for health (49, 104). Polyphenols
are present in quinoa and there are three main polyphenols
(flavonoids, phenolic acids, and tannins) which are the reason for
bitterness, astringency, color, taste, and oxidative stability (105–
107) and also act as an antioxidant thus preventing cardiovascular
diseases (39), anti-allergic, anti-inflammatory, antiviral, and
anticarcinogenic. In ancient times, black quinoa was mixed with
alcohol and applied to the wounded area. Quinoa grains are used
by patients suffering from muscle sprains, twists, and muscular
strains (108).

The domestication of amaranth declined at the time of Spanish
arrival, but the reasons for the decline of this crop are unclear (109).
Many myths explained the decrease in grain amaranth cultivation.
Maize coevolved with amaranth, but now maize is a major cereal
crop and this crop remains underrated despite its more health
benefits, and it is a more nutritionally valuable food for the human
population. The size of the seeds of amaranth may be the reason
for the reduction in cultivation of this crop as compared to maize.
Small-seeded crops require more care in handling than larger-
seeded crops. The cultivation of amaranth becomes a part of small
plots only in Mexico, the Andean region, and a few areas of India,
Bhutan, and Nepal (110). Currently, it is cultivated throughout
Asian countries such as China, Bhutan, India, Indonesia, Nepal,
Malaysia, Philippines, Central America, Mexico, and Southern and
Eastern Africa. Another reason might be the beauty of amaranth
leaves which prevent this crop from disappearing from the world
as it was always part of the garden in rural areas and is fascinating
and difficult to ignore. America leads in quinoa production. Due to
crop diversification, quinoa production increased by 72% in Peru,
Bolivia, and Ecuador (84).

3. Plant descriptors

3.1. Amaranth

Amaranth is a non-grass annual plant, having an herbaceous
stem with height varying from 30 to 210 cm, a solid stem of varying
colors, petioled morphology, ovate in shape, hairy or non-hairy
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FIGURE 1

Plantation and practice of self-pollination in quinoa in Western Himalayan conditions.

with wavy margins and alternate pattern of length (7.5–15 cm), and
different colored leaves. The size of the flower varies from 1 to 2 cm
in different colors from red to maroon. The seeds are oval in shape
with colors, white, red, and black, that germinate at high humidity
(111). Amaranth seeds have folded flange, reticulation cartridges
over spermoderm, and the presence of verucate processes, and
fruits have dehiscent pyxis (112). It is having taproot system which
is long, fleshy red or pink, deep, and developed, thus it stands
in water stress conditions. Amaranth is monoecious, with few
dioecious species. Pollination occurs by wind or by insects. The
color of amaranth leaves varies from bright red to violet, and its
maroon color is due to battalions pigments (6). Its inflorescences
are 0.50–0.90m long and glomerulated (Figure 2), erect or inclined,
and yellowish, reddish, or purple in color.

The phyllotaxy and vascular supply study was carried out in
A. caudatus (113), Amaranthus graecizans L., and Amaranthus

hybridus L. (114), and in other common species by Costea
and Demason (115). Cultivated grain amaranth (A. caudatus,
A. cruentus, and Amaranthus hypochondriacus) from their wild
ancestors were studied for segregation within the “hybridus
complex” with characters related to morphology, phyllotaxy of
leaves, epidermal characters of leaves, vascular supply studies, and
secondary growth in plants.

Amaranthus’s pollen grains are pantoporate with more than
18 sunken pores and tectate with granules and spinules (116,
117). Similar type pollens were present in the other members of
Amaranthaceae (118) and several other Centrospermous families
(119). Amaranth has different ploidy levels and interspecific
hybrids determined by applying pollen grain features. In dioecious
species, pollen grains have multiple apertures on the surface (120).
The size of pollen grains is dependent on the ploidy level of the

plant. The lower ploidy level has a smaller size, size increases with
an increase in the ploidy level. In polyploids, the exine shows more
patterns than in diploids (121).

3.2. Quinoa

Quinoa is a dicotyledonous annual plant belonging to the
Amaranthaceae family. The plant grows well in India, with several
varieties having a height of 1.5m, with a number of branches,
and a large leaf size (122). There is a well-developed ramified
tap root system protecting against drought conditions (123). The
seeds are round and flat, have a seed diameter of 1.5–4.0mm, and
take a variety of forms from white to gray and black, with shades
of yellow, rose, red, purple, and violet. Unisexual female flowers
are a significant characteristic of quinoa (124, 125). Quinoa has
three panical shapes: amarantiform, intermediate, and glomerulate;
amarantiform ones have elongated glomeruli growing from the
secondary axis, while the others have spherical glomeruli growing
from the tertiary axis and sometimes a plant will display both
traits, producing an intermediate inflorescence (126). Gandarillas
(127) also noted that a dominant allele influences the glomerulated
panicle feature. The ovary is superior having two or three stigmas,
five perianth lobes, and five anthers. Some cultivars exhibit partial
or complete male sterility in the female flowers. According to Risi
andGalwey (128), the fruit (achene type) can be conical, cylindrical,
or ellipsoidal with three layers present: perigonium, pericarp, and
episperm, with saponins present in the pericarp. Seeds vary in
size and color, with black dominance over both colors and red
dominance over white (128). Quinoa has shown good tolerance
to varied temperatures in both temperate and tropical regions.
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FIGURE 2

Variation among grain amaranth species.

Prego et al. (129) found that quinoa seeds’ perisperm, embryo,
and endosperm contain nutritional reserves. In some places, such
as the Andean highlands, planting season lasts from December to
January; in others, it starts in August and lasts until December.
Where mechanized agriculture techniques are utilized, quinoa is
planted in row spacing (40–80 cm) (84).

4. Genetic resources

4.1. Amaranth

Amaranth has a basic chromosome number (x = 8 or 9) (130)
and is allotetraploid with chromosome number n = 16 or 17.
The first domesticated species (A. cruentus) originated from A.

hybridus in Central America; then,A. hypochondriacus by recurrent
crossing between A. cruentus and A. powellii in Mexico and the
domestication of A. caudatus by crossing between A. cruentus

and Amaranthus quitensis. These three grain Amaranthus species
along with A. hybridus formed a complex or aggregate (“hybridus
complex”) structure.

Amaranth is an ancient crop belonging to the Amaranthaceae
family, Caryophyllales order, and Amaranthoideae subfamily. The
genus Amaranthus has ∼87 species and out of them 17 are from
Europe, 14 are from Australia, and 56 are from America (87,

131, 132). Moreover, out of 87 identified species of amaranth, 17

species are for vegetative purposes, and mainly three for grain
purposes, namely,A. caudatus, A. cruentus, andA. hypochondriacus

(133), and the others are widely dispersed weeds. All these grain

amaranths are famous for their magnificent appearance and are
popularly known by a few names, such as A. hypochondriacus,

famous as prince’s feather, A. cruentus as purple amaranth, A.

caudatus as love-lies-bleeding, grown more as an ornamental, and
A. tricolor as tampala, grownmostly for the leaves. Among them,A.

caudatus is mainly a tropical plant species. Other vegetable species

are A. dubius, Amaranthus blitum, and A. cruentus; weed species
areAmaranthus retroflexus (as redroot pigweed),Amaranthus albus

(and also tumbleweed), and Amaranthus spinosus (due to spiny
leaves as spiny amaranth). Amaranth species within themselves
have fewer genetic differences, thus different species can do easy
crossing over and even wild types will cross with domesticated
varieties if not timely rogued from the field (83).

Amaranthus cruentus accessions (“African” grain type) have
seeds of dark colors which branched heavenly belonging to West
Africa and have inflorescence which matures early. The other
accession, A. hybridus L. (“Prima” grain type), is also a dark-
seeded, highly branched, short plant stature belonging to Asia.
Few barriers were reported to prevent inter-specific hybridization
between crosses of A. cruentus L., A. hypochondriacus L., and
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A. hybridus L. Like, whenever hybridization of A. caudatus L.
and with any grain type was carried out, this often results
in non-viable seed formation (134). Adaptations and migration
patterns were predicted for all amaranth species and showed
potential for adaptation to diverse climate regions because it
showed a wider adaptation rate than other wild and cultivated
species (135). About 121 different crops and wild individuals
of amaranth were studied through a relative genetic map and
analyzed that grain amaranth was domesticated from a single wild
ancestor (136).

The germplasm of Amaranth is widely spread across the globe
including the USA, India, and Peru. In the USA, they are grown
for healthy diet food while in countries such as Peru, Bolivia,
India, and Mexico, it is a traditional food that lost its identity
after the introduction of new world cereals such as wheat and
rice (132). The USA germplasm collection has a conservatory of
3,300 accessions of A. hypochondriacus from 40 different countries
(137). In India at the National Bureau of Plant Genetic Resources
(NBPGR), there is a collection of 3,081 accessions (138) and the
National Botanical Research Institute (NBRI) has 2,500 accessions
(139) of A. hypochondriacus. In Peru, the Univ. Nacional San
AntonioAbad del Cusco (UNSAAC/CICA) has 740 accessions
of A. caudatus (140). Analysis of 20 accessions of amaranth
species (Amaranthus L.) provides evidence that wild accessions
from Central Malawi have more nutrients, minerals, and vitamins
than those domesticated from other agro-ecological regions (141).
Amaranth species accessions were assessed by using simple
sequence repeat markers and genetic variability was also present
(142), thus it shows the scope of variations for future breeding
programs for developing a rich germplasm pool of amaranth
crop. Genotypes were grouped into 10 clusters which can be
selected for the hybridization program as parents, as those analyzed
accessions showed variability for improvement in crop (143).
Ninety-eight genotypes were analyzed for 14 characters of grain
amaranth (A. hypochondriacus L.) for studying the relationship
between genetic divergence and eco-geographical region. However,
no significant results were obtained among clustering patterns
(144). These clusters could be used in a hybridization program
to select good parents having maximum variability and select
transgressive segregants from the population developed to increase
the yield. Phenotypic characterization of amaranth genotypes based
on biomass yield and related traits laid the future for trait-
focused breeding programs (145). Many species of amaranth were
studied for the complete chloroplast genome sequences using
simple sequence repeats by Chaney et al. (146). SNPs and indels
proved to be great genetic resources for studying phylogeny from
diverse genetic diversity. From three grain species of amaranth,
37 accessions from Nigeria were studied, and after evaluation,
clusters were made (147) and concluded a great scope of genetic
diversity to improve yield parameters through breeding. From 20
Amaranthus species, 229 genotypes were evaluated for diversity
among genotypes for the improvement of high-yielding cultivars
according to the origin and the preferred area of production
(148). Thirty-two Amaranthus species were evaluated for 16 traits
for the morphological characterization of genetic resources for
breeding purposes (149); 13 genotypes of different species of A.
hypochondriacus and A. tricolor were grouped into two major
clusters, to differentiate between ornamental and edible (150).

Two selected mutant lines developed through gamma radiation
treatment of A. cruentus L. were evaluated (151), and treated
plants showed significantly higher seed yield and seed weight than
non-treated plants.

4.2. Quinoa

There are many ex situ conservatories for quinoa in gene
banks that use seed properties to conserve germplasm. All over
the world, 30 countries conserve quinoa in 59 gene banks. The
ex situ conservatories of Chenopodium have 16,263 accessions
preserved in the world, originated and thus maintained in the
Andean Region (mainly in Bolivia and Peru) (152). The different
countries that contribute to quinoa germplasm conservation are
America having 10 countries associated with it, Europe having
11 countries, Africa having five countries, and Asia having three
countries. Bolivia and Peru have the largest diverse regions
of all. In Bolivia, there are 6,721 quinoa accessions, Peru has
6,302 accessions, Argentina has 492 accessions, Ecuador has
673 accessions, Chile has 286 accessions, and Colombia has 28
accessions. These conservatories are run by different institutes all
over the world, such as INIAF (Instituto Nacional de Innovación
Agropecuaria y Forestal—National Institute of Agricultural and
Forestry Innovation), UMSA (UniversidadMayor de San Andrés—
Major University of San Andrés), UTO (Universidad Técnica de
Oruro—Oruro Technical University), UCB (Universidad Católica
Boliviana—Bolivian Catholic University), UPEA, and in the Centro
de Investigación y Promoción Comunal (Municipal Research
and Promotion Center—CIPROCOM) (153). Seed collections
conservatories are also in South America at Universidad Nacional
del Altiplano (UNAP, Peru), the National Institute of Agricultural
Research (INIA, Peru), the Research Center for Andean Studies
(CICA, Peru), the National Seed Bank of Chile, Royal Botanical
Gardens Kew (UK), the USDA-ARS (USA), the National Bureau of
Plant Genetic Resources (India), and IPK-Gatersleben (Germany)
(154). Wild Chenopodium species have 357 accessions from USDA-
ARS and the Royal Botanical Gardens Kew (132). Quinoa has two
distinct germplasm pools: Andean highland quinoa, which is the
primary germplasm, and central and southern Chilean quinoa, the
second germplasm center (155), and Argentina of C. hircinum,
the third germplasm pool, which are major areas from South
America (156). The classification is done based on different agro-
morphological variables such as growth habits (four growth habits),
plant color (panicle emergence or start of flowering), panicle shape
and density (amarantiform or glomerulate or intermediate), grain
color and shape (white, cream, yellow, orange, pink, red, purple,
light coffee, greenish coffee, or black), grain size (ranges from 1.36
to 2.66mm), crop cycle (physiological maturity within 119–220
days), and grain yield (13).

5. Breeding behavior and approaches

5.1. Genetic improvement of amaranth

Amaranth is a self-pollinating crop, with few percentages
of cross-pollination (157). Amaranth is monoecious in nature.
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Homozygous, true-to-type lines were maintained by repeated self-
pollination and within selection for 6–8 generations and further
used for hybrid production. For hybridization, male and female
parents are planted at a proper isolation distance. Emasculation
procedures and controlled pollination were performed and
developed (158, 159). Chromosomal studies were carried out (160,
161) and polyploids were studied (162). Indian germplasm showed
a lot of diversity as documented by researchers (163). The mode of
inheritance of traits was studied in amaranth crop and inheritance
was studied for different characters (164, 165), including yield
parameters (166). Parameters such as harvest index and grain yield
were studied (167).

Inheritance studies were important for improved hybrid
production for selecting important characters which are significant
to be carried out further. Gene markers are the easiest approach
to studying the inheritance of desirable traits for developing good
varieties. Markers for a few parameters such as plant growth,
plant morphology, seed characteristics, and flowering behavior
were identified in the past, and their inheritance was studied
thoroughly (168–170). Inheritance of nutritional facts, including
starch characteristics and perisperm layer of grain, was studied in
Japan (62, 171, 172). Studies were also carried out in India about
seed protein content and their inheritance (173). Inheritance of
male sterility was investigated and used for hybridization (174,
175).

Good hybrids are produced by selecting germplasm which is
rich in desirable characteristics. Hybrids’ performance depends
only on carefully selecting good recombinants from the present
gene pool and combining them intelligently with each other.
Selection is made according to environmental adaptations and
beautiful vigorous vegetative features with respect to growth
and yield characteristics. The environment affects the expression
of many traits such as plant height, days to maturity, and
plant habit. Interspecific hybridization is carried out successfully
between a few species, and crosses between the species A.

cruetus L., A. hypochondriacus L., and A. hybridus L. produce
viable offspring (134). Few interspecific hybrids were successful
on a commercial scale also. In the United States, a large area
was under the cross of A. hypochondriacus and A. hybridus;
the amaranth grain production guide was developed to study
agronomical methods to grow these hybrids (176). Genetic
stability has been achieved for the development of improved lines
by interspecific hybridization. Amaranth plants have undergone
improvements formany decades using hybridization, selection, and
mutagenesis methods.

Genetic diversity research is essential for utilizing plant genetic
resources for amaranth crops (8, 177). Amaranth genotypes also
show evolution by the influence of the environment of specific
agro-ecological regions (178). Introgression and hybridization
between species showed great variability and phenotypic plasticity
(179). Mass selection and pure selection methods were used to
improve the amaranth germplasm by self-pollination and cross-
pollination methods (169, 180, 181). Amaranthus hypochondriacus,
A. caudatus, and A. cruentus species were cream-colored seeds
generally used for grain purposes. These present-day species were
domesticated from the wild black-seeded A. hybridus (132, 182).
Studies had been conducted to study genetic diversity among

Indian populations of amaranth (163). Different breeding strategies
were used to study different parameters in amaranth (164–
166).

The study of genetic control of trait(s) is a basic requirement
for the purposeful management of genetic variability. Both additive
and non-additive gene effects are recorded for different parameters
in grain amaranth (167, 183). Multiplicative characters such as yield
or panicles plant−1 are controlled either predominantly by non-
additive or larger non-additive than additive components (167,
183). Research on heritability and genetic advances are reported
to be mostly moderate to low for yield plant−1, panicles plant−1,
panicle length, seed weight panicle−1, and test weight (184). Plant
growth, grain harvest index, days to 50% flowering, and days
to maturity were observed to exhibit largely moderate-to-high
heritability and genetic advance. The maximum genetic gain would
be difficult to realize by exercising selection on seed yield or panicle
alone. Selection based on yield components with more weightage
on panicles per plant and grain weight per panicle would be more
beneficial (184). A recurrent selection program for the exploitation
of both of these gene actions would be useful in grain amaranth as
both additive and non-additive gene effects controlled agronomical
traits. Additive gene variance and enhanced genetic recombination
were used for the diallel selective mating system. Considerable
heterosis has been recorded in grain amaranth. Pandey (167)
reported heterosis over better parents to 71.36% for grain yield
per plant. The manifestation of heterosis for grain yield per plant
seemed to be primarily due to the heterotic response of panicle
per plant. Sterile lines can be developed for the production of
hybrids seed, but till now, no male sterile line is identified for the
commercial scale for seed productions.

To reconstitute the plant for creating genetic variation,
improving adaptability, imparting resistance, alleviating nutritional
status, and developing ideal plant types, several attempts are
being made taking the recourse of polyploidy and hybridization
at the interspecific level. Autotetraploids are developed in several
species/varieties of grain amaranth (134, 185). Pal and Khoshoo
(134) raised autotetraploid in A. hypochondriacus var. AG-21 and
with normal growth that produced bold seeds but suffered with the
reduction of grain yield plant-1 perhaps due to the reduction in the
number of seeds glomerule. Pal and Pandey (186) again induced
autotetraploidy in several grain amaranth species but observed a
similar trend. This indicates that polyploidy does not hold well
in this crop but such variation can be used for further breeding
programs. Scientists are trying to raise allopolyploids from species
hybrids between the wild/weedy and cultivated types as well as at
the intraspecific level (162, 186). Pal and Khoshoo (134), Khoshoo
and Pal (162), Pal (187), Pal et al. (188), and Pal and Pandey
(186) produced both wild and cultivated species of grain amaranth.
These interspecific hybrids usually showed high variation in pollen
and seed fertility. Some interspecific combinations suffered from
sterility. But, in general, the hybrids were fertile and there was
copious seed formation. Thus, the desirable features of wild/weedy
species can be introduced into the edible types of grain amaranth.
Future research can be focused on the development of embryo
culture, anther culture, and gene transfer.

In recent years, the plant’s chemical composition and
agronomic properties have improved using biotechnological
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FIGURE 3

Comparison of the general nutritional profile of amaranth and quinoa with major cereals (28).

methods. Genetic engineeringmethods make it possible to improve
not only the useful properties of a plant but also to provide
additional useful characteristics during plant transformation.
Different technologies such as Agrobacterium transformation and
direct gene insertion by biolistic gene gun transfer methods insert
genes with the desired gene. Genomic-assisted breeding (GAB)
is very helpful to select potent parents with novel characters for
breeding using hybridization and selection in future. Studies such
as chloroplast gene sequencing, genetic mapping, and the use of
biomarkers are useful to make easy the task of choice combinations
to carry out breeding approaches. Chloroplast genome assembly
of A. hypochondriacus (Amaranthaceae) was developed (146) to
reconstruct the chloroplast genomes between two related grain
species (A. cruentus and A. caudatus) and their putative progenitor
(A. hybridus). Lightfoot et al. (189) identified a major QTL
for flower color in A. hypochondriacus using linkage mapping.
The physical map of the A. hypochondriacus genome has 16
chromosome-scale major scaffolds with an N50 of 24.4Mb (189).
Germplasm from A. hypochondriacus species (22) and SNP alleles
were generated and a genome-wide association study (GWAS) was
carried out for the qualitative traits between specific phenotypes
and genetic variants within the genome and identified marker-
trait associations (MTAs) on 16 amaranthus species. SNP markers
were used to produce genetic resources for the phenotyping
and development of cultivars. Genetic similarities were also
important for the effective use of available germplasm by using
phenotypic and molecular markers. Amaranth accessions were
assessed for variations using random amplified polymorphic DNA
(RAPD) primers (24) for getting information on genetic diversity
for reliable gene recombination. For carrying out a successful
hybrid program, analysis of phenotypic diversity and traits is
very valuable.

Taxonomic confusion exists among A. hybridus species
complex, among all species (A. cruentus, A. caudatus, A.

hypochondriacus, A. hybridus, A. quitensis, and Amaranthus

powellii) (190). DNA markers were used to examine the taxonomic

and phylogenetic relationships of grain amaranth and their wild
relatives and to study phylogeny.

5.2. Genetic improvement of quinoa

Quinoa is a self-pollinated crop with few crossing chances
(17.36%) and purity can be maintained by enforced selfing by
covering the inflorescence stalk with a paper bag (Figure 3) (191).
Cleistogamy leads to autogamy in quinoa; however, obligatory out-
crossing due to self-incompatibility and male sterility have been
reported (192). The breeding objectives for quinoa were the short
stature of plants with fewer branches, growth, short cycle, earliness,
low saponin content abiotic and biotic stress, and higher grain
yields for commercial varieties by mass selection and hybridization
for direct future breeding strategies. The diversity present in the
primary gene pool help to characterize Quinoa (128). Due to
Quinoa’s extensive genetic variety, wide agronomic adaptability,
tolerance to many soil types, notably salty soils and situations
with highly varying humidity, elevations, and temperatures, and
good nutritional health benefits, breeding studies for Quinoa are
important (193). To fulfill farmers’ demands in various varied
environments and agronomic systems, global collaborative work is
needed for quinoa which might serve as a basis for improved plant
breeding initiatives for developed or developing nations.

DNA markers and linkage maps are important tools for
germplasm conservation and crop improvement programs. The
first molecular studies were using allozyme markers to establish
genetic variability in domesticated quinoa and wild species (C.
hircinum and wild quinoa ajara) (194, 195). The distribution of
quinoa is high in the Andes in the context of climate changes
affected by drought and frost and managed based on the latest
technologies and the ecosystem (196). Quinoa has two distinctive
groups: a coastal type from southwestern Chile and an Andean
type from northwestern Argentina to southern Colombia and
their co-evolutionary relationship between domesticated and wild
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populations is based on molecular studies (195). Quinoa is
characterized based on seed storage proteins for the identification
of cultivars and breeding purpose for improved protein quantity
and quality (197). Morphological variability and various selection
parameters were assessed in 44 germplasm lines of Chenopodium
spp. (198). Taxonomical and biochemical studies and cross-ability
relationships were reported on these species in quinoa (199).

Genetic variability is important for rich germplasm and their
conservation for genetic improvement in quinoa. Furthermore,
molecular markers are very beneficial in allowing the development
of better breeding programs. Genetic resources are very helpful in
quinoa cultivars improvement using marker-assisted selection and
marker-aided backcross breeding.

As DNA markers, random amplified polymorphic DNA
(RAPD) was used first time in quinoa by Fairbanks et al.
(200). These markers detect genetic variations within the existing
germplasm collection (201, 202). Genetic linkage maps could be
generated from intergeneric crosses for hybrid production by
using DNA markers (203). Different types of markers such as
RAPD and ISSR were used for genetic variation by molecular
analysis in quinoa. These markers play a very significant role in
distinguishing different genotypes. Simple sequence repeat (SSR)
markers were also helpful due to their co-dominant effect and
their capability to detect polymorphism in quinoa (204). Various
researchers have also studied the effect of SSR markers in different
crops and also in quinoa. Jarvis et al. (203) developed 216
new polymorphic SSR (simple sequence repeats) markers from
libraries enriched for GA, CAA, and AAT repeats, as well as six
SSR markers from bacterial artificial chromosome-end sequences
(BES-SSRs) in quinoa. Maughan et al. (205) also reported that
the primer sequences and map locations for 19 SSR markers
are valuable tools for quinoa genome analysis. This map also
indicates starting point for genetic dissection of quinoa, grain
yield, seed saponin, maturity, and resistance to diseases, frost,
and rot. Fluorescence-tagged markers are used to characterize
genetic diversity within quinoa germplasm. Microsatellite markers
were used for the characterization of C. quinoa (206). These
markers showed genetic diversity between quinoa and other
Chenopodium species (207). Microsatellite markers confirmed high
polymorphism between two and three nucleotide motifs and the
differences in having repeats of motifs (208). Single nucleotide
polymorphism (SNPs) was identified by floral expressed sequenced
tag (EST) libraries in the development of immature seeds in
quinoa (209). This helps to understand the gene associated with its
expression and regulation for seed development and gene mapping
for breeding development and their evolutionary studies within
the genus. The new polymorphic simple sequence repeats (SSR)
markers were developed from repeats in gene libraries and few
markers were created from bacterial artificial chromosome-end
sequences (BES-SSRs) (203). For several marker loci, segregation
distortion was observed with markers having an easily transferable
nature and showed chromosomal regions linked with selection or
gametophytic lethality.

The SNP assays were detected using the Fluidigm dynamic
array based on KASPar genotyping (23). The SNPs are important
genomic tools for molecular analysis for the improvement of
desirable parameters in quinoa. Genome characterization and

evaluation are important for selection and cultivar improvement
(210). DNA fingerprinting is one of the best tools to assess the
chromosomal studies of quinoa genotypes. Biochemical and genetic
studies play a more significant role in the development of core
collections than the old breeding techniques. The Flowering Locus
T-Like genes were used as markers to characterize the genome
of diploid species of quinoa (211). Gene editing is useful for the
evolution of quinoa germplasm by inserting mitochondrial DNA
in C. quinoa. Phylogenetic trees could also be constructed to study
unknown ancestry, their relationships with each other, and the
role of parents in the origin of present quinoa genotypes. Quinoa
is a potential pseudocereal crop thus the study of its ancestry
is important to understand sources of heat and biotic tolerance
genotypes. Polymorphism was studied in quinoa accessions by
using EST-SSR markers for molecular analysis (212).

Due to cross pollination, existing of heterozygosity, and
allotetraploidy with genome complexity the molecular analysis
of quinoa is restricted (213). To avoid such barriers, inbred
lines were developed. The mechanisms involving allotetraploidy
were studied for genetic evolution in quinoa. Molecular real-
time sequencing with optical, chromosome-contact, and mapping
studies was conducted to have a thorough view of the chromosome-
scale reference genome sequence for quinoa breeding (96). The
sequencing helped us to study the ancestral gene pools which
allow for the characterization of sub-genomes in quinoa. The
genome sequence was helpful to study the protein synthesis
process for the production of anti-nutritional factors (saponins)
found in quinoa and to recognize mutations affecting translation
in sweet quinoa strains. Thus, quinoa is a model plant for
studying polyploidy, genome evolution, and the science behind
abiotic stress tolerance, especially salinity tolerance. A complete
genome sequencing showed a high number of polymorphic single
nucleotide polymorphism (SNP) loci which have been utilized
with repeated multiple-year phenotypic data to identify QTLs
(quantitative trait loci), controlling all important yield and quality
parameters (214).

To expose the phylogeny, the complete chloroplast (cp) DNA
was analyzed by next-generation sequencing (complete plastid
genome sequences) andmolecularmarkers (215).With sequencing,
the genetic diversity of the Chenopodium genus was studied
thoroughly. The coding and non-coding regions were analyzed.
Inter-simple sequence repeat (ISSR) markers are easier to use than
simple sequence repeat (SSR) markers, which are frequently used
for genotyping quinoa. ISSR markers are cheap, scoring can be
done manually, and a sequence of flanking sites is not necessary,
but this is not the situation in SSR markers (216). Whole-genome
re-sequencing, using InDel (insertion/deletion), would significantly
provide information on population diversity and their role in
creating future desirable genotypes in quinoa (217) and can be used
to re-sequenced quinoa accessions. These markers clearly depict
the difference between the Andean highland type and the Chilean
coastal type quinoa.

The molecular markers were used in China to investigate
variations in their varieties (218). The ISSR markers were used
to recognize polymorphism and identify unique markers for
genotypes. ISSR markers characterized five quinoa genotypes
and they showed polymorphism (219). ISSR markers are helpful
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TABLE 3 Advanced biotechnological tools and techniques available in amaranth and quinoa.

S.No. Genetic material Technology Type Purpose References

1. Amaranthus caudatus L., (PI490458,
AMES15114, AMES5461), Amaranthus

cruentus L. (434, 622, AMES2248,
AMES2247, PI511731, PI777913),
Amaranthus hybridus L. (1047), Amaranthus

hypochondriacus L. (1221, 718, 674, 722, 412,
PI540446)

Tissue culture MS30 media is most effective with 2.7µM
NAA+ 2.5 Mm 2ip. 2.7µMNAA+ 2.3µM
KIN, 2.7 Mm NAA+ 4.4 Mm BA by using
seeds as explant

To study
morphogenesis and
growth of calluses

(228)

2. Amaranthus hypochondriacus L., Amaranthus

cruentus L., Amaranthus tricholor L.
Tissue culture B5 + 0.1 mg/L+ 0.1–1.0 mg/L ZEA by using

hypocotyles as explant
Regeneration (229)

3. Amaranthus cruentus L. “Ficha” and
Amaranthus hybridus “K-433”

Tissue culture MS30 + 5 mg/L+ 0.01 mg/L NAA on
explants (epicotyl, hypocotyls, root and leaf
segments)

Propagation (230)

4. Amaranthus spp. Tissue culture MS media+ vitamins+ 3–10 mg/L
2,4-dichlorophenoxyacetic acid (2,4-D)+
0.05 mg/L kinetin on hypocotyl segments
prepared from aseptically germinated seeds

Micropropagation (231)

5. Amaranthus hypohondriacus L., Amaranthus

cruentus L., Amaranthus tricolor L.
Tissue culture MS 30 + 2 mg/L NAA+ 0.2 mg/L BA+ 10%

coconut water on hypocotyles and leaf disc as
explants

Regeneration (232)

6. Amaranthus caudatus, Amaranthus

gangeticus, Amaranthus hypochondriacus,
Amaranthus retroflexus and Amaranthus

viridus

Tissue culture MS salts+ 0.01 mg/L NAA using shoot tips Regeneration (233)

7. Amaranthus caudatus and Amaranthus

hypochondriacus

Tissue culture MS 30 + 0.3 mg/L IAA+ 3 mg/L KIN using
hypocotyls as explant

Regeneration (234)

8. Amaranthus. paniculatus L. Tissue culture MS30+ 8–15 mg/L KIN or 5–10 mg/L BA,
MS30+ 0.5–10 mg/L 2,4- D+ 0.5–10 mg/L
NAA using inflorescene as explant

Regeneration (235)

9. Amaranthus paniculatus L Tissue culture B5 KIN (0.5 ppm) and NAA (0.1 ppm), B5 +

1 mg/L GA3 (gibberellic acid)+ 1 mg/L KIN
+ 1 mg/L 2,4-D on hypocotyls

Regeneration ability
and callus
formation

(236)

10. Amaranthus hypochondriacus L. cv. Azteca Tissue culture MS30 + 13.2µM BA+ 1.08µMNAA on
epicotyl and hypocotyls on 7 days seedlings

Regeneration (237)

11. Amaranthus tricolor Tissue culture MS30 + 13.2µM BA+1.8µMNAA on 7
days seedling on epicotyl and hypocotyls part

Regeneration (238)

12. Amaranthus caudatus Tissue culture MS+ 2.0 mg/L 2,4-D+ 0.75 mg/L KIN on
Callus cultures from hypocotyls and
cotyledons of 15-day-old seedlings seeds

Regeneration (239)

13. Amaranthus tricolor Tissue culture MS30 on “hairy” roots as explant Regeneration (240)

14. Tissue culture MS30 + 1.5 mg/L IAA+ 0.5 mg/L ZEA, MS30
+ 1 mg/L IAA

Regeneration (66)

15. Amaranthus cruentus “Amont,” Amaranthus

hypochondriacus “Intense Purple” and
Amaranthus ssp. “Plenitude”

Tissue culture ½

strength of MS media using seeds as explant

Regeneration (241)

16. Amaranthus gangeticus Tissue culture MS30+ 2 mg/L NAA+ 1 mg/L BA on
leaves, stem and roots

Regeneration (242)

17. Amaranthus tricolor and Amaranthus

spinosus

Tissue culture MS media+ 0.5 mg/L BAP+ 0.5–1 mg/L
2,4-D on hypocotyls segments

Regeneration (243)

18. Amaranthus cruentus L. “Ficha” Tissue culture MS+ 6-benzylaminopurine (BAP)+ zeatin
(ZEA), and thidiazuron (TDZ) (1, 3, and 5
mg/L) all in combination with 0.01 mg/L
α-naphthaleneacetic acid (NAA), or with 1
mg/L TDZ without auxin using Epicotyl,
Hypocotyls, Root and leaf segments

Regeneration (230)

19. Chenopodium quinoa Tissue culture 2MS+ 3.0 mg/L 6-BA For Cotyledons
with petiole

(244)

2MS+ 3.0 mg/L 6-BA and 0.1 mg/L NAA For axillary bud

(Continued)
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TABLE 3 (Continued)

S.No. Genetic material Technology Type Purpose References

2MS+ 1.0 mg/L 6-BA and 0.1 mg/L NAA Adventitious buds

2MS+ 0.3 mg/L 6-BA Plantlets

20. Chenopodium quinoa Tissue culture MS medium+ 6-benzylaminopurine
(8.88µM) and 2,4-dichlorophenoxyacetic
acid (6.79µM)

Regeneration (245)

21. Chenopodium quinoa Tissue culture MS medium+ 0.45µM 2,4-D using
hypocotyls as explant

Regeneration (246)

22. Chenopodium quinoa Tissue culture MS basal medium+ 0.5 mg/L 2,4-D+ 0.05
mg/L BAP

Callus induction (227)

23. Amaranthus spp. Agrobacterium-
mediated
transformation

Indirect gene transfer Unsuccessful (247)

24. Amaranthus hypochondriacus Agrobacterium-
mediated
transformation

Agrobacterium tumefaciens strains used: C58-
pTiC58 and A281(pGA471)

Tissue-specific and
light-inducible
expression directed
by a pea chlorophyll
a/b-binding protein
promoter in
transgenic
amaranth plants
and their progeny

(237)

25. Amaranthus tricolor L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium rhizogenes A4 transgenic plants
using internodes
and leaf blades

(240)

26. Amaranthus tricolor L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium rhizogenes A4,
LBA9402

Transgenic plants (248)

27. Amaranthus tricolor L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefaciens EHA

105, LBA, 4404 (p35SGUSINT with genes of
npt II—kanamycin resistance and uidA for
each strain)

Transgenic plants (238)

28. Amaranthus L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefaciens

AGL1 [p5b5, p5d9, p5f7 with gene of hph
(gene codes
hygromycin-B-phosphotransferase protein)]

Transgenic plants (249)

29. Amaranthus trisisWilld. (trisis is the
synonym of Amaranthus dubiusMart. ex
Thell.

Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefacies strain

EHA 105 harbouringpCAMBIA, 1301

Transgenic plants (250)

30. Amaranthus retroflexus L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefaciens strain
AGL0, which contained gene construction in
the vector pCAMBIA, 1301 with ARGOS-like
gene from Arabidopsis thaliana (ARL)

Transgenic plants (251)

31. Amaranthus cruentus L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefaciens strain
AGL0, which contained gene construction in
the vector pCAMBIA, 1301 with ARGOS-like
gene from Arabidopsis thaliana (ARL)

Transgenic plants (252)

32. Amaranthus caudatus L. cv. Karmin, cv.
Helios

Agrobacterium-
mediated
transformation

Strain used: Agrobacterium tumefaciens strain
GV3101 [with uidA and bar

(phosphinothricin N-acetyltransferase)
genes]

Transgenic plants (253)

33. Amaranthus caudatus L. Agrobacterium-
mediated
transformation

Strain used: Agrobacterium rhizogenes A4 Transgenic plants (254)

34. Amaranthus caudatus Agrobacterium-
mediated
transformation

Agrobacterium rhizogenes A4 strain and
Agrobacterium tumefaciens GV3101 strain
used

Resistant plants to
herbicide

(255)

(Continued)
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TABLE 3 (Continued)

S.No. Genetic material Technology Type Purpose References

35. Amaranthus hypochondriacus and
Amaranthus hybridus

Agrobacterium-
mediated
transformation

Agrobacterium rhizogenes were used: R1000,
K599 and BVG strain

Protocol for plant
regeneration via
somatic embryo
germination from
grain amaranth
transgenic hairy
roots

(256)

36. Amaranthus cruentus L Agrobacterium-
mediated
transformation

Epicotyl segments by the ARGOSLIKE
transgene of Arabidopsis thaliana controlled
by the 35S promoter in the binary vector
pCambia, 1301 with a selective hygromycin B
resistance gene

Transgenic plants (257)

37. Chenopodium quinoa Agrobacterium-
mediated
transformation

Two transformation systems using hairy root
and leaf agroinfiltration

DNA manipulation (225)

38. Chenopodium quinoa Agrobacterium-
mediated
transformation

Transcriptome analysis
(Agrobacterium-mediated transformation
protocol)

QTL mapping (226)

39. Chenopodium quinoa Agrobacterium-
mediated
transformation

Gene-editing systems Transgenic plants (258)

40. Amaranthus hypochondriacus Molecular
markers

SNP markers Genetic diversity
and fingerprinting

(22)

41. Chenopodium quinoa Molecular
markers

Floral expressed
sequenced tag
(EST)

(209)

42. Chenopodium quinoa SNP assays Fluidigm dynamic
array based on
KASPar genotyping

(205)

43. Chenopodium quinoa Molecular
markers

Genetic diversity
and fingerprinting

(210)

44. Amaranthus spp. Molecular
markers

RAPD primers Genetic diversity
and fingerprinting

(24)

45. Chenopodium quinoa Molecular
markers

RAPD markers Genetic diversity
and fingerprinting

(200)

46. Chenopodium quinoa Molecular
markers

RAPD and ISSR markers Genetic diversity
and fingerprinting

(203)

47. Chenopodium quinoa Molecular
markers
Molecular
markers

RAPD and ISSR markers Genetic diversity
and fingerprinting

(259)

48. Chenopodium quinoa Molecular
markers

ISSR markers Molecularly
characterization of
quinuamaterials

(216)

49. Chenopodium quinoa Molecular
markers

ISSR markers Genetic diversity
and fingerprinting

(219)

50. Chenopodium quinoa Molecular
markers

ISSR markers, SCoT DNA chloroplast
markers

DNA fingerprinting
and barcoding

(220)

51. Amaranth spp. Molecular
markers

SSR markers Genetic diversity (142)

52. Chenopodium quinoa Molecular
markers

Detect
polymorphism in
quinoa

(204)

53. Chenopodium quinoa, Chenopodium
giganteum, Chenopodium album

Molecular
markers

Fluorescence-
tagged markers
analysis

(206)

(Continued)
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TABLE 3 (Continued)

S.No. Genetic material Technology Type Purpose References

54. Chenopodium quinoaWilld. Molecular
markers

Genetic mapping (203)

55. Chenopodium quinoa Molecular
markers

EST-SSR markers Polymorphism
studies

(212)

56. Chenopodium quinoa Molecular
markers

SSR markers Genetic diversity
and fingerprinting

(223)

57. Amaranthus hypochondriacus, Amaranthus

cruentus and Amaranthus caudatus,
Amaranthus hybridus

Molecular
markers

Chloroplast genome assembly Genetic diversity
and fingerprinting

(146)

58. Amaranthus cruentus Molecular
markers

Chromosome-level genome assembly To study role of
specific genes with
in phytic acid
synthesis (an
anti-nutrient)

(260)

59. Amaranthus hypochondriacus Molecular
markers

Linkage mapping QTL mapping (189)

60. Amaranthus spp. Genetic
Diversity

Gene mapping DNA fingerprinting (136)

61. Chenopodium hircinum and wild quinoa ajara Allozyme
markers

Diversity study Genetic diversity
and fingerprinting

(194, 195)

62. Chenopodium quinoa Molecular
markers

Microsatellite markers DNA fingerprinting (208)

63. Tetraploid species of quinoa Molecular
markers

Flowering Locus T-Like genes were used as
markers

Genetic diversity
and fingerprinting

(211)

64. Chenopodium quinoaWilld. Molecular
markers

DNA sequencing, RNA sequencing
(CD-HITprogram)

Polyploidy study (213)

65. Chenopodium quinoaWilld. Molecular
markers

Chromosome-scale reference genome
sequence

Genetic diversity
and fingerprinting

(96)

66. Chenopodium quinoa and Chenopodium

album

Molecular
markers

Complete chloroplast (cp) DNA analysis PCR amplification
with InDel specific
primers

(215)

67. Chenopodium quinoa Molecular
markers

InDel (insertion/deletion) Whole-genome
re-sequencing

(217)

68. Chenopodium quinoa Molecular
markers

Molecular studies Genetic diversity
and fingerprinting

(218)

69. Accessions of Chenopodium quinoa and of
Chenopodium album

Molecular
markers

SDS-PAGE protein profiling Genetic diversity
and fingerprinting

(221)

70. Chenopodium quinoa Molecular
markers

Microsatellite markers Genetic diversity
and fingerprinting

(222)

71. Chenopodium quinoa Molecular
markers

PacBio long-read sequencing Genome assembly
scaffolding

(261)

72. Chenopodium quinoa Molecular
markers

Single nucleotide polymorphism (SNP) QTLs (quantitative
trait loci) Mapping

(214)

in DNA fingerprinting, and bands formed by these markers
are useful to go through the phylogenetic relationship among
quinoa present to cultivate wild species, thus this study guides
us to identify desirable genes and their sources to plan future
breeding programs. This practice also helped us to understand
polymorphism in the quinoa genotypes to distinguish them from
each other. Quinoa improvement could be possible by germplasm
preservation, and conservation is important for developing better-
performing hybrids. Molecular characterization was done by
different molecular markers, i.e., ISSR, SCoT, and DNA chloroplast

markers (rbcL and rpoC1), to study genetic polymorphism and to
develop unique markers for each of the seven quinoa genotypes
different in seed color and origin (220). These sequences provide
good genetic information to the gene bank for the conservation
of germplasm.

Accessions of C. quinoa and C. album were evaluated (221) and
SDS–PAGE protein profiling of soluble proteins seed in the quinoa
was done. Using microsatellite markers with available genome
sequences, a thorough analysis of quinoa’s genome and its relatives
was carried out in five Amaranthaceae species (222). The results
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demonstrated that high proportions of nucleotide characterized
the microsatellite repeats with A/T rich motifs and showed the
conservation of genomes and composition of microsatellites in
the Amaranthaceae family. The microsatellite markers (SSRs) were
used for DNA analysis of nine loci located in 26 varieties of quinoa
(223) for the genetic characterization of those varieties.

There are two ways to generate crops that are resistant to salt
and drought stress. First, by adding genes from tolerant plants,
main crops may be enhanced. Mostly, all the important crops
have wild species which has more potential to resist drought and
salinity than the cultivated genotypes. We need to understand
the mechanism of the fundamental resistance processes going
on within plants, then crops might be genetically modified to
have higher tolerance. Second, certain marginally grown minor
(orphan) crops are already salt and drought resistant. Gene editing
about tolerance in crops and improving these crops’ agronomic
performance may be a useful strategy for boosting crop and food
variety. Developing a nutrient-dense, high-performing crop that
can fulfill upcoming food demand in a changing environment
by selectively altering a few of these genes through induced
mutagenesis appears promising. DNA manipulation will provide
great tools to study key genes’ role in stress tolerance regulation
(87, 224, 225). There is a need to study transformation systems
in quinoa to conduct gene editing research. Two transformation
systems using hairy root and leaf agroinfiltration were developed
for quinoa to study the genomics of quinoa, and translation
in plants in transgenic quinoa roots was obtained successfully
by in vivo method, but having low efficiency. QTL mapping of
agronomic parameters can be useful for photoperiod and involved
in flowering time by transcriptome analysis to identify genes
differentially responding; and by contributing to the development
of an Agrobacterium-mediated transformation protocol in quinoa
can contribute to improving the quality of crop (226). In vitro

studies are very important for supporting genetic engineering
studies. Hypocotyl tissue proved to be a suitable explant for the
micropropagation of quinoa through the induction of indirect
organogenesis (227).

Traditional breeding methods take so much time (nearly 10–
12 years) to develop good varieties. To accelerate the genetic
improvement of these pseudocereals, we can also go for speed
breeding like other major crops to reduce the time period of
good quality germplasm development. In this, plants are grown in
controlled conditions with controlled photoperiods, humidity, and
temperature conditions. This speeds up the crop cycles of these
crops so that we can get 5–6 crops in 1 year (136). The tissue
culture studies allow us to grow plants throughout the year; thus, we
are not dependent on the season to conduct our experiments. The
studies on transformation and tissue culture can help us to conduct
genetic engineering technologies to improve the germplasm of
these pseudocereals (Table 3) (225, 226, 255, 258). A list of available
advanced molecular and biotechnological tools and techniques is
given in Table 3.

The new breeding technologies such as CRISPR/Cas [clustered
regularly interspaced palindromic repeats (CRISPR)/CRISPR-
associated protein]-based systems are very precise genome editing
tools that allow editing of several genes or alleles simultaneously,
thus proved to be a promising platform to insert desirable gene
for nutrition enhancement, to lower saponin content and abiotic

stress tolerance (262–270). Earlier work is done in potatoes to use
endogenous promoters with CRISPR genome editing (271, 272).
This technique can also be used to modify the advanced germplasm
lines in Amaranth and Quinoa. In the genetic engineering of wheat,
there is a need to optimize the codon of the Cas9 sequence with the
CRISPR/Cas9 system and further use of a promoter frommaize for
expression (269). Similarly, as in wheat and maize, efficient genome
editing methods can be used in Amaranth and Quinoa, and in
future, there may be a need to use different promoters, terminators,
or other elements from other sources of common plasmids
from different crops. The molecular and molecular approaches
discussed earlier and studies on the expression of different genes
in this plant may be helpful to select suitable DNA fragments for
generating improved Amaranth and Quinoa-optimized vectors in
future research.

The latest technologies like RNA interference (RNAi)
technology or Post-Transcriptional Gene Silencing (PTGS) can
also be used to understand the genomes of Amaranthus and
Quinoa, where reverse genetics is followed. By using this gene
silencing technique, gene functional studies are carried out to
understand functional genomics (273). This study can be used to
understand the genomics of anti-nutritional factors present in both
Amaranth and Quinoa.

Another new genome editing method is TILLING (Targeting
Induced Local Lesions in Genomes), which proved to be the most
effective and fast technology for identifying induced mutations
in any gene (274). At present, large TILLING libraries typically
contain up to 3,000 highlymutagenized individuals of quinoa (275).
Advanced genetic screens enable the establishment and screening
of much larger libraries derived from mutagenized populations
(276). These big libraries help us to identify the genes for desirable
characters to obtain good germplasm, reducing the load to identify
individual mutations from such a large population. These are
collections of all genes and provide instant access to numerous
alternative functional alleles for every gene.

6. Conclusion

Amaranth and quinoa are superfoods, particularly for people
with allergies to wheat or gluten. It can become part of the diet
in developing countries like Africa, where people suffer from
malnutrition. These crops can perform well in stress conditions
with minimal use of resources. However, the anti-nutritional
factors present in these crops like saponin in quinoa need to
be tackled under focused breeding programs. The enormous
variability in genetic resources available for these crops should
be further utilized under selection for targeted traits. These crops
have so far attained their full potential as major crops, but the
breeding programs to enhance these crops are not up to the mark
to achieve the place these crops should be given in the food
industry. The cost of sophisticated technology and infrastructure
is difficult to be available and so genetic advances under classical
and molecular breeding methods are expected to modify this
scenario by developing a nutrient-dense, high-performing crop that
can fulfill upcoming food demand in a changing environment.
Therefore, the region-specific varieties and agrotechnologies would
be the key factors for their promotion and large-scale cultivation.
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