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This article considers the issue of assessing non-linearity in the relationship

between calorie consumption and income using non-parametric and semi-

parametric approaches. These methodologies are implemented on the

cross-sectional household survey data conducted in Pakistan in 2010–2011.

This framework takes account of the heterogeneity among families and

potential non-linearity in the relationship. The findings show that the calorie–

income elasticity is considerable and statistically significant across estimating

methodologies. The results also demonstrate that the elasticity is larger

for the substantially poorer households of the sample. By incorporating

the explanatory variables in a manageable way in the parametric section

of regression procedures, the semi-parametric analysis also reveals a slight

increase in calorie response to increases in income at various income levels.
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Introduction

One of the most significant issues affecting the impoverished, in both developed
and developing countries alike, is possibly inadequate nutrition. Malnutrition would
make people less productive and make them more susceptible to illness, both of
which would contribute to the continued poverty and further problems for the poor.
Calorie consumption has been demonstrated to have a substantial correlation with both
productivity and human health, making it one of the most significant aspects from
the perspective of policymakers (1). On the one hand, the human body needs calories
to preserve its natural metabolism. On the other hand, calorie consumption is the
top priority for policymakers when creating programs helpful for the underprivileged
parts of society. These policies, which are being implemented in various countries,
can be categorized as (i) basic food subsidies, (ii) cash transfers, (iii) food vouchers,
and (iv) conditional finance. The success of these policies is based on the strategy
used in designing the program (2) or the sensitivity of food demand to changes in
income (3). As a result, we decided to use calorie consumption as the subject of our
research in this work. The role of income in calorie consumption continues to generate
serious investigations, with contrasting results appearing throughout the literature. The
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debate regarding the size of the calorie–income relationship
is well-documented in the literature [details are given in (4)].
Recently, Santeramo and Shabnam (5) well-summarized this
debate by providing a meta-analysis of articles published on this
issue in several countries of the world. Most of the studies in
the literature used the parametric approach, while non-linear
specifications were also in many studies. Following Gibson and
Rozelle (6), only few studies used semi-parametric specifications
to deal with the non-linearity of the calorie–income relationship
(3, 7, 8).

Previous studies focusing on the parametric approach have
revealed that the relationship between income and calorie is
linear. While poleman (9) and Lipton (10) have argued that
the calorie–income curve may be elbow-shaped for samples
from the very poor category, indicating that share of food
budget initially increases with the increase in income for the
poor households. Similarly, Strauss and Thomas (11) reported
that elasticity for the lowest decile increased up to 0.26 and
then decreased to 0.03 for the highest decile. Thus, following
Ravallion (12), the literature generally agrees that the calorie–
income relationship is non-linear. It shows that with the increase
in income, per capita calorie consumption increases and then
tends to decrease with a further increase in income. However,
non-linear specifications such as the quadratic term of income
and expenditure may not always be appropriate to capture the
non-linearity or shape of the calorie–income relationship.

Another way to capture this non-linearity existing in
the calorie–income relationship is by using non-parametric
procedures. Non-parametric smoothing techniques represent
a set of flexible tools for analyzing unknown regression
relationships. These techniques can search for appropriate non-
linear forms that can best describe the available data and
also provide useful tools for parametric non-linear modeling
and helpful diagnostics.1 Gibson and Rozelle (6), Abdulai and
Aubert (13, 14), Skoufias et al. (15), Babatunde et al. (1),
Skoufias et al. (16), among others, used the non-parametric
approach to capture the potential non-linearity in the calorie–
income relationship. Although non-linear items in the calorie–
income relationship can be investigated using a non-parametric
technique in general, this approach is limited to bivariate
relationships. When we take into account the impact of
additional potential variables, the situation gets worse. The
“curse of dimensionality” refers to the issues related to this
non-parametric method. The precision of the non-parametric
estimator diminishes as the component of X grows. Thus,
some authors emphasize on this point and favor the use
of parametric estimates to examine the impact of additional
factors other than expenditure on the consumption of calories
and nutrients. But in this study, we prefer to use semi-
parametric regression methods to deal with the curse of
dimensionality. This article aims at contributing to the body of

1 Details regarding non-parametric regression methods are given in Li
and Racine (19).

knowledge regarding calorie–income estimation using current
advancements in semi-parametric estimation methods and
model selection as well (17) in order to address the non-linearity
problem mentioned beforehand.

In general, semi-parametric methods combine parametric
and fully non-parametric models in a specific mode. Semi-
parametric methods are supposed to impose assumptions that
are stronger than the fully non-parametric method but less
restrictive than the parametric method of estimation. This
allows the semi-parametric methods to trim down the effective
dimension of the estimation problem, thus increasing the
precision of estimation relative to that obtained by the non-
parametric estimation, while allowing greater flexibility and
lowering the risk of specification errors that are possible with the
parametric model. Semi-parametric methods represent some
widely accepted methods that provide a flexible estimation.
However, the use of the semi-parametric approach is still very
limited in the literature.

As a result, our goal in this article is to explore the calorie–
income link by employing non-parametric and semi-parametric
techniques for analyzing household survey data (2010–2011).
In a fully non-parametric regression framework, we used the
logarithm of per capita calorie intake conditional on the
logarithm of per capita expenditure, while in a semi-parametric
framework, some other control variables can be added. Here,
we consider the partially linear regression approach and the
semi-parametric single-index model from the family of semi-
parametric specifications. Several potential options such as
GAM specifications and parametric double-log specifications
are available, and we must choose among them. We used a
procedure proposed by Hasio et al. (18) to choose among
these various competing parametric, non-parametric, and semi-
parametric specifications.

Following the Introduction, in section “Methodology” of
the article, we give an overview of both the non-parametric
regression method and the semi-parametric regression
approach. Data, models, and descriptive statistics are presented
in section “Data.” Finally, in section “Results,” we present the
estimated results and contrast them with the parametric results
to draw conclusions about the study. Section “Discussion”
concludes the study.

Methodology

In this section, we provide an overview of the
estimation techniques used to explore the issue of the
calorie–income relationship.

Non-parametric estimation method

In the non-parametric method, no assumption is made
regarding the functional form of conditional mean function and
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assumed that r(x) satisfies the smoothness condition such as
differentiability. The technical detail is given in Li and Racine
(19). We use the local linear kernel regression to estimate r(x),
and the procedure for this technique is given as follows. At any
given point x, we run a weighted linear regression of Y on X.
The weights are chosen for the observations of Yi are higher
for which Xi is close to x than the observations which are far
from x. The estimate of r(x) is the predicted value from the
local regression at x, and the estimated slope coefficient of local
regression “β̂(x)” is considered an estimate of the slope r̂(x). Let
(h) be a sequence of positive numbers, known as the bandwidth
that converges to 0 as n→ ∞ .

Semi-parametric estimation methods

Previous studies used two methods to incorporate other
control variables in calorie demand models. For example,
Subramanian and Deaton (20) split the sample according
to household size and then estimated the non-parametric
regression for the calorie–income relationship within each
subsample. Strauss and Thomas (21) first used the non-
parametric locally weighted smoothing scatter plot technique to
capture the non-linear items in the calorie–income relationship
and then used the log-inverse of the quadratic term (parametric
functional form) to approximate the shape they observed in
their non-parametric framework. The major advantage of using
the parametric approach is that other potential control variables
can be added to the model. In this article, we implemented new
methods to incorporate the covariates into the non-parametric
model that are semi-parametric methods, as follows: semi-
parametric partially linear regression method (two or three
studies implemented this methodology, as mentioned before)
and semi-parametric single-index method (none of the studies
in literature implemented this approach).

Partially linear model
The semi-parametric partially linear regression model

combines both non-parametric and parametric components and
is given as follows:

Yj = X′jβ + G(Rj)+ uj, j = 1, ..., n (2.1)

where Xj is q× 1 vector, β is q× 1 vector of unknown
parameters, G is an unknown function, and Rj ∈ Zp . The finite-
dimensional parameter β represents the parametric part, and
the unknown function G (.) represents the non-parametric part
of the model. The data are supposed to be independent and
identically distributed random variables (i.i.d) that are given as
follows:

E
(
uj|Xj,Rj

)
= 0 (2.2)

E
(

u2
j |Xj = x,Rj = r

)
= σ2 (x, r) (2.3)

In the partially linear model, the foremost issue is the
identification of β ; once this is carried out, an estimator
of G (.) can be easily obtained. The partially linear model
was first proposed by Robinson (22), and then Li and Racine
(19) extended this work to handle the presence of qualitative
variables in this model.

Single-index model
A semi-parametric single-index model has a form of a

conditional mean function given as follows:

Y = G(X′β) (2.4)

where Y is the dependent variable, X ∈ Zp is the vector of
covariates, β is an unknown parameter vector of order p× 1,
and G is an unknown function. The quantity X′β is known
as single index as it is scalar, even though x is vector. From
Equation (2), we can see that our model is only a function of
X′β because when the functional form of G (.) is unspecified,
then the location parameter α cannot be identified. This implies
that Y depends on x only by the way of linear combination of
X′β , and the relationship is characterized by the link function G
(.). Thus, the main statistical issue is to estimate G and β from
the data (Y,X). Model (2) involves many widely used parametric
models as special cases. Such as, if G is the identity function,
then (2) is the linear model. If G is observed to be cumulative
normal or logistic distribution, then Equation (2) is a discrete-
choice logit or probit model. In a case where Gis unspecified,
Equation (2) gives a specification that is more flexible than
a parametric model. Thus, the semi-parametric single-index
model just like the partially linear model is designed to lessen
the effects emerging due to the curse of dimensionality.

Identification condition

For the estimation of β and G, some restrictions are required
for their identification. That is, β and G must be obtained
through the population distribution of (Y, X), as follows:

E [Y|x] = G
(
x′β
)

(2.5)

The identification conditions for the single-index model
were first investigated by Ichimura (23), and then in the case
of the binary response model, Manski (24) and Horowitz (25)
presented identifiability conditions for the single-index model.
The identification of β and G in a semi-parametric single-index
model requires that

(a) G(.) cannot be a constant function; otherwise, β
is not identified.

(b) Perfect multicollinearity is not permissible among
components of x.

(c) x should include at least one continuous random
variable. The intuition behind this can be explained by the
following reason. Suppose x has only a binary (0–1 dummy)
variable, then the range of x is finite as well as the range
of X′β for any vector β . Of course, there exists an infinite
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number of functions G(.) and β vectors that satisfy the finite
number of restrictions imposed byE [Y|x] = G

(
x′β
)
. For more

details, refer to the study by Horowitz (25), who explained this
condition for a specific example.

(d) x should not include a constant term (intercept)
as long as β does not include the location parameter. It
should only be identifiable up to a scale. For example,
E [Y|x] = G

(
x′β
)

and E [Y|x] = G∗
(
λ+ θx′β

)
are observa-

tionally equivalent models, where λ and θ are both arbitrary
and not equal to zero and G∗ is defined by the relation
G∗ (λ+ θω) = Gω for all ω in the range of X′β . So, β and
G cannot be identified, unless we imposed the restrictions
that uniquely identify λ and θ . The restriction imposed on
λ is called location normalization and involves that X should
not include the intercept term. The restriction on θ is called
scale normalization, and this can be attained by assuming the
first component of X is equal to 1, that is, β has unit length
(||β|| = 1), and this component is assumed to be continuous.

Ichimura’s method

Several estimation methods are available to estimate β , but
we describe the estimation method proposed by Ichimura (23)
and used this method for analysis. If the function G were
specified, then Equation (2.5) would be a standard non-linear
regression model and β could be estimated through a non-linear
least square (NLS) method with possible weights by minimizing
∑n

i=1

[
Yi−G

(
X′i β

)]2 with respect to β . Then, the estimator would

be as follows:

β̂ = arg min
β̂∈Za

n∑
i=1

η (Xi)
[

Yi − G
(

X
′

iβ
)]2

(2.6)

However, if the function G is unknown, then we first need
to estimate G(.). In this situation, the kernel method cannot be
directly applied to estimate G

(
X′β

)
because both β and β are

unknown. In this situation, we can estimate Yi = G
(
X′β

)
+ εi

and E (εi|Xi) = 0 for a given value of β by using the kernel
method, which is given as follows:

G
(
X′iβ

)
≡ E

[
Yi|X′iβ

]
= E

[
g
(
X′iβ

)
|X′iβ

]
(2.7)

If β = β̂G
(

X
′

iβ
)
= g

(
X
′

iβ
)

, then G
(

X
′

iβ
)
6= g

(
X
′

iβ
)

if

β 6= β̂ in general. A leave-one-out non-parametric kernel
estimator of G

(
X
′

iβ
)

is given as follows:

Ĝ−i
(
X′iβ

)
≡ Ê−i

(
Yi|X′iβ

)

=

(
nh
)−1 ∑n

j=1,j 6=i Yj

(
X,j−X

′

i β

h

)
ŝ−1

(
X′iβ

) (2.8)

ŝ−i

(
X
′

iβ
)
=
(
nh
)−1 ∑n

j=1,j6=1 k
(

X
′

j−X
′

i β

h

)
. Thus, Ichimura

(23) suggested the estimation of G
(

X
′

iβ
)

by replacing with

the leave-one-out estimator Ĝ−i

(
X
′

iβ
)

and choosing β using
the semi-parametric NLS method. In this method, Ichimura
also used a trimming function to trim out the small values of
ŝ−i

(
X
′

iβ
)

. Consider the following:

Aυ =
{

s(x′β) ≥ υ,∀βB
}

(2.9)

Am =
{

x :
∣∣∣x− x

∗
∣∣∣ ≤ 2h for some x

∗

∈ Am

}
(2.10)

υ > 0 is a constant, B is a compact subset in Zp, Aϑ ⊂ Am

as n→∞, h→ 0 than Am get smaller too Aϑ . Thus, Ichimura
(23) estimator is as follows:

β̂I = arg min
β

n∑
i=1

[
Yi − Ĝ−i

(
X′β

)]2
η (xi) 1 {Xi ∈ Aϑ }

(2.11)
η(Xi) is a non-negative weight function that is bounded

in Aϑ , I(.) is an indicator function, 1 {Xi ∈ Aϑ }is a trimming
function that equals 1 if Xi ∈ Aϑ , or zero otherwise. The
trimming function provides guarantee that the random
denominator in the kernel estimator is non-negative, with high
probability so as to simplify the asymptotic analysis.

Model specification test

The Hsiao test is based on the moments that hold value zero
if a parametric specification (H0) is correct, or greater than zero
otherwise. In this case, the null hypothesis is given as follows:

Ha
0 = E(Y|x) = θ(x, β0) = 1 for some β0 ∈ B ⊂ Zp

where θ(x, β0) is a known function with β0 as a vector of
unknown parameters of order p× 1. Under the alternative
hypothesis, we have a function that is negation of Ha

0 :

Ha
1 = E(Y|x) = m(x) 6= θ(x, β0) < 1 for all β0 ∈ B

The test statistics are based on I = E{UE(U|X)f (X)}, where
U = Y − θ(x, β0) is independently proposed by Fan and Gijbels
(26) and Zheng (27). Consider that I = E{[E(ui|xi)]

2f (xi)} ≥ 0
and I = 0 if the null hypothesis is true. Thereby, I is a valid
candidate for testing Ha

0 . The sample analog of I is given as
follows:

In =
1
n

n∑
i=1

ûiÊ−i(ui|xi)f̂−i(xi)

=
1
n

n∑
i=1

ûi{n−1
n∑

j=1,j 6=i

ûjKω,ij}

=
1

n2

n∑
i=1

n∑
j=1,j 6=i

ûiûjKω,ij (2.12)
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where ûi = yi − θ(xi, β̂) is the residual of the parametric
null model, β̂ is

√
n consistent estimator of β ,

Kω,ij = Mh,ijWγ,ij(ω = (h, γ )), and Ê−i(ui|xi)f̂−i(xi) is the
leave-one-out kernel estimator of E(yi|xi)f (xi). A CV method
is used for the selection of h and γ , and În is used to denote
the CV-based test and can be defined the same way as In in
previous equation but replacing them (h1...hq, γ1...γr)with CV
smoothing parameters(ĥ1...ĥq, γ̂1...γ̂r). The rejection region for
the test at the α level of significance is Jn > cα , and the critical
value cα can be obtained by the wild bootstrap method. For
detail about the wild bootstrap method, see the monograph
of Li and Wang (28), Li and Racine (19, pp. 357), and Hsiao
et al. (29).

Data

This study uses data of Household Integrated and Economic
Survey (HIES) 2010–2011 (30), carried out from July 2010 to
June 2011. The sample comprises 16,341 households and is a
nationally representative survey covering 14 large cities and
81 districts, as well as urban and rural areas. The HIES also
reports information on a variety of social issues, including
education, health, employment and income, immunization, use
and satisfaction with facilities and services, and household
consumption and details. In the consumption module, the
survey collects information on the quantities and values of
69 food items, and along with this, the survey also records
information on 79 non-food items. The food consumption
module of the HIES provides the main data for our analysis.

To compute the calorie consumption amount from the
reported food quantities, we applied the conversion factors from
Food Composition Table for Pakistan (31), which contains data
on nutrient contents for various food items [for details of data
extraction, refer to the study by (4)]. For example, the nutrient
consumed of a particular type like calorie is as follows:

N 6θiQi

where N is the quantity of the particular nutrient consumed, θ i
is the average nutrient content of a unit of food i, and Qi is the
number of units consumed of food i (4).

For the purpose of analysis, we have Y (the response
variable) as logarithm of per capita daily calorie consumption,
and control variables on the right-hand side are logarithm of
per capita expenditure (ln_PCME), household size (HHsize),
gender of household head (F_HHH), age of the household
head (Age_HHH), and employment status of the household
head (E_Status). There are also other potential variables
that can be used, but we used the dimension reduction
method named least absolute shrinkage and selection operator
(LASSO)2 method to select the variables to better explain

2 Codes and results from LASSO can be provided on request.

these estimation procedures. The flaw of the non-parametric
method of considering only the bivariate relationship can be
handled by using semi-parametric methods by including other
covariates in the model in a tractable manner, but, in our
study, explanatory variables were around 26, and data size was
also large enough, so it is not feasible to include the entire
set of variables in the semi-parametric method and obtain the
results. Thus, we used LASSO as a variable selection procedure
in order to ease the computational burden and increase the
prediction accuracy.

Stepwise regression normally chooses models that include
just a subset of the variables, while ridge regression includes all
variables in the final model, and the penalty factor (θ) in ridge
regression shrinks the coefficients toward zero but does not set
any of the coefficients exactly to zero and does not exclude
any of those from the final model (32). The LASSO overcomes
this disadvantage of ridge regression. The LASSO minimizes the
quantity as follows:

n∑
i=1

yi − β0 −

q∑
j=1

βjxij

2

+ θ

q∑
j=1

∣∣βj
∣∣

RSS+ θ
q∑

j=1

∣∣βj
∣∣ (3.1)

Statistically, the LASSO uses an `1 norm and a coefficient
vector associated with this norm is as ||β||1 =

∑∣∣βj
∣∣ . The

LASSO not only shrinks the coefficients toward zero but
also forces to be exactly equal to zero when parameter
θ is sufficiently large. Consequently, the model generated
can be easily interpreted and produced by ridge regression
[for more details, see (32)]. We first used LASSO for the
variable selection in the linear model in this study, then
we used the same set of explanatory variables (excluding
expenditure variable) for the parametric part in semi-
parametric methods.

Results

A sample of 16,290 households were used for the
analysis. Descriptive statistics for the variable used in
the study are given in Table 1. For non-parametric
estimation, we restricted our analysis to only per capita
expenditure and used it as the independent variable to
avoid the curse of dimensionality. The results obtained
from LASSO show that per capita expenditure first enters
the model. Then, E_Status, shortly followed by F_HHH,
HHsize, and Age_HHH, simultaneously enters in the
model.

The models that we estimated are as follows:
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TABLE 1 Summary statistics of the variables used in
semi-parametric models.

Variables Mean Standard deviation Minimum Maximum

ln_PCDCC 7.86 0.28 6.43 8.98

ln_PCME 7.94 0.53 6.21 11.64

HHsize 6.68 3.04 1.00 25.00

F_HHH 0.08 0.27 0.00 1.00

Age_HHH 46.20 13.23 45.00 75.00

E_Status 0.20 0.40 0.00 1.00

E
(
Y| ln _PCME, regressors

)
=

β0 + β1. ln _PCME+ β2.HHsize+ β3.F_HHH+

β4.Age_HHH+ β5.E_Status (4.1)

E
(
Y| ln _PCME, regressors

)
=

G(β1. ln _PCME+ β2.HHsize+ β3.F_HHH+

β4.Age_HHH+ β5.E_Status) (4.2)

E
(
Y| ln _PCME, regressors

)
=

β1.HHsize+ β2.F_HHH+β3.Age_HHH+

β4.E_Status+m(ln _PCME) (4.3)

E
(
Y| ln _PCME

)
= r(ln _PCME) (4.4)

where G,m, and r are unknown functions, and β ’s are unknown
model parameters that may have different values in different
models. Model (4.1) is a parametric model; model (4.2) and
(4.3) are semi-parametric in nature, particularly model (4.2)
is a single-index model and (4.3) is a partially linear model;
and model (4.4) is fully non-parametric. For model (4.1),
the parameters were estimated by using the standard OLS
method. In the semi-parametric single index model, scale
normalization was attained by setting β1 = 1 using the non-
linear least square method of Ichimura (23). This method uses
a kernel estimator to estimate the unspecified function G. In
the case of partially linear regression model, E

(
Y| ln _PCME

)
and E(regressors| ln _PCME)were estimated by local linear
regression using the second-order Gaussian kernel.

K(w) = exp (−Z2/2)
/

2
√
π

where z = (xi − x)
/

h and h > 0. The fully non-parametric
model (4.4) was estimated by using the local linear kernel
method, and the method of least square cross-validation was
used for the bandwidth selection in all estimation methods.

Non-parametric results

The calorie–expenditure curve in Figure 1A is positively
sloped, then slightly flattens, and last demonstrates a sudden dip
for very high-income group of expenditure distribution, but not
flattens out at the tail. The possible reason for the dip could be
the presence of outliers at the tail or the fact that the tail behavior
in the non-parametric regression is not always good because of
having few observations in the tails (33). Only 10% of the sample
belongs to a very high-income group, and this may be the reason
that the curve is not flattening out and showing a decreasing
trend at the tail.

The gradients related to the non-parametric regression
model provide a noticeable picture of the relationship. The
gradients are shown in Figure 1B, which also shows 95%
confidence bands for the gradients of the local linear non-
parametric regression. Its shows the local linear fit by using a
second-order Gaussian kernel method, with a CV bandwidth
of 0.378 and bootstrapped standard error to construct a
95% confidence interval. The bootstrap procedure does not
consider the cluster effect, thereby correcting the possible
heteroscedasticity in errors. The procedure of bootstrapping
was performed with 50, 100, and 200 replications, but in all
procedures, the confidence bands obtained from standard errors
were identical. Efron and Tibshirani (34) suggested that 200
replications are enough for the estimation of standard errors.
In our case, the bands were fairly tight around the lower and
middle of the regression and wide at the upper tail.

The income elasticity of calories with bootstrap standard
error in Figure 1B shows that the curve slopes downward,
which means calorie consumption falls less rapidly for poorer
households because their income constraints either the quantity
or quality of their food budget. The overall representation of this
simple bivariate relation by using the non-parametric estimation
method implies that calorie–income elasticity is statistically
different from zero for almost all income levels, except for the
very high-income level, where income elasticity is negative and
insignificant, and it shows that local linear regression estimates
the relationship with relative precision. We also ran a parametric
regression of the log per capita daily calorie consumption on log
of per capita expenditure to determine how well it demonstrates
the true relationship by using the non-parametric model.

Semi-parametric results

This section describes the results of semi-parametric
regression methods. Table 2 shows the β parameter estimates of
models (4.1–4.3). To get a clear picture as compared to the point
estimate, we semi-parametrically modeled the relation between
calorie consumption and expenditure for a given parametric
specification of the effect of household characteristics on
consumption of calories. The basic aim, throughout the analysis,
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FIGURE 1

Non-parametric estimation of calorie–income relationship. (A) Calorie–expenditure curve and (B) income–calorie elasticity.

TABLE 2 Parameter estimates of parametric and semi-parametric methods.

Independent variables Parametric model Partially linear model Single-index model

Constant 5.658*** (0.359) – –

ln_PCME 0.307*** (0.005) – 1

HHsize −0.007*** (0.001) −0.005*** (0.001) −0.010*** (0.002)

F_HHH 0.027*** (0.007) 0.033*** (0.006) 0.082*** (0.028)

Age_HHH −0.001*** (0.000) −0.002*** (0.000) −0.002*** (0.001)

E_Stauts 0.175*** (0.004) 0.162** (0.004) 0.376*** (0.010)

R2 0.371 0.41 0.42

Standard errors are within parentheses. *, **, and *** indicate statistical significance at 10, 5, and 1%, respectively.

is to explore the response of calorie consumption over a range of
income distribution to income changes, rather than at a single
point.

The income elasticity of calorie consumption is lower
in multivariate parametric regression than in the bivariate
regression model with the per capita expenditure as the only
regressor (0.32). Indeed, there is a small difference between
the parametric and partially linear estimates, but there is a
relatively higher difference between parametric and single-
index estimates.

Figure 2 shows the elasticity for different levels of income
distribution and also demonstrates a higher and statistically
significant estimate for the lower income group. The figure
shows that expenditure elasticities are less than unity and remain
fairly constant between 0.7 and 0.8 over a range of the low-
income group. It is only at levels of Y above the sample
mean of monthly per capita expenditure of Rs. 2,596 (in terms
of log as 7.2). This elasticity decreases with the increase in

income, and beyond the mean income, it begins to decrease
and then becomes insignificant (as zero line is included in the
confidence band). One possible reason for income elasticity
being not statistically different from zero for the higher income
group could be their interest in non-nutritive attributes of food
items (33). Overall, the picture illustrates the fact that calorie
consumption will improve with the change in income for poorer
households as compared with their rich households. This result
is consistent with the study of Subramanian and Deaton (20),
Gibson and Rozelle (6), Tian and Yu (7), Nie and Sousa-Poza
(8), and Trinh et al. (3). Trinh et al. (3) used semi-parametric
specifications belonging to the family of generalized additive
models to estimate the relationship for China and Vietnam.
We also observed that the plot of non-parametric and semi-
parametric regressions is almost the same in scale and shape, and
this is consistent with the study of Bhalotra and Attfield (35) and
Roy (33).
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FIGURE 2

Semi-parametric partially linear estimation of calorie–income relationship.

However, in terms of point estimate, the average elasticity is
slightly higher in the semi-parametric partially linear regression
model than in the fully non-parametric regression model. It
shows that by adding covariates to the model causes only a
small increase in the elasticity of calories. Moreover, Gibson
and Rozelle (6) showed a slightly downward shift in elasticity
estimates by adding covariates in the semi-parametric model.
The coefficient of per capita expenditure in the single-index
model is set by normalization. Thus, the eminent feature of
the single-index model is that E(Y|regressors) is constant along
curves such as ln _PCME+ β2.x2 + β3.x3 + β4.x4 + β5.x5 is
constant for the parameter β . The curve in Figure 3 shows that
the index is increasing and has a similar trend as in the non-
parametric model but has a fluctuating behavior at the upper
end of the tail. However, providing an average value for non-
parametric and semi-parametric models really wipes out the
significant contribution of this kind of analysis.

The household size has a negative magnitude in all models
(Table 2). It shows that economies of size decrease the calorie
consumption by 0.5–1 in the percentage point. Similarly, age of
the household head has a negative effect on household calorie
consumption. Gender of the household head also has a positive
and significant effect on calorie consumption. Results reported
in Table 2 show that a female household head increases the

calorie consumption by 3–8% compared with a male household
head. In addition to this, if a household head is employed, then
the head will perform better care of welfare of the members of
household in terms of increasing calorie consumption. Finally,
the last row in Table 2 provides the goodness of fit of the
parametric and semi-parametric models. The value of R2 shows
that the parametric fit is poor compared with the fit of semi-
parametric models, and the single-index model has a better fit
than the partially linear model. Thus, the single-index model
emerges out to be a better specified semi-parametric model on
the basis of goodness of fit.

We have also used some formal specification model tests
(6.37–6.40) based on residual analysis for the purpose of
comparison among models. Many procedures are available
for testing a parametric model against its non-parametric
alternative, but here, we used the test proposed by Hsiao et al.
(29) due to its number of desirable properties in comparison
to others. Hsiao et al. (29) proposed a non-parametric kernel-
based model specification test and used a cross-validation (CV)
method of bandwidth selection. This test used a residual-based
wild bootstrap method to approximate the null distribution of
the test statistics.

In our case, the implication of Hsiao’s test rejects the
parametric model against the non-parametric model at the 1%
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FIGURE 3

Semi-parametric single-index estimation of calorie–income relationship.

level of significance (Jn: 78.596, p < 0.001) and turns out to
be significant for the non-parametric regression model. This
formal specification test shows that the non-parametric model
outperforms the usual parametric model, and this result is
consistent with the results of the informal graphical analysis, as
shown in Figure 1.

We also used Hsiao’s test to test the significance of
semi-parametric methods with the parametric model in the
null hypothesis, and again, this specification test rejects the
parametric model (Jn: 12.032, p < 0.001) and supports the
implication of semi-parametric methods. Thus, the formal test
is consistent with the informal graphical analysis, as shown in
Figures 2, 3. This result is consistent with the findings of Trinh
et al. (3), although they have used a preference test for model
selection.

Discussion

Non-parametric and semi-parametric estimation methods
have attracted a great deal of attention from statisticians in the
last decade. Horowitz and Lee (36) reported that the expediency
of semi-parametric models in applied statistics is not well-
understood in the literature yet, and any new application of
semi-parametric models will generate valuable additional piece
of information about these models. This article sheds light on
the non-parametric and various semi-parametric estimators and

demonstrated them with an application of consumption survey
data (2010–2011) to identify the calorie–income relationship.

The analysis reported in this article shows that non-
parametric and semi-parametric estimation methods achieved
the proposed goal to capture the non-linearity in the
calorie–income relationship. The fully non-parametric estimate
embodies the true conditional mean function up to random
sampling errors. Figure 1B shows a downward trend from
the lower tail to the upper tail and demonstrates that calorie
consumption decreases less rapidly for poorer households. Of
course, the slopes at the extreme of the distribution are quite
imprecisely estimated, but at the median level of expenditure,
the slope is around 0.40 and is precisely estimated. However,
it shows that local linear kernel regression estimates the
relationship with relative precision. In addition to this, the
article demonstrates the implication of two classes of semi-
parametric regression: One is the partially linear model and
the second is the single-index model. The plot of partial linear
regression (Figure 2) shows that calorie consumption improves
with the change in income for poorer households as compared
with their rich counterparts. This result is consistent with the
findings of Subramanian and Deaton (20) and Gibson and
Rozelle (6), Tian and Yu (7), Nie and Sousa-Poza (8), and Trinh
et al. (3). While the curve in Figure 3 shows that the index is
increasing and has a similar trend as the non-parametric model
but has a fluctuating behavior at the upper end of tail. Last, the
comparison of non-parametric and semi-parametric estimation
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methods with the parametric method shows that the parametric
fit is poor compared with the fit of the semi-parametric models,
and the single-index model has a better fit than the partially
linear model. Thus, the single-index model emerges to be a
better specified semi-parametric model on the basis of goodness
of fit. Moreover, the study revealed that fully non-parametric
and semi-parametric models highlight the significant feature of
the calorie–income relationship, which was not accounted for by
using the parametric model.

Strength and limitations

The calorie–income elasticity was calculated using
information from a household survey. Otherwise, it would not
have been possible for us to obtain comprehensive nutritional
data from a large sample from different locations throughout
Pakistan. In addition, this study concentrated on households in
which the daily caloric intake ranged from 600 to 8,000 kcal.
However, because of the sizeable sample size and thorough
measurement of the overall calorie intake, this study was able to
generate accurate estimations and significant insights into the
general nutritional condition of the Pakistani population. From
the methodological point of view, this study contributes to the
literature the applying the single-index model and providing a
test for model specification. The data used in the study are cross-
sectional for a single year, but these methods can also be used
for multiple waves of data from 2010 onward to get complete
insights into the calorie–income relationship. We restricted
the analysis to the calorie–income relationship, but the same
methodology can also be applied to explore this relationship
across different food groups, region-wise as well as gender-wise.

Policy recommendations

The findings of this study suggest several significant policy
changes that could be made to enhance the nutrition intake of
the Pakistani population. The key concern is giving complete
knowledge to eliminate nutritional gaps between average
consumption and the ideal daily intake of calories in low-
income households. This could be accomplished by increasing

food subsidies, such as through networks of discounted
grocery stores, direct nutrient supplementation plans, or in-
kind transfers of food items, pricing interventions, cash transfer
plans, and social safety net initiatives. Finally, an increase
in money might not be enough to combat hunger; other
socioeconomic and environmental issues, such as access to clean
water, improved healthcare, and quality education, should also
be taken into consideration. These elements might encourage
better food consumption.
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