
TYPE Review

PUBLISHED 18 November 2022

DOI 10.3389/fnut.2022.886244

OPEN ACCESS

EDITED BY

Etienne Challet,

Université de Strasbourg, France

REVIEWED BY

Mary Ann Asson-Batres,

Maine Medical Center Research

Institute, United States

Christopher Olson,

Midwestern University, United States

Natalia Kedishvili,

University of Alabama at Birmingham,

United States

William S. Blaner,

Columbia University, United States

*CORRESPONDENCE

Jian Xu

sonia0616@sjtu.edu.cn

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Nutrition, Psychology and Brain

Health,

a section of the journal

Frontiers in Nutrition

RECEIVED 28 February 2022

ACCEPTED 02 November 2022

PUBLISHED 18 November 2022

CITATION

Guo X, Wang H, Xu J and Hua H (2022)

Impacts of vitamin A deficiency on

biological rhythms: Insights from the

literature. Front. Nutr. 9:886244.

doi: 10.3389/fnut.2022.886244

COPYRIGHT

© 2022 Guo, Wang, Xu and Hua. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Impacts of vitamin A deficiency
on biological rhythms: Insights
from the literature

Xiangrong Guo1†, Hui Wang2†, Jian Xu1* and Hui Hua1

1Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child

Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong

University School of Medicine, Shanghai, China

Vitamin A is essential for brain function, in addition to its important roles in

vision, immunity, and reproduction. Previous studies have shown that retinoic

acid (RA), the bioactive form of vitamin A, is involved in the regulation of

various intracellular responses related to biological rhythms. RA is reported

to a�ect the circadian rhythm by binding to RA receptors, such as receptors

in the circadian feedback loops in the mammalian suprachiasmatic nucleus.

However, evidence of the impacts of vitamin A deficiency (VAD) on biological

rhythms is limited, andmost of the related studies were conducted on animals.

In this review, we described the physiological functions of biological rhythms

and physiological pathways/molecular mechanisms regulating the biological

rhythms. We then discussed the current understanding of the associations of

VAD with biological rhythm disorders/diseases (sleep disorders, impairments

in learning/memory, emotional disorders, and other immune or metabolism

diseases) and summarized the currently proposed mechanisms (mainly by

retinoid nuclear receptors and related proteins) for the associations. This

review may help recognize the role of VAD in biological rhythm disorders and

stimulate clinical or epidemiological studies to confirm the findings of related

animal studies.

KEYWORDS

vitamin A, biological rhythm, retinoic acid, retinoic acid nuclear receptor, brain

function

Vitamin A derivatives and signaling

Vitamin A is the first discovered fat-soluble vitamin and is primarily found in

animal products or converted from dietary carotenoids in plant products. It is not

a single compound but a group of derivatives including retinol, retinal, retinoic acid

(RA), and some carotenoids according to different terminal functional groups. In

general, vitamin A refers to retinol, while retinoid refers to a general term that includes

vitamin A metabolites and compounds and exhibits vitamin A-like biological activity

(1). Preformed vitamin A (usually from animal products) and provitamin A (including

beta-carotene, usually from plant-derived food) are the two forms of vitamin A in the

human diet. After being absorbed in the intestines, these two forms of vitamin A are

converted to retinol and then oxidized to form retinal and RA to support the biological
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functions of vitamin A. The retinyl ester is the storage form

of vitamin A in the liver and must be converted to retinol

before being utilized, and these vitamin A derivatives are finally

metabolized by CYP26 family enzymes (2, 3) (Figure 1). RA has

several stereo-isomeric forms, including all-trans RA (ATRA),

13-cis RA, and 9-cis RA, and isomerization occurs under

certain conditions (4). Together with its derivatives, vitamin

A is involved in regulating diverse life activities, including

cell proliferation and differentiation, vision, reproduction,

embryogenesis, and immune function (5). Retinoic acid

receptors (RARs) and retinoid X receptors (RXRs) are the

two families of retinoid nuclear receptors (RNRs), and each

family has three identified isotypes, namely, α, β, and γ (6).

ATRA binds only to RARs, while 9-cis RA is the main ligand

for RXRs and also has a binding affinity for RARs [Until

recently, 9-cis RA is reported to be only detected in the pancreas

(7, 8)]. RAR-RXR heterodimers form a functional structure

that allows them to regulate gene expression. By binding to

specific retinoic acid response elements (RAREs), RAR-RXR

heterodimers can regulate downstream gene expression (9).

When RA binds to RARs, the RAR-RXR dimers release the

co-repressor proteins and activate downstream gene expression

(10). However, when RA signals are not present, RAR/RXR

dimers bind to co-repressors and recruit inhibitors to suppress

the expression of downstream genes. Retinoid-related orphan

receptors (RORs) belong to the ROR subfamily. Similar to

RARs and RXRs in the gene sequence, RORs also have three

isotypes, namely, α, β, and γ (11), and the endogenous ligands

for RORs have not yet been confirmed. In addition to ATRA,

substances confirmed to bind RORs include steroids, terpenoids,

polyketides, and cardiac glycosides (12, 13). Since involved in

related physiological functions, RORs may be potential targets

Abbreviations: AANAT, arylalkylamine N-acetyltransferase; ARAT,

acyl-CoA: retinol acyltransferase; ATRA, all-trans retinoic acid;

BDNF, Brain-derived neurotrophic factor; BMAL1, brain and muscle

Arnt-like protein 1; CLOCK, circadian locomotor output cycles kaput;

CRF, corticotropin-releasing factor; CRY, cryptochrome; DHRS9,

short-chain dehydrogenase/reductase (SDR family) member 9; HPA,

hypothalamic-pituitary-adrenal axis; ipRGCs, intrinsically photosensitive

retinal ganglion cells; IRBP, interphotoreceptor retinoid-binding

protein; LRAT, lecithin:retinol acyltransferase; PER, Period; PVN,

paraventricular nucleus; RA, retinoic acid; RALDH, retinaldehyde

dehydrogenases; RARE, retinoic acid response elements; RARs,

retinoic acid receptors; RBP, retinol-binding protein; RDHs, retinol

dehydrogenases; REV-ERB, reverse erythroblastosis virus; RNRs, retinoid

nuclear receptors; RORs, retinoid-related orphan receptors; RORE,

ROR response element; RPE, retinal pigment epithelial; RXRs, retinoid X

receptors; SCN, suprachiasmatic nucleus; SWS, slow wave sleep; TTFLs,

transcription–translation feedback loops; VAD, vitamin A deficiency.

in the treatment of biological rhythm disorders and related

metabolic diseases (11, 14, 15).

Although vitamin A is present in a variety of foods, vitamin

A deficiency (VAD) is still a problem worthy of attention in

underdeveloped countries and regions in the world (16, 17).

VAD is associated with an abnormal RA signaling pathway

(18–20); for instance, the expression of RAR and RXR proteins

decreased in rats or mice fed with a VAD diet (21–23).

Animal studies also showed that prenatal VAD led to decreased

RARα and RARβ expression, while vitamin A supplementation

induced increased expression of RARβ (24). However, another

animal study reported that in the hippocampus of VAD rats,

the RARβ expression decreased, while the RARα expression

increased (25).

Physiological functions of biological
rhythms

Biological rhythms regulate various physiological,

biochemical, and behavioral processes in living organisms.

As an invisible “timer”, biological rhythms can influence daily

behavioral or physiological cycles, such as the sleep–wake cycle,

body temperature, and blood pressure. The circadian rhythm,

which is the most well-known biological rhythm, has been

widely studied.

In mammals, the circadian system can be divided into

the central clock and the peripheral clock. The central clock

is controlled by the suprachiasmatic nucleus (SCN) in the

anterior part of the hypothalamus directly above the optic

chiasm bilateral to the third ventricle (26), producing a central

rhythm. The spatiotemporal single-cell analysis revealed eight

major cell types (each with a specific pattern of circadian gene

expression) and five subtypes of SCN neurons (each with specific

combinations of molecules) in the mouse SCN, displaying

different circadian rhythmicity and light responsiveness (27).

Intercellular coupling mediated by neuropeptides helps produce

and maintain synchronous oscillation (28). The peripheral

clock is composed of peripheral oscillators located in various

peripheral tissues. Interestingly, the peripheral circadian clock

contains similar molecular regulation mechanisms as the

central circadian clock and is the basis for the normal

functioning of various peripheral tissues (29). The central

rhythm from the central clock can drive or synchronize the

peripheral rhythm through neuro-humoral pathways, while

the peripheral rhythm can, in turn, affect and regulate the

central rhythm through periodic activities such as daily diet

and sleep (30). In addition, the peripheral rhythm retains a

certain degree of autonomy (31). As a pacemaker of central

rhythm, the SCN can keep its own rhythm. Besides, the SCN

can also make responses and changes under the influence

of the external environment, such as light, food intake, and

social activities, so that individuals can adapt to the external
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FIGURE 1

Vitamin A metabolic pathway. ① β-Carotene 15,15’-dioxygenases; ② Retinol dehydrogenases (RDHs): RDH1, RDH10, and short-chain

dehydrogenase/reductase (SDR family) member 9 (DHRS9) (reversible reaction); ③ retinyl esterase; ④ lecithin: retinol acyltransferase (LRAT) or

acyl-CoA: retinol acyltransferase (ARAT); ⑤ retinaldehyde dehydrogenases (RALDH). RBP, retinol-binding protein; 9-cis RA: 9-cis retinoic acid;

ATRA, all-trans retinoic acid; RXRs, retinoid X receptors; RARs, retinoic acid receptors; RARE, retinoic acid response elements.

environment (32–34). Furthermore, SCN neurons synthesize

GABA, vasopressin, vasoactive intestinal peptides, and other

signaling molecules, which directly or indirectly regulate

the circadian release of hormones, including melatonin and

corticotropin-releasing factor (CRF), to bring the central rhythm

information to peripheral tissues. This provides the possibility
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for the association between biological rhythm dysfunction

and related disorders/diseases (35, 36). The coordination and

interaction between the central and peripheral rhythms are vital

for maintaining normal physiological functions. Disturbances in

the central or peripheral rhythm can lead to a wide range of

diseases (37, 38).

Roles of vitamin A in regulating
biological rhythms

Relationships between vitamin A and
biological rhythms

The associations between vitamin A and biological rhythms

were shown to occur in different organisms such as insects,

birds, and mammals (citations in Table 1). Vitamin A may affect

biological rhythms, including the central rhythm produced

by the SCN and peripheral cell rhythms. Evidence of the

effects of VAD on biological rhythms is limited, and all

related studies used nonhuman animals. A recent study

on monarch butterflies induced CRISPR/CRISPR-associated

protein 9-mediated targeted mutagenesis and found that

vitamin A in the brain, rather than in the compound

eye, functioned in photoperiod responsiveness and could

link the photoperiod cycle with a seasonal response (39).

Therefore, the impact on the central rhythm has become

a key issue when exploring the effect of vitamin A on

biological rhythms. Sherman et al. reported that with the

supplementation of ATRA, the amplitude and time phase

of the rhythmic gene expression in mouse liver cells were

significantly changed (40), suggesting a role of vitamin A

signaling in peripheral rhythms. However, Shirai et al. reported

that the expression patterns of clock genes in liver cells of

VAD mice remained unchanged, indicating that vitamin A

may not be essential for maintaining the peripheral rhythm in

mammals (41).

Although only animal studies have directly focused on the

effects of VAD on biological rhythms, human studies have

also explored the possibility of the correlation between vitamin

A or carotenoids and biological rhythmicity or chronotype

(but not directly on the effects of VAD, as shown in Table 2).

Previous human studies reported that lower vitamin A intake

levels were associated with disturbed wake–sleep cycles (42),

and crocetin (a natural carotenoid compound) supplementation

improved sleep time and quality (43–46). However, Asane

et al. did not find differences in serum vitamin A levels

between the groups with and without insomnia symptoms

in adolescent girls (47). Therefore, more human studies are

needed to confirm the relationship between VAD and biological

rhythm disorders.

Molecular mechanisms underlying the
associations of VAD with biorhythm
disorders

Although the exact mechanisms regulating biological

rhythms among different species are different, there are some

common features.

Dysfunctions of the transcription–translation
feedback loops (TTFLs, the molecular basis of
biological rhythm regulation) induced by VAD

Various clock genes and TTFLs constitute the molecular

basis of biological rhythm regulation in the SCN (48).

In mammals, the main molecules involved in the TTFLs

include heterodimeric circadian locomotor output cycles kaput

(CLOCK), brain and muscle Arnt-like protein 1 (BMAL1),

periods (PERs 1, 2, 3), cryptochrome (CRYs 1, 2), RORs

(α, β, γ), reverse erythroblastosis virus (REV-ERBs α/β), and

RARα/RXRα (40, 49–51). The binding of the E-box and

CLOCK/BMAL1 dimers (1) can activate the gene expression

of PERs and CRYs, and then the molecules of PERs and CRYs

form the PER/CRY complex and inhibit the CLOCK/BMAL1

dimer-dependent gene expression. The feedback loop in which

the genes of PERs and CRYs are involved is called the core loop

and (2) can also activate the expression of RORs and orphan

nuclear receptor REV-ERBs (52–54). The feedback loop in which

RORs and REV-ERBs are involved is called the stabilizing loop.

In the stabilizing loop, the accumulation of REV-ERBs and RORs

has different effects on the expression of the BMAL1 gene, and

the accumulation speeds of the REV-ERBs and RORs are also

different. Specifically, the accumulation of REV-ERBs is much

faster than that of the RORs (55). The RORs and REV-ERBs

competitively bind to the ROR response element (RORE) in the

upstream promoter region of the BMAL1 gene (11), and the

accumulation of REV-ERB molecules can inhibit the expression

of the BMAL1 gene, while the accumulated ROR molecules can

activate the expression of the BMAL1 gene (49, 50, 56). With the

combined effects of these molecules, the expression of the genes

related to biological rhythms is therefore regulated at multiple

levels (Figure 2).

Because of multiple factors in the core and stabilizing loops,

the duration of periodic change is about 24 h, forming an

endogenously driven oscillating biological rhythm (circadian

rhythm). Recent studies have shown that numerous cell types in

the body can express clock genes (57). For example, the rhythms

of smooth muscle cells can be affected by the changes in the

PER2 expression induced by RA (58). Therefore, the SCN acts

as the primary circadian oscillator, influencing and regulating

the rhythms of peripheral cells, and coordinating the central and

peripheral rhythms (59).
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TABLE 1 Animal studies on the association of vitamin A deficiency with biological rhythm dysfunctions.

Author Year Country Animal

classification

Measures Main findings

Rhythm dysfunction in the hypothalamus

Shearer et al. (110) 2010 England CD-1 mice,

Fischer 344

rats

The level of RA in

hypothalamus

The prolonged photoperiod regulated RA related

expression of synthetic enzymes and receptors

which led to enhancement of RA signal.

Helfer et al. (129) 2012 England Fischer 344

rats

RA activity levels in the

hypothalamus

RA activity levels in the hypothalamus of

photoperiod-sensitive Fischer-344 rats were

reduced in the short-day condition. These lower

RA activity levels could be explained by decreased

expression of a whole network of RA signaling

genes in the ependymal cells around the third

ventricle and in the arcuate nucleus of the

hypothalamus.

Rhythm dysfunction in the hippocampus

Golini et al. (86) 2012 Argentina Holtzman rats RARα and RXRβ expression

levels and the daily expression

patterns of clock BMAL1,

PER1, RORα and REVERB

genes

Vitamin A deficiency reduced the level of RXRβ

mRNA, changed the rhythm amplitude of the

PER1, REV-ERB genes and REV-ERB protein, and

phase-shifted the daily peaks of RORα protein as

well as BMAL1, RORα, RC3 and BDNF mRNA

levels.

Navigatore-Fonzo et al. (51) 2013 Argentina Holtzman rats The expression of Bmal1, Per1

and retinoic acid receptors

(RARs, RXRβ) genes

Vitamin A deficiency may affect the circadian

expression in the hippocampus by modifying the

rhythmic profiles of retinoic acid receptors.

Navigatore-Fonzo et al. (84) 2014 Argentina Holtzman rats Hippocampal clock genes

expression

Clock gene expressions affected by Vitamin A

deficiency.

Rhythm dysfunction in other brain tissues (such as the pineal gland)

Veerman et al. (130) 1983 Holland Phytoseiid

mite

Photoperiodic induction of

diapause

Carotenoids and vitamin A restored the

photoperiodic reaction in an eyeless predacious

mite.

Iiams et al. (39) 2019 USA The monarch

butterfly

Key circadian clock genes The vitamin A in the insect brain, which was

photoperiod/clock-regulated, mediated the

seasonal responses.

Chernysheva et al. (131) 2012 Russia Wistar rats The levels of PER1 protein Retinol supplementation increased the expression

of PER1 protein.

Fu et al. (132) 1998 Japan Japanese Quail Synthesis of melatonin in

pineal gland

Vitamin A deficiency decreased the response of

pineal gland to light and the variation of

melatonin in Japanese Quail, and vitamin A

supplement could restore their photoreactivity.

Circadian rhythm of peripheral tissues/cells

Shirai et al. (41) 2006 Japan Jcl: ICR mice Expression of clock genes in

the mouse liver

Vitamin A deficiency had no effects on the

circadian expression of liver clock genes in mice.

Dietary vitamin A was not essential for

maintaining peripheral rhythms in mammals.

Sherman et al. (40) 2012 Israel C57B1/6 mice The expression level of clock

genes in the serum, liver and

jejunum

ATRA could induce significant changes in the

amplitude and phase of the expression of rhythms

genes in the mice liver cells.

Shirai et al. (49) 2006 Japan NIH3T3 cells Expression of clock genes in

the NIH3T3 cells

RA bidirectionally regulated mPER1 gene

expression in a bidirectional and E-box dependent

manner.
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TABLE 2 Findings of epidemiological studies related to the associations of vitamin A or carotenoid with biological rhythms.

Author Year Country Study type Sample size Main findings

Vitamin A

Sato-Mito et al. (42) 2011 Japan Cross-sectional

study

3,304 The midpoint of sleep was calculated as the

midpoint between bedtime and wake-up time, and

lower vitamin A levels were associated with a later

midpoint of sleep. In addition, people with a later

midpoint of sleep tend to eat irregularly.

Gromadzińska et al. (133) 2012 Poland Cross-sectional

study

708 In the postmenopausal women, the plasma

vitamin A levels were significantly lower in

night-shifts workers compared with day-workers.

Carotenoid

Kuratsune et al. (43) 2010 Japan Crossover

Randomized

Controlled Trial

21 Crocetin is a type of carotenoid compound, and

the number of wakening episodes decreased after

taking crocetin.

Beydoun et al. (134) 2014 U.S.A. Cross-sectional

study

4,979 Short sleep time is associated with decreased

serum levels of total carotenoids.

Umigai et al. (44) 2018 Japan Crossover

Randomized

Controlled Trial

30 Delta activity during deep sleep determined sleep

quality. Compared with the control group, delta

power significantly increased in the group of

taking crocetin (an active constituent of saffron).

Lopresti et al. (45) 2020 Australia Randomized

Controlled Trial

placebo (n= 30),

saffron (n= 33)

The group that consumed saffron reported

reduced insomnia severity as well as the number

of wakes after falling asleep. Saffron also improved

alertness upon awakening and sleep quality scores.

Pachikian et al. (46) 2021 Belgium Randomized

Controlled Trial

placebo (n= 32),

saffron (n= 34)

Saffron extract can improve sleep time and make it

easier to fall asleep, and it is also beneficial to the

quality-of-life parameters.

Although the role of vitamin A in regulating biological

rhythms remains unclear, some studies have found that VAD

or vitamin A supplementation after deficiency may affect the

expression of various biological clock genes through nuclear

RA receptors and proteins, which may be the potential

mechanisms underlying the effects of VAD on the biological

rhythms. Navigatore-Fonzo et al. showed that VAD might

affect the transcription and post-transcription processes by

affecting the transcriptional regulation of CAT and GPx

mediated by RARs or RXRs, or by affecting the formation and

functions of the BMAL1/CLOCK heterodimer (60). Animal

experiments showed that with or without the presence of

RARα, ATRA could significantly downregulate or upregulate the

expression of the mouse PER1 gene and other circadian rhythm

genes in an E-box-dependent manner (49). The binding of

ATRA/9-cis RA to RXRα/RARα prevents the BMAL1/CLOCK

heterodimer from activating the transcription of PER2 (58).

These studies suggested that vitamin A and its derivatives

can bind to RARs and RXRs to inhibit E-box-dependent

clock gene expression mediated by the BMAL1/CLOCK dimer,

which is the core circadian rhythm regulation pathway in

the SCN.

Retinoid-related orphan receptors play an important role

in the regulation of the SCN rhythm and are closely related to

the RA signaling pathway. Both RORα and RORβ showed a

rhythmic expression pattern in the SCN, while RORγ was not

detected in the SCN (61). Mice lacking RORα or RORβ showed

an abnormal circadian rhythm, whilemice lacking RORγ did not

show an abnormal rhythm (56, 62, 63). Nevertheless, RORγ has

been found in several peripheral organs, such as the liver, and it

may play a role in the rhythm of peripheral tissues (64). Stehlin-

Gaon et al. found that under certain circumstances, ATRA

might reversibly bind to RORβ and activate the related gene

expression (65), but whether this finding remained under other

circumstances was queried by other studies (66). Considering

the important roles of RORα and RORβ in the feedback loops of

circadian rhythms and the extensive participation of RORα and

RORs in various life activities, it may be favorable to consider

the impacts of RORs in the relationship between vitamin A,

circadian rhythm, and related diseases/disorders.
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FIGURE 2

Clock genes and their transcription–translational feedback loops (TTFLs) at the cellular level (inside/outside the nucleus) in mammals. In the

core loop, CLOCK and BMAL1 dimers bind to the E-box, promoting the expression of the Per and Cry genes and, in turn, inhibiting the

CLOCK/BMAL1-dimer-dependent gene expression. In the stabilizing loop, the combination of the CLOCK/BMAL1 dimer and the E-box can

activate the expression of RORα and REV-ERB. The accumulation of the REV-ERB molecule can inhibit the expression of the BMAL1 gene, while

the accumulated RORα molecule can activate the expression of the BMAL1 gene (lower case italic characters and single wavy lines indicate

mRNA). (+)/→ means activating gene expression; (–)/T means inhibiting gene expression.

Changes in the light signal reception induced
by VAD and related circadian rhythm molecules

Vitamin A is essential for the normal physiological

functioning of the eyes, and VAD may affect biological rhythms

by affecting the reception of light signals. The light cycle is

the primary driver that affects biological rhythms (32, 67).

The light signals received by the retina are transmitted to the

SCN through a process of photoentrainment, whereby light

adjusts the central rhythm produced by the SCN to adapt to the

external light–dark cycle. The photoentrainment involves a type

of intrinsically photosensitive retinal ganglion cells (ipRGCs),

whose axons can be sent to the SCN, making the ipRGC a

potential photoreceptor for synchronizing biological clock to

the environmental day–light cycle (68–70). The retinal and RA

are the two main active vitamin A metabolites in the human

body. In addition to RA, the retinal formation will also be

impaired in the case of VAD. 11-cis retinal is the basic structure

of visual pigments, oxidized 11-cis retinal combines with opsin

to form rhodopsin in rod cells (71). Evidence indicates that

ipRGCs detect light with a vitamin A-based photopigment,

melanopsin. Melanopsin is a protein homologous to rhodopsin,

using 11-cis retinal as the light-absorbing chromophore. In

the vision process, under the light condition, 11-cis retinal

is isomerized into all-trans retinal and dissociates with opsin,

then reduction of all-trans retinal to all-trans retinol occurs,

and all-trans retinol is subsequently transported to the retinal

pigment epithelium (RPE). In the RPE, RPE65 protein helps

convert all-trans retinal to 11-cis retinal via the enzymatic steps

(72). In RPE65-knockout mice, the sensitivity of the ipRGCs is

significantly decreased, while the supplementation of exogenous

9-cis retinal, 11-cis retinal, and all-trans retinal can restore the

photosensitivity of ipRGCs, indicating that the photosensitivity

of the ipRGCs requires vitamin A-based chromophores (69, 73).

In the absence of light, oxidized 11-cis retinal is generated

again and quickly interacts with opsin to form rhodopsin.

Thus, protein conformational changes in a light–dark cycle can

convert light signals into electrical signals and transmit the

signals to the brain (74). Therefore, retinal may be reduced and

even lost in the light–dark cycle. However, the human body

cannot synthesize vitamin A by itself, so the supplementation

of exogenous vitamin A is needed to ensure the normal

circulation process. Therefore, vision loss or night blindness
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FIGURE 3

Molecular mechanisms underlying the e�ects of vitamin A deficiency on biological rhythm molecules. The dotted line denotes the lack of the

susbstance.

is a significant symptom in VAD cases (75), and a further

lack of vitamin A may disturb the entrainment of biological

rhythms. In addition, because retinal and RA have different

sites of action in the body, their effects on biological rhythms

are different, but associations between their effects still remain

unknown. In VAD cases, a lack of retinal affects the normal light

reception and light entrainment process in the eye, thus affecting

biological rhythms, while a lack of RA affects the expression

levels of rhythm-related molecules in the SCN and related

peripheral tissue cells, leading to rhythm-related disorders.

Although targeting different tissues or organs, they seem to

exert a comprehensive effect on biological rhythm dysfunctions

under VAD.

In zebrafish, interphotoreceptor retinoid-binding protein

(IRBP) mediates the transport of retinoids in photoreceptors

and RPE cells (76), and IRBP is expressed periodically, making

IRBP an intermediary molecule in the effects of vitamin A on

biological rhythms (77). In addition, the light cycle is easily

associated with the circadian rhythm of melatonin secretion

in the pineal gland. The light signals received by the SCN are

converted into hormone signals in the pineal gland to regulate

the rhythms of the whole body (78). Vitamin A is essential for
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the normal functioning of the pineal gland, and the circadian

synthesis of RA and its signal transduction components occur in

the pineal gland (79).

Changes in circadian rhythm molecules in the
hippocampus and pineal gland induced by VAD

The pineal gland is a special organ in the association of

vitamin A with biological rhythms. In the pineal gland, RA

synthesis and RA signal-related genes show circadian changes

(80). The pineal gland contains high levels of retinol and

retinol-binding protein (81). Animal studies have demonstrated

that vitamin A and its analogs may have potential genomic

and non-genomic effects on biological rhythm regulation in

the pineal gland. The transcription of the arylalkylamine

N-acetyltransferase (AANAT), encoding the rhythm-generating

melatonin synthetic enzyme, was upregulated under long-term

RA intervention (79), and the peaks of the rhythms of the

AANAT activity and melatonin level in VAD rats decreased

significantly at night (82). RA can rapidly downregulate

the phosphorylation of ERK 1/2 in the pineal gland of

rats, to quickly regulate the expression of related genes

and adapt to the real-time changing biological rhythms via

non-genomic effects (79). Vitamin A is necessary for the

process of the transmission of rhythmic signals from the

SCN to the pineal gland and induces melatonin secretion

(83), and the disturbance in this process may be one of

the mechanisms underlying the rhythm dysfunction induced

by VAD.

As a peripheral rhythm oscillator, the hippocampus has

its own rhythm while receiving signals of the central rhythm

regulation from the SCN. Animal experiments confirmed

that dietary VAD could affect the circadian rhythm and the

expression of endogenous rhythm genes related to exercise

in the rat hippocampus, changing the circadian rhythm of

RAR expression, thereby altering the circadian gene expression

rhythms of PER2, CRY1, and CRY2 (84). Another study

showed that the circadian expression rhythm patterns of RORα

and REV-ERB in the hippocampus of VAD rats changed

(85), indicating that vitamin A concentrations had effects

on the expression levels of RORα and REV-ERBα in the

hippocampus. The underlying mechanism may be that RARE

has been found in the regulatory regions of the BMAL1 and

RORα, and a decrease in RARs and RXRs caused by VAD

may lead to decreased signals acting on RARE; therefore,

decreased expression of BMAL1 and RORα may then be

induced. In addition, the regulatory regions of BMAL1, CLOCK,

PER1, and REV-ERB genes have the RORE element, so the

decreased RORα expression caused by VAD may further

reduce the expression levels of these genes and ultimately

affect the circadian rhythm in the hippocampus (11, 86)

(Figure 3).

Associations of VAD with biorhythm
dysfunction-related diseases

VAD and sleep disorders

It is well known that biorhythm disorders may present

with an abnormal sleep cycle, and evidence suggests that VAD

may adversely affect sleep, especially slow wave sleep (SWS)

related to photoperiod. The SWS is of great significance for

learning, memory, body growth, and repair (87). Under normal

circumstances, delta oscillations (0.5–4Hz) are common in a

state of deep sleep and are representative brain waves during

the SWS, while theta waves (4–7Hz) occur in the transition

between wake and sleep or lighter stages of sleep. Mice of some

strains with fragmented sleep had reduced delta activity and

increased theta activity during the SWS. The theta/delta (θ/δ)

ratio is used to better quantify the altered EEG pattern. Changes

in the relative contribution of the delta rhythm to the SWS

or the θ/δ ratio were found to be associated with the changes

in the expression levels of RARβ (88). Significant impairments

in delta oscillations were also observed in VAD mice (89).

Although these studies suggested the potential association

between VAD and sleep disorders, the use of vitamin A and its

bioactive derivatives in the treatment of sleep disorders caused

by biological rhythm dysfunctions warrants future studies.

VAD and learning/memory impairments

Both the rhythm-related genes (BMAL1, PERs, CRYs, and

REV-ERBα) and RA receptors (RARα, RARβ, and RARγ) in

the hippocampus have endogenous circadian rhythms (51, 60),

which is critical for maintaining normal physiological functions

of learning and memory (90, 91).

Retinoic acid plays a critical role in regulating neurogenesis,

neuronal survival, and synaptic plasticity (92, 93). VAD may

cause impairments in synaptic plasticity, learning, and memory

in rats (94). Previous studies have demonstrated that RARα

antagonists could damage long-term potentiation, indicating

that RARα receptors may be involved in synaptic plasticity and

the process of learning and memory (95). Prenatal marginal

VAD was found to induce decreased RARα mRNA levels in

the postnatal hippocampus (96, 97). Brain-derived neurotrophic

factor (BDNF) and neurogranin (RC3) are key molecules

involved in learning and memory, and BDNF and RC3 genes

have rhythmic expression patterns in the hippocampus. A

previous study showed that the VAD phase shifted the daily

peaks of RC3 and BDNF mRNA levels in the rat hippocampus,

affected their daily expression patterns, and might therefore

affect the daily cognitive performances in rats (86, 98). Some

interesting findings have been reported on crocetin. Crocetin is

a natural carotenoid compound (not provitamin A carotenoid)

and cannot be converted into vitamin A. However, studies have
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demonstrated that crocetin can promote the synaptic growth of

hippocampal neurons to promote neural plasticity and neuronal

communication (99), and plays roles in regulating learning,

memory, and sleep. As a kind of carotenoid with a structure

similar to that of carotene (the precursor of vitamin A), crocetin

and its functions are mentioned here to raise consideration or

inspire researchers to explore more possible functions of vitamin

A in the future (100).

VAD and emotional
disorders/neuroendocrine disorders

The hypothalamus may play an important role

in the association of VAD with biological rhythm-

related emotional/neuroendocrine disorders. The

hypothalamic-pituitary-adrenal (HPA) axis, which is composed

of the paraventricular nucleus (PVN) of the hypothalamus, the

anterior pituitary gland, and adrenal glands, controls reactions

to stress and plays a prominent role in regulating mood and

emotional statuses (101). CRF is a hypothalamic hormone and

a core driver of the HPA axis (102). With extensive regulatory

effects, RA signals can modulate the synthesis of CRF in the

hypothalamus, and abnormal CRF signaling induced by VAD

may affect the response of the body to stress, which may be

associated with the development of anxiety and depression

(103, 104). In addition, as a neuropeptide mainly synthesized by

the PVN and supraoptic nucleus of the hypothalamus, oxytocin

was found to play a role in modulating fear and stress responses

(105, 106). RARE has been found in the regulatory region of

the oxytocin gene (107); therefore, the decrease in RA signals

caused by VAD may lead to decreased oxytocin synthesis,

which may have potential associations with the development of

anxiety or depression (108). In addition, thyroid hormone and

RA had similar synthetic pathways and targets, and VAD may

affect the pituitary thyroid axis (109, 110). Specifically, vitamin

A is critical for iodine metabolism, and the 9-cis retinoic acid

receptor (RXR) is a common heterodimerization partner for the

thyroid hormone receptor (T3R). Therefore, VAD may lead to

increased thyroid hormone synthesis and thyroid enlargement

and aggravate the thyroid dysfunction caused by iodine

deficiency (111, 112). These findings suggested a potential

association between VAD and emotional/neuroendocrine

disorders. However, although both the HPA activity and the

oxytocin level in the brain have their own diurnal rhythms

(113, 114), circadian rhythm disorders may induce emotional

symptoms (115–117), and some clinically approved drugs

that are used to treat depression and anxiety were found

to play a role in regulating the biological clock (116, 118).

Future studies are still warranted to confirm whether biological

rhythm dysfunctions play a role in the association of VAD and

emotional disorders.

VAD and metabolism/immune
dysfunctions/cancers

In addition to regulating the expression of biorhythm genes,

RORs also play a crucial role in cell metabolism (lipid and

steroid), proliferation, apoptosis, migration, immunity, and

many other physiological or pathological processes (119–121).

Melatonin, which is a hormone closely related to biological

rhythms and mediated by RORα, regulates macrophage

polarization, thereby preventing the transformation of

atherosclerosis into cardiovascular and cerebrovascular events

(122). Moreover, RORα may inhibit the effects of melatonin on

testosterone synthesis inmice (123) and inhibit the proliferation,

invasion, and migration of liver cancer cells by downregulating

the chemokines (124). Since RORs constitute an important part

of the molecular mechanism of biorhythm regulation, it can

be speculated that RORs may be an intermediate step linking

vitamin A, biological rhythms, and various diseases, including

but not limited to metabolic syndromes, cardiovascular diseases,

cancers, and inflammations (125, 126). Therefore, RORs may be

a promising target for the treatment of immune, metabolic, and

other biorhythm-related diseases (127, 128).

Conclusion

In this review, we summarized the associations of vitamin A

with biological rhythms and the potential impacts of VAD on

biorhythm dysfunction, systematically described the potential

underlying mechanisms, and provided some novel insights

on the possible involvement of VAD in the development of

some biorhythm-related diseases/disorders. VAD may affect

the photo-response, sleep cycle, learning and memory, cell

metabolism, and induce related disorders/diseases relevant

to biological rhythm dysfunctions. Vitamin A and related

metabolites may bind with their receptors (mainly RARs) to

regulate gene expression (shown in the TTFLs), which may be

the primary material basis underlying the biological rhythm

dysfunctions induced by VAD. The possibility that RA signals

may bridge the gap betweenVAD, circadian rhythmdysfunction,

and related clinical disorders/diseases should be considered.

However, although RA is the main active metabolite of vitamin

A, and VAD is inevitably associated with abnormal RA signaling

pathway, there is still a possibility that other factors that affect

the functions of RA signaling pathways other than VAD may

exist. Thus, the associations of RA signaling pathways with

biological-rhythm disorders/diseases may not be exclusively

due to VAD, and whether VAD induces related rhythm

disorders/diseases via impaired RA signaling pathways warrants

confirmation, especially using human studies with randomized

controlled trials. More evidence of the influences of VAD on

biological rhythms and its detailed mechanisms is warranted,

which may be of great significance to clinical outcomes.
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