
Frontiers in Nutrition 01 frontiersin.org

Protective effects of Scoparia 
dulcis L. extract on high 
glucose-induced injury in human 
retinal pigment epithelial cells
Heng-Dao Lin 1, Yuan-Chieh Lee 2,3,4,5, Chien-Yi Chiang 1, 
Yu-Jung Lin 1, Cheng Yen Shih 6, Rong-Kung Tsai 7,8, Pi-Yu Lin 9, 
Shinn-Zong Lin 10,11, Tsung-Jung Ho 12,13,14* and 
Chih-Yang Huang 1,15,16,17,18*
1 Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist 
Tzu Chi Medical Foundation, Hualien, Taiwan, 2 Department of Ophthalmology, Buddhist Tzu Chi 
General Hospital, Hualien, Taiwan, 3 Department of Ophthalmology and Visual Science, Tzu Chi 
University, Hualien, Taiwan, 4 Institute of Medical Science, Tzu Chi University, Hualien, Taiwan, 
5 Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, 6 Buddhist 
Compassion Relief Tzu Chi Foundation, Hualien, Taiwan, 7 Institute of Eye Research, Hualien Tzu Chi 
Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, 8 Institute of Medical Sciences, Tzu Chi 
University, Hualien, Taiwan, 9 Taiwan Buddhist Tzu-Chi Foundation, Hualien, Taiwan, 10 Buddhist Tzu Chi 
Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, 11 Department of 
Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan, 12 Integration Center of Traditional Chinese 
and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan, 13 Department of Chinese Medicine, 
Hualien Tzu Chi Hospital, Hualien, Taiwan, 14 School of Post-Baccalaureate Chinese Medicine, College 
of Medicine, Tzu Chi University, Hualien, Taiwan, 15 Department of Medical Laboratory Science and 
Biotechnology, Asia University, Taichung, Taiwan, 16 Graduate Institute of Biomedical Sciences, China 
Medical University, Taichung, Taiwan, 17 Center of General Education, Buddhist Tzu Chi Medical 
Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, 18 Department of Medical 
Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Diabetic retinopathy (DR) is a major cause of vision loss in diabetic patients. 
Hyperglycemia-induced oxidative stress and the accumulation of inflammatory 
factors result in blood-retinal barrier dysfunction and the pathogenesis of DR. 
Scoparia dulcis L. extract (SDE), a traditional Chinese medicine, has been recently 
recognized for its various pharmacological effects, including anti-diabetic, anti-
hyperlipidemia, anti-inflammatory, and anti-oxidative activities. However, there is 
no relevant research on the protective effect of SDE in DR. In this study, we treated 
high glucose (50 mM) in human retinal epithelial cells (ARPE-19) with different 
concentrations of SDE and analyzed cell viability, apoptosis, and ROS production. 
Moreover, we analyzed the expression of Akt, Nrf2, catalase, and HO-1, which 
showed that SDE dose-dependently reduced ROS production and attenuated 
ARPE-19 cell apoptosis in a high-glucose environment. Briefly, we demonstrated 
that SDE exhibited an anti-oxidative and anti-inflammatory ability in protecting 
retinal cells from high-glucose (HG) treatment. Moreover, we also investigated 
the involvement of the Akt/Nrf2/HO-1 pathway in SDE-mediated protective 
effects. The results suggest SDE as a nutritional supplement that could benefit 
patients with DR.
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Introduction

Diabetic retinopathy (DR) is the most common and serious 
complication of diabetes mellitus (DM), which can lead to vision loss 
in diabetes patients and seriously degrade their quality of life (1). It 
has been reported that nearly 35.4% of diabetes patients demonstrate 
different forms of diabetic retinopathy (DR) (2). The leading 
contributor to the development of DR is hyperglycemia (3). In 
addition, excessive blood sugar gives rise to the deposition of 
atherosclerotic plates, which in turn provokes inflammation of the 
retinal vessels (4). The currently dominant treatment approach 
available for DR is the control of microvascular complications, 
including intravitreal drug therapy, laser photocoagulation, vitreous 
surgery, and anti-vascular endothelial growth factor (VEGF) 
molecules (5, 6). However, these treatment approaches are only 
effective for advanced DR. As the prevalence of diabetes increases, 
new approaches are needed for the treatment or prevention of DR in 
earlier stages. To avoid making DR one of the major burdens on public 
health, it is necessary to establish novel and effective strategies to 
prevent and treat it in the early stage.

In recent years, human retinal epithelial cells (ARPE-19) have 
been widely used as in vitro models for DR research (7, 8). The retinal 
pigment epithelium (RPE) is a single layer of epithelial cells located 
between the vascular choroids and the neurosensory retina. The RPE 
performs different functions, including turnover of photoreceptor 
outer segments and oxidative stress response, and forms the protected 
outer blood-retinal barrier, which maintains the normal structure and 
function of the retina (9). It has been reported that dysfunction of RPE 
is one of the early events that occur before vision loss or DR (10, 11). 
Many studies have reported that oxidative stress and inflammation 
triggered by high glucose are crucial in the pathogenesis of retinopathy 
(12, 13). Furthermore, chronic hyperglycemia-induced ROS 
production leads to RPE dysfunction and eventually destroys the 
barrier function, resulting in angiogenesis (14). The damage to cells 
causing the accumulation of reactive oxygen species (ROS) further 
enhances lipid peroxidation such as 4-HNE and 4-HDDE (15). Hence, 
we can reasonably consider that hyperglycemia-induced oxidative 
stress in RPE plays a critical role in DR.

Recently, traditional Chinese medicine (TCM) has been a hot 
topic in clinical applications and experimental studies for DR 
treatment, due to its low price and fewer side effects (16). In recent 
decades, Scoparia dulcis L., a member of the plantain family that is 
employed in traditional Chinese medicine, has been widely used for 
clinical purposes in China, Korea, Japan, and other Asian countries to 
contribute to stomachic, diuretic, anti-tussive, heat-clearing, and 
toxin-absorbing effects (17). Many studies have indicated that Scoparia 
dulcis L. provides various pharmacological effects, for example, the 
treatment of metabolic syndromes, including anti-diabetic, anti-
hyperlipidemia, anti-inflammatory, anti-atherosclerotic, anti-arthritic, 
hepatoprotective, anti-oxidative, and anti-urolithiasis activities (18). 
Scoparia dulcis L. contains numerous constituents, such as flavonoids 
and polysaccharides, and each specific component has been reported 
to possess different degrees of anti-oxidant activity (19). In addition, 
some animal studies have also demonstrated that Scoparia dulcis 
L. exhibits anti-diabetic and anti-oxidant effects in mice or rats (20, 
21). Since SDE exhibits significant anti-diabetic effects such as 
hypoglycemic activity, insulin mimetic activity, and anti-oxidant 
effects, we reasonably hypothesized that SDE could have potential 

effects on complications of diabetes. However, there is no study on the 
protection of SDE in glycemia-related retinopathy. In the present 
study, we used ARPE-19 as an in vitro model to determine the effects 
of SDE on HG conditions and elucidate its possible protective 
mechanisms. Our results demonstrate that SDE protects ARPE-19 
cells from HG-induced oxidative stress, inflammation, and cell 
apoptosis, which may provide new insights into the treatment of DR.

Materials and methods

Cell cultures and treatment

The human retinal pigmented epithelium cell line ARPE-19 
(BCRC number 60383) was obtained from the Food Industry 
Research and Development Institute (FIRDI, Hsinchu, Taiwan). These 
cells were maintained in a 1:1 mixture of DMEM/F-12, supplemented 
with 10% fetal bovine serum (FBS, GIBCO) and 1% penicillin/
streptomycin (PS, Gibco) in a humidified 5% CO2 incubator at 
37°C. To differentiate ARPE-19 cells to a more native and 
physiologically relevant state, once confluent, the media was switched 
to a specialized DMEM media that contained high glucose (4.5 g/l) 
supplemented with 1% heat-inactivated FBS, 1 mM sodium pyruvate 
(Hyclone),2 mM L-glutamine (Hyclone), and 10 mM nicotinamide 
(Sigma) for 2 months. In all cases, media exchange was performed 
three times a week. Before treatment, ARPE-19 cells were seeded into 
96-well plates or 6 cm Petri dishes at a density of 5 × 104 cells/mL and 
incubated overnight. After overnight culture, the culture medium was 
replaced with a serum-free medium and treated with different 
concentrations (25, 50, 100, and 200 μg/ml) of Scoparia dulcis 
L. extract (SDE) for 24 h. Following this, the cells were treated with 
50 mM D-glucose (Sigma) for an additional 48 h. β-cyclocitral 
(Sigma), 1-methyl-2-pyrrolidinone (Sigma), procaine (Sigma), 
cyclohexylamine (Sigma), and N1- acetylspermine (Sigma) are used 
as the standard for HPLC–MS analysis.

Preparation of Scoparia dulcis L. extract

Dry Scoparia dulcis L. (60 g) was boiled with 600 ml RO water and 
concentrated to 60 ml. Then, supernatant (5 ml) was collected and 
dried by a freeze dryer and stored at −20°C. The stock solution of the 
Scoparia dulcis L. extract was prepared with dd H2O to a concentration 
of 0.05 g/ml. The stock solution was filtered and sterilized by a 0.22 μM 
microporous membrane before cell treatment.

LC–MS/MS analysis

Scoparia dulcis L. extract was filtrated with a 0.45 μm microporous 
membrane to obtain the test solution and 1 ml. Three baths of SDE 
samples were sent to a biotechnology company (PRO TECH) for 
HPLC and MS analysis. A total of 100 μl SDE and 400 μl acetonitrile 
were vortexed to mix, incubated at −20°C for 30 min, and centrifuged 
at 15000 g for 10 min. All analyses were performed on the Agilent 
1,260 HPLC system with Phenomenex Luna HILIC-200 A column 
(50 mm × 2.0 mm i.d., 3.0 um) and AB Sciex Instruments 
QTRAP 5500.

https://doi.org/10.3389/fnut.2023.1085248
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Lin et al. 10.3389/fnut.2023.1085248

Frontiers in Nutrition 03 frontiersin.org

Cell viability assay

CCK-8 assay was used to determine the cell viability of ARPE-19 
cells, which were treated with various concentrations of SDE in the 
absence or presence of 50 mM D-glucose for 24 h. Thereafter, for the 
culture termination, 10 μl of CCK-8 was added to each well and then 
incubated for 2 h at 37°C in a 5% CO2 incubator. Finally, the 
absorbance of each well was recorded at 450 nm using a microplate 
reader (Thermo).

Apoptosis assay

Cell apoptosis was determined by the Terminal Deoxynucleotidyl 
Transferase dUTP Nick End Labeling (TUNEL) assay. TUNEL was 
performed using a commercial kit (In Situ Cell Death Detection Kit, 
Roche) according to the manufacturer’s instructions, as in our 
previous study (22). The 8-well chamber slides were fixed with 4% 
paraformaldehyde for 15 min at room temperature and permeabilized 
with 0.5% Triton X-100 for 10 min. After three rinses with PBS, 100 μl 
of the TUNEL reaction mixture was added, and the slides were 
incubated in a humidified atmosphere for 1 h at 37°C in the dark. The 
slides were analyzed under a fluorescence microscope (Olympus) with 
an excitation wavelength of 488 nm.

In situ senescence-associated acid 
beta-galactosidase assay

β-Galactosidase activity is used as a biomarker for senescent and 
aging cells. Here, we used the SPiDER-ßgal kit (Dojindo Molecular 
Technologies), which was reconstituted in 20 μl dimethyl sulfoxide to 
detect cell β-Galactosidase activity. Before the senescence assay, 
SPiDER-ßgal was reconstituted in 20 μl dimethyl sulfoxide (DMSO, 
Sigma). We washed the cells three times with PBS and then incubated 
them with 1:500 dilution SPiDER-βGal for 30 min. After that, the cells 
were fixed with 4% paraformaldehyde for 15 min at room temperature. 
The slides were analyzed under a fluorescence microscope (Olympus).

Measurement of intracellular ROS level and 
mitochondrial superoxide

Intracellular reactive oxygen species (ROS) generation was 
detected in living cells by a DCF-DA kit, and mitochondrial 
superoxide was detected by fluorogenic dye MitoSOX (Invitrogen). 
We seeded cells in an 8-well chamber slide at a density of 5 × 104 
cells/mL and incubated them for 24 h at 37°C. We washed them 
three times with PBS and added 10 μM of chloromethyl 
2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) for 
20 min or 5 μM mitoSOX for 10 min to the cells in the dark. After 
incubation, we washed the cells gently three times with PBS and 
added 1 μg/ml Hoechst staining solution (Thermofisher) to them. 
These cells were observed by use of fluorescence microscopy. The 
acquired images were converted into binary images for the 
quantification of the average fluorescence intensity using ImageJ 
software. We set the related fluorescence unit of the control group as 
1. We repeated each experiment three times.

Immunofluorescence staining

The ARPE-19 cells were seeded into an 8-well chamber slide (SPL) 
and incubated overnight. They were treated with various 
concentrations of SDE (25, 50, and 100 μg/ml) for 24 h and then 
treated with D-Glucose (50 mM) for 48 h. After treatment, the cells 
were fixed with 4% paraformaldehyde for 15 min and then 
permeabilized with 0.1% Triton X-100 for 10 min. The cells were 
washed with PBS and blocked with 2% bovine serum albumin (BSA) 
in PBS for 1 h. Appropriate primary anti-bodies were incubated with 
2% BSA overnight (Supplementary Table S1) and then with a 
fluorescein (FITC) (488 nm or 594 nm)-conjugated secondary anti-
body for 45 min in 2% BSA. The cells were later stained with 1 μg/ml 
of DAPI for 5 min, washed with PBS three times, and then subjected 
to image acquisition by fluorescence microscopy (Olympus). The 
relative density of immunostaining was analyzed by ImageJ, 
comparing ARPE-19 cells treated with different SDE concentrations 
in the high-glucose treatment group with those with a low-glucose 
condition (as a normal reference).

Western blot

We conducted a Western blot analysis following the procedure, as 
described in our previous study (23, 24). Briefly, we separated protein 
samples (30–40 μg) using 9–12% SDS-PAGE (Bio-Rad), which 
we then transferred to polyvinylidene fluoride (PVDF) membranes. 
The membranes were blocked with Tris-buffered saline (TBS) 
containing 2% BSA and 0.05% Tween 20 for 1 h at room temperature. 
After three washes in TBS containing 0.05% Tween 20 (TBST), 
we incubated the membranes with appropriate primary anti-bodies at 
4°C overnight (Supplementary Table S1). After three washes in TBST, 
we incubated the membranes with relevant secondary anti-bodies 
(anti-mouse or anti-rabbit HRP-linked, Cell Signaling) at room 
temperature for 45 min. After three times washes in TBST, we added 
the membranes to chemiluminescent HRP (Millipore). We  used 
ImageJ to measure the band density and used GAPDH as an internal 
reference protein in each group.

Catalase activity assay

The ARPE-19 cells were pretreated with or without various SDE 
concentrations (25, 50, 100, and 200 μg/ml) in a 6 cm Petri dish for 
24 h. Then, D-glucose (50 mM) was added, and the cells were cultured 
for 48 h. A catalase activity ELISA kit (Catalase assay kit, Cayman, 
United Kingdom, 707002) was used to analyze the catalase change. 
Briefly, the treatment cells were harvested, and the homogenies were 
followed using the manufacturer’s instructions. The OD at 540 nm was 
determined using a microplate reader (Thermo).

IL-6, IL-8 MCP-1 ELISA assay

The ARPE-19 cells were pretreated with or without various SDE 
concentrations (25, 50, 100, and 200 μg/ml) in 96-well plates for 24 h. 
Then, D-glucose (50 mM) was added, and the cells were cultured for 
48 h. Specific ELISA kits (EZIL6-98 K, EZHIL8-100 K, 
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EZMCP1-99KRM; Merck Millipore) were used to measure the levels 
of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte 
chemoattractant protein-1 (MCP-1) in the supernatants, following the 
manufacturers’ instructions. The OD at 450 nm was determined using 
a microplate reader (Thermo).

Statistical analysis

We presented the data as the mean ± standard deviation for at least 
three different experiments. All the statistical analyses were performed 
by GraphPad Prism 6 software, and one-way ANOVA was used for 
analyzing the data. A statistically significant difference was considered 
as p < 0.05 and is shown as follows: *: 0.01 < p ≤ 0.05, **: p ≤ 0.01.

Results

Identification of the components of 
Scoparia dulcis L. extract

To standardize the chemical composition of the SDE, we performed 
HPLC and MS analysis. According to Wankhar et  al. we  selected 
β-cyclocitral, 1-methyl-2-pyrrolidinone, procaine, cyclohexylamine, 
and N1-acetylspermine as the standards to analyze the constituents of 
SDE (19). The chromatogram of the compounds obtained is shown in 
Supplementary Figure S1 and Supplementary Table S2.

Scoparia dulcis L. extract prevents 
high-glucose-mediated cellular death and 
senescence

First, we evaluated the effect of SD extract on the ARPE-19 cells 
by incubating with a series of concentrations of SD extract (0, 25, 50, 
100, 200, 400, and 800 μg/ml). The CCK-8 assay showed that 
administration of SDE had a significant effect on cell viability; 
however, the viability of the ARPE-19 cells was unaffected by SDE at 
concentrations of 25, 50, and 100 μg/ml (Figure 1A). Thus, 25–100 μg/
ml of SDE was used in the following experiments. Then, 
we investigated the effect of SD extract on cell viability in HG-induced 
ARPE-19 cells. HG caused a significant decrease in the cell viability of 
the ARPE-19 cells, while ARPE-19 treatment reversed the inhibitory 
effect of HG stimulation on cell viability (Figure  1B). We  further 
investigated whether SDE inhibited HG-mediated cellular apoptosis. 
As shown in Figure  1C, SDE dose-dependently decreased cell 
apoptosis compared with the HG group. Figure 1D also shows that 
SDE significantly inhibited HG-induced β-galactosidase expression, 
indicating that SDE can prevent cell senescence from HG treatment. 
Taken together, these results suggest that SDE protects ARPE-19 cells 
from HG-stimulated cell apoptosis and senescence.

Scoparia dulcis L. extract inhibits oxidative 
stress and oxidative damage in ARPE-19 
cells exposed to HG

To evaluate the effect of SDE on HG-stimulated oxidative stress 
and oxidative damage, we detected the changes in ROS production 

and ROS-related protein (3-Nitrosine) or lipid (Acrolein) damage. As 
shown in Figure  2A, after exposure to HG, ROS production was 
significantly increased in the ARPE-19 cells, and SDE treatment 
resulted in significant decreases in ROS production. In addition, 
we also found SDE can significantly decrease mitochondria superoxide 
with HG treatment (Figure 2B). As indicated in Figure 3, the HG 
significantly induced protein and lipid damage. Our results showed 
that SDE not only reduced oxidative protein product (Figure 3A) but 
also reduced oxidative lipid product (Figure  3B). These results 
indicated that SD extract can inhibit ROS production and alleviate 
oxidative damage with HG treatment.

Scoparia dulcis L. extract reduces ROS 
through upregulation of anti-oxidative 
enzymes

To investigate the anti-oxidative mechanisms of SDE against 
HG-induced cell damage, the protein expression levels of anti-oxidant 
enzymes including catalase, SOD1, and SOD2 were assessed by a 
Western blot analysis (Figure  4A). HG treatment significantly 
decreased the expression of catalase. In contrast, SDE enhanced 
catalase expression levels in a dose-dependent manner compared to 
the HG group. However, SOD1 and SOD2 seem to have demonstrated 
no significant change with SDE pretreatment. We further assessed the 
catalase activity to confirm the anti-oxidative effect of SDE (Figure 4B). 
As excepted, SDE was shown to be able to rescue catalase activity with 
HG treatment. These results indicate that catalase might be involved 
in the protective role of SDE against HG-induced oxidative stress.

Scoparia dulcis L. extract induces the 
activation of Nrf2/HO-1 pathway in 
HG-stimulated ARPE-19 cells

Phase II enzyme HO-1, which is a well-known anti-oxidant 
enzyme, reduces intracellular ROS. Furthermore, that the Nrf2/HO-1 
pathway plays a critical role in the pathogenesis of diabetic retinopathy 
has been well documented (3). Hence, we examined the effect of SDE 
on Nrf2/HO-1 pathway activation in HG-stimulated ARPE-19 cells. 
We found that HG slightly stimulated HO-1 expression levels, and 
SDE significantly induced HO-1 expression. Moreover, SDE also 
rescued pNrf2 and pAKT activation compared to the HG group 
(Figure  5A). We  further assessed pNrf2 activation by 
immunofluorescence staining. Figure 5B shows that the activation of 
Nrf2 was observed with SDE treatment. Our results indicate that SDE 
activates the Akt/Nrf2/HO-1 pathway, which further contributes to 
decreasing the ROS generated in a HG environment.

Scoparia dulcis L. extract inhibits the levels of 
pro-inflammatory cytokines in HG-stimulated 
ARPE-19 cells

Our results have shown that SDE significantly increased AKT 
activation (Figure 5A), and pAKT has previously been associated with 
inhibition of the NF-κB inflammatory pathway (25). To further 
evaluate the effect of SD extract on pro-inflammatory cytokines 
production, we performed ELISA and immunofluorescence staining 
analysis. We found that SDE treatment dose-dependently inhibited 
the expression of tumor necrosis factor-α (TNF-α) (Figure 6A) and 
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decreased the secretion of IL-6 (Figure 6B), IL8 (Figure 6C), and 
MCP-1 (Figure 6D) in the ARPE-19 cells exposed to HG. These results 
imply an anti-inflammatory effect of SD extract on HG-stimulated 
ARPE-19 cells.

Discussion

In recent years, in vitro cultures of human RPE cells have presented 
an attractive model for studying the physiology and pathophysiology of 
diabetic retinopathy (26, 27). The human RPE cell line ARPE-19 

exhibits epithelial cell morphology and expresses several genes specific 
to the RPE, which has been widely used as an alternative to primary 
RPEs and as an important model to study oxidative stress (28–30). 
However, ARPE-19 cells lose their RPE characteristics, such as the 
cobblestone appearance, polarity, and expression of RPE markers, after 
a few passages in the culture (31). Recently, some studies have shown 
that media conditions and length of culture time allow ARPE-19 cells 
to obtain a more native, physiological state. In the present study, the 
ARPE-19 cells grown in specialized differentiation DMEM media for 
6 months were compared to cells grown in standard DMEM/F12 media. 
As observed, cells differentiated for 6 months exhibited tight junction 

A

C

D

B

FIGURE 1

Effect of Scoparia dulcis L. extract (SDE) and glucose on the viability and apoptosis of ARPE-19 cells. (A) The ARPE-19 cells were treated with various 
concentrations (25 ~ 800 μg/ml) of SDE for 24 h, and the cell viability was analyzed by CCK-8 assay. (B) The effect of SDE (25 ~ 800 μg/ml) on the viability 
of ARPE-19 cells treated with high-glucose (HG-50 mM). (C) Cell apoptosis was determined by TUNEL assay. (D) SA-β-gal staining was used to detect 
the senescent cells. All results are representative of three independent experiments, and values are mean ± SD. Scale bars, 50 μm. (*p < 0.05, **p < 0.01 vs. 
control and #p < 0.05, ##p < 0.01 for HG vs. HG plus SDE).
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protein (ZO-1) and RPE-specific markers (RPE-65) expression 
(Supplementary Figure S2A). Furthermore, the RPE-65 expression level 
was also examined in the cells by Western blotting 
(Supplementary Figure S2B). According to the results 
(Supplementary Figure S2), we used the 6-month ARPE-19 to establish 
an in vitro diabetic retinopathy model, which showed the possibility of 
obtaining a more differentiated physiologically native RPE state. 
However, these differentiated cells did not reach the pigmentation 
observed in other studies; this may be due to different factors such as 
the passage number, the surface substrate they are grown on, and the 
media used.

Many studies show that oxidative stress and inflammation play a 
critical role in ophthalmic diseases (5, 6). Hyperglycemia can induce 
oxidative stress mainly through flux of the polyol pathway and 
hexosamine pathway induction, the hyperactivation of protein kinase 

C (PKC) isoforms, and the accumulation of advanced glycation end 
products (AGEs) (32, 33). On the other hand, hyperglycemia can 
repress the anti-oxidant defense system via epigenetic modification, 
resulting in an imbalance between the scavenging and production of 
ROS (34) Finally, excessive accumulation of ROS induces 
mitochondrial dysfunction, lipid peroxidation, cellular apoptosis, 
inflammation, and structural or functional alterations in retina (3, 35). 
Hence, it is critical to investigate and elucidate the oxidative stress-
related mechanisms of DR, which may provide multiple potential 
therapeutic targets to develop safe and effective treatments for DR.

Scoparia dulcis L. has been found to possess many pharmacological 
applications and biological activities, including anti-oxidative, 

A

B

FIGURE 2

Effect of Scoparia dulcis L. extract (SDE) on anti-oxidative stress with 
glucose treatment on ARPE-19 cells. The ARPE-19 cells were treated 
with SD extract (25, 50, 100, or 200 μg/ml) for 24 h, and following this, 
they were treated with 50 mM glucose for 24 h. (A) The intracellular 
ROS levels were measured by DCF-DA staining. (B) The mitochondria 
superoxide was measured by MitoSOX red. Scale bars, 50 μm. LG, low 
glucose; HG, high glucose; SDE, Scoparia dulcis L. extract. All results 
are representative of three independent experiments, and values are 
mean ± SD. Scale bars, 50 μm. (**p < 0.01 vs. control and ##p < 0.01 for 
HG vs. HG plus SDE).

A

B

FIGURE 3

Effect of Scoparia dulcis L. extract (SDE) on anti-oxidative stress 
product with high-glucose treatment on ARPE-19 cells. The ARPE-19 
cells were treated with SDE (25, 50, 100, or 200 μg/ml) for 24 h, and 
following this, they were treated with 50 mM glucose for 48 h. 
(A) Nitrotyrosine and (B) acrolein were detected using 
immunofluorescence (IF) imaging. The relative fluorescence signals 
of the IF image were quantified using ImageJ software. Scale bars, 
50 μm. DAPI, 4′,6-diamidino-2- phenylindole; LG, low glucose; HG, 
high glucose; SDE, Scoparia dulcis L. extract. All results are 
representative of three independent experiments, and values are 
mean ± SD. Scale bars, 50 μm (**p < 0.01 vs. control and #p < 0.05, 
##p < 0.01 for HG vs. HG plus SDE).
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anti-inflammatory, and anti-diabetic effects (17). To date, 
approximately 160 compounds have been identified from S. dulcis. 
Among them, 115 compounds may be related to the treatment of 
metabolic syndrome. Flavonoids and phenolics are the most important 
compounds in Scoparia dulcis L. In the present study, we identified the 
active compound of SDE, in accordance with the previous studies 

(19). Three compounds were identified, and the specific information 
of the compounds has been shown in Supplementary Table S2. 
β-cyclocitral is a main apocarotenoid of β-carotene, which are not only 
vitamin A components but also natural pigments and anti-oxidants 
(36). They are also involved in anti-oxidant signaling via the 
upregulation of various anti-oxidative enzymes such as superoxide 

A

B

FIGURE 4

Effect of Scoparia dulcis L. extract (SDE) on anti-oxidative enzymes with high-glucose treatment on ARPE-19 cells. The ARPE-19 cells were treated with 
SDE (25, 50, 100 m or 200 μg/ml) for 24 h, and following this, they were treated with 50 mM glucose for 48 h. (A) The protein expression of anti-oxidative 
enzyme protein expression levels catalase SOD1 and SOD2 in cells with HG treatment was determined by Western blot analysis. (B) The catalase 
activity was determined by ELISA kit. *p < 0.05, **p < 0.01 compared with the control cells incubated in the low-glucose medium; #p < 0.05, ##p < 0.01 
compared with the ARPE-19 cells incubated in HG.
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A

B

FIGURE 5

Scoparia dulcis L. extract (SDE) treatment inhibited high-glucose-induced inflammation, oxidative stress, and apoptosis by activating the Nrf2/ARE 
signaling pathway. After pretreatment with SDE (25, 50, 100 or 200 μg/ml) for 24 h, the ARPE-19 cells were incubated in a high-glucose (50 mM) 
medium for 48 h. (A) Protein expression of apoptosis-related protein expression levels pNrf2, pAKT, AKT, and HO-1 in cells induced by HG was tested 
by Western blot analysis. (B) pNrf2 were detected using immunofluorescence (IF) imaging. Scale bars, 50 μm. DAPI, 4′,6-diamidino-2- phenylindole; LG, 
low glucose; HG, high glucose; SDE, Scoparia dulcis L. extract. **p < 0.01 compared with the control cells incubated in the low-glucose medium; 
##p < 0.01 compared with the ARPE-19 cells incubated in HG.
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dismutases (SOD), catalase (CAT), and peroxidase (POD) (37). 
Despite the function of β-cyclocitral in animals remaining unknown, 
β-cyclocitral-induced anti-oxidative activity may play a role as a 

bioactive compound in SDE. On the other hand, acetylspermine 
belongs to the polyamines family, and it plays an essential role in the 
proliferation and development of mammalian cells. Moreover, 

A

B

D

C

FIGURE 6

Scoparia dulcis L. extract (SDE) treatment alleviates cell inflammation in ARPE-19 cells with high-glucose treatment. After pretreatment with SDE (25, 
50, 100, or 200 μg/ml) for 24 h, the ARPE-19 cells were incubated in a high-glucose (50 mM) medium for 48 h. (A) TNF-α immunostaining was detected 
using immunofluorescence (IF) imaging. (B) IL-6, (C) IL-8, and (D) MCP-1 expression of inflammatory mediators in a cell culture medium was assessed 
using an ELISA kit. *p < 0.05, **p < 0.01 compared with the control cells incubated in the low-glucose medium; #p < 0.05, ##p < 0.01 compared with the 
ARPE-19 cells incubated in the high-glucose medium. Scale bars, 50 μm. DAPI, 4′,6-diamidino-2- phenylindole; LG, low glucose; HG, high glucose; 
SDE, Scoparia dulcis L. extract.
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polyamines have been shown to protect against oxygen radical-
mediated damage or to serve as substrates for oxidation reactions that 
produce hydrogen peroxide (H2O2) (38). There has been no anti-
oxidant activity or anti-inflammation activity recorded by 1-methyl-
2-pyrrolidinone. Our study also indicated that SDE inhibits 
HG-induced apoptosis (Figure  1C) and inflammatory cytokines 
(Figure 6). The possible reason for the protective effects of SDE against 
oxidative stress and inflammation in ARPE-19 cells may be because it 
is rich in natural anti-oxidants.

In this study, we demonstrated that SDE inhibits HG-induced 
oxidative stress, inflammation, and cell apoptosis or senescence. As 
we know, ROS is involved in diabetes and its complications (39). 
Several studies have indicated that oxidative stress is one critical 
contributor to the pathogenesis of diabetic retinopathy (3). High 
oxygen consumption and an active metabolism are essential to the 
visual imaging function in the retina, which leads to the 
accumulation of ROS and promotes lipid peroxidation (40). Our 
results suggest that SDE extract treatment could reduce 
intracellular ROS (Figure  2A) and mitochondria superoxide 
production (Figure 2B) through induced anti-oxidative enzyme 
expression, such as catalase and HO-1 (Figures 4, 5). The aqueous 
extract of Scoparia dulcis L. can significantly reduce plasma lipid 
peroxidation and enhance CAT, SOD, glutathione peroxidase 
(GPx), and glutathione-S-transferase (GSH) activity in 
STZ-induced diabetic rats, and this was shown to be slightly better 
than glibenclamide treatment (21). To further reveal the underlying 
mechanism of the cytoprotective activity of SDE, Nrf2 activation 
and the expression of downstream anti-oxidant enzymes were 
investigated. Nrf2 is a redox-sensitive transcription factor that 
regulates many phase II anti-oxidant enzyme expressions, and the 
activation of Nrf2 is proved to be  one of the critical defensive 
mechanisms against oxidative stress (41, 42). There is increasing 
interest in the involvement of Nrf2/HO-1 in the progression of 
diabetic complications (41). Moreover, there has been considerable 
interest in developing Nrf2 activators for the treatment of diabetic 
retinopathy (42). It has been reported that Polygonatum sibiricum 
polysaccharides (PSP), an important component of Polygonatum 
sibiricum (PS) with anti-diabetic activity, promote Nrf2 and HO-1 
expression in ARPE-19 cells (26). In line with their study, we also 
demonstrated that SDE treatment enhances the HG-induced 
activation of the Nrf2/HO-1 signaling pathway.

The aqueous extract of Scoparia dulcis L. exhibited an anti-
inflammatory potential effect in the carrageenan or dextran-induced 
rat paw edema model (43, 44). There is no denying that 
pro-inflammatory cytokines/chemokines play an essential role in its 
pathogenesis, and many studies have indicated that anti-inflammatory 
medication could delay early DR (45–47). TNF-α has been previously 
detected in the retinas of diabetic rats and DR patients (24). Inhibition 
of TNF-α has been reported to suppress NF-κB activation and BRB 
breakdown (48). Induction of MCP-1 can induce the production of 
superoxide and other mediators, which leads to capillary obstruction, 
vascular leakage, and absence of perfusion in the pathogenesis of DR 
(27). Previous studies have demonstrated that IL-6, IL-8, and MCP-1 
not only initiate inflammatory responses but also promote 
angiogenesis, thereby stimulating DR progression (49–51). In 
addition, it has been reported that HG induces the secretion of 
inflammatory cytokines in ARPE-19 cells (52). In the present study, 
we  found that SDE alleviates IL-6, IL-8, and MCP-1 levels 

(Figures  6B,D), and we  also found that SDE alleviates TNF-α 
expression (Figure 6A), which was commonly observed in DR tissues 
(53) These results indicate that SDE may be a potential therapeutic 
agent for diabetes mellitus treatment.

There were a few limitations to our study. First, we treated the 
ARPE-19 cells with SDE before the high-glucose administration; 
therefore, we evaluated only the effects of SDE on the acute response 
of cells to high glucose but not on the cells that had already developed 
a certain degree of damage under the high-glucose environment. 
Previous in vivo studies have demonstrated that SDE administered 
after the induction of diabetes animal models can reduce the levels of 
plasma lipid peroxidation and enhance anti-oxidant enzyme activity 
(21). These results indicate that SDE may potentially be used for the 
treatment of high-glucose-induced damage, but further animal studies 
are needed to confirm the cellular responses of SDE administered after 
the occurrence of cellular damage. Second, we only used the CCK-8 
and TUNEL assays to determine HG-induced cell damage. 
Nevertheless, we used other ancillary tests, such as β-Galactosidase 
staining for cell senescence and immunostaining for oxidative lipid or 
protein products, to support our conclusions.

Conclusion

In this study, we  have demonstrated that SDE could protect 
ARPE-19 cells from apoptosis and senescence by inhibiting 
HG-induced oxidative stress and inflammation. In addition, we have 
demonstrated that the protective effects of SDE are mediated by the 
activation of AKT and Nrf2, which increase the expression of 
downstream phase II enzymes or anti-oxidative enzymes. Thus, SDE 
should be considered as a nutritional supplement that could benefit 
patients with diabetes, especially in preventing visual loss in DR.
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