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Polyphenols: Chemoprevention
and therapeutic potentials in
hematological malignancies
Ogochukwu O. Izuegbuna *
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Hospital, Ogbomoso, Nigeria

Polyphenols are one of the largest plant-derived natural product and they play

an important role in plants’ defense as well as in human health and disease.

A number of them are pleiotropic molecules and have been shown to regulate

signaling pathways, immune response and cell growth and proliferation which

all play a role in cancer development. Hematological malignancies on the

other hand, are cancers of the blood. While current therapies are efficacious,

they are usually expensive and with unwanted side effects. Thus, the search

for newer less toxic agents. Polyphenols have been reported to possess

antineoplastic properties which include cell cycle arrest, and apoptosis via

multiple mechanisms. They also have immunomodulatory activities where

they enhance T cell activation and suppress regulatory T cells. They carry out

these actions through such pathways as PI3K/Akt/mTOR and the kynurenine.

They can also reverse cancer resistance to chemotherapy agents. In this

review, i look at some of the molecular mechanism of action of polyphenols

and their potential roles as therapeutic agents in hematological malignancies.

Here i discuss their anti-proliferative and anti-neoplastic activities especially

their abilities modulate signaling pathways as well as immune response in

hematological malignancies. I also looked at clinical studies done mainly in the

last 10–15 years on various polyphenol combination and how they enhance

synergism. I recommend that further preclinical and clinical studies be carried

out to ensure safety and efficacy before polyphenol therapies be officially

moved to the clinics.

KEYWORDS

polyphenols, hematological malignancies, signaling pathways, apoptosis,
immunomodulation, combination therapy, clinical trials

Introduction

Hematological malignancies can be defined as a heterogenous group of cancers of
blood cells and blood-forming tissues such as bone marrow and lymph nodes. They can
be classified as leukemia (acute and chronic), lymphoma (Non-Hodgkin and Hodgkin)
and myeloma. According to the GLOBOCAN 2020 report, hematological malignancies
accounted for more than one million cancer cases (1). The diversity of their incidence
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and pathogenesis depends on their subtypes, which are
broadly classified as lymphoid and myeloid according to the
world health organization (WHO) classification of tumors of
hematopoietic and lymphoid tissue (2). More than 400,000 cases
and 300,000 deaths of leukemia were reported in 2018 and 2020
(1, 3).

The incidence of hematologic malignancies (HM) varies
across regions and is also based on subtypes, age, gender,
co-morbidities and socioeconomic status. While the incidence
rate of some HM like chronic myeloid leukemia (CML) has
decreased, the incidence of others like chronic lymphocytic
leukemia (CLL) has increased in some countries (4). Co-
morbidities like HIV increase the risk of HM (5). In the modern
era of effective anti-retroviral therapy, the incidence rate of HM
is still higher, and the 5-year survival rate is also significantly
lower than the general population (6).

For the past few decades, most especially in the 21st century,
there has been an explosion of knowledge and innovative
technologies in the field of oncology which has resulted in newer
and more effective therapies, especially in the field of hemato-
oncology. Some of these recent therapies are targeted therapies,
which make use of synthetic molecules and antibodies to target
specific protein molecules and receptors in tumor growth and
signaling pathways. This in most cases leads to fewer off-target
activities and adverse effects. There are, however, the cost-to-
benefit issues. Barnes and colleagues reported that ibrutinib a
novel oral Bruton’s tyrosine kinase (BTK) inhibitor that has
shown significant efficacy in the management of CLL was
not cost-effective as initial therapy (7). The targeted therapies
such as BTK inhibitors have shown clinical benefits in some
groups of patients e.g., patients with del17p, and are used
most often in these groups of patients, but response rates vary.
Idelalisib an oral phosphatidylinositol 3-kinase delta isoform
(PI3Kδ) has shown substantial activity in patients with CLL,
however, the complete remission rate is comparatively low. In
a clinical trial study of treatment-naïve older patients (median
age, 71 years) with CLL treated with idelalisib and rituximab, the
overall response rate (ORR) was 97% and the complete response
rate was 19% (8). Acalabrutinib is a selective, next-generation
covalent BTK inhibitor in another trial was shown to have an
overall response rate was 97% and a complete response of 7% (9).
The complete remission rate of the targeted therapies mentioned
in CLL is low compared to a chemoimmunotherapy regimen
with a complete remission rate of 72% (10). While most of the
targeted therapies are target-specific e.g., Bcr-Abl oncoprotein
in CML, most tumors are known to activate multiple signaling
pathways and adopt/facilitate various resistance mechanisms
to targeted drugs. Chemotherapies on the other hand, due
to their adverse toxicities which often are severe and reduce
the quality of life of patients are avoided in certain clinical
settings. Such adverse effects include hematological toxicity,
nephrotoxicity, hepatotoxicity, neurological toxicity, etc. Indeed
chemotherapies are being systematically phased out.

Due to the challenges posed by these treatments natural
products such as polyphenols are being regarded as ideal
alternatives with comparable efficacy, safety and less
toxicity profiles (11, 12). In a concerted effort at finding
directed at finding alternative treatment options in HM,
phytochemicals most especially polyphenols provide some
interesting applications in this regard. Phytochemicals are
plant-derived compounds that have been used in the prevention
and treatment of many diseases. They are non-nutrient
bioactive chemical compounds produced by plants to enhance
their resistance to microbes as well as aid the repulsion of some
predators (13). Polyphenols have been extensively studied both
in vivo and in vitro in different cancers (14, 15). They are a
large family of about 10,000 compounds having at least one
aromatic ring with one or more hydroxyl functional groups
attached (14). Natural polyphenols are a large group of plant
secondary metabolites ranging from small molecules to highly
polymerized compounds (16). They are biologically active
compounds with activities against various chronic diseases.
They are readily found in foods and beverages of plant origin
including fruits, vegetables, spices, soy, nuts, coffee, tea, and
wine). Regular consumption of polyphenol-rich diets has
been associated with many health benefits. This includes
a reduction in cardiovascular events (17, 18), modulation
of anti-inflammatory pathways (19), and also in cancer
prevention (20).

While their activities are in no doubt, the major challenge
to their use in clinical practice is their low oral bioavailability.
This is a result of low stability and poor pharmacokinetics
which limits their bioavailability when they undergo hepatic
phase I/II metabolism before reaching systemic circulation.
Thus, the development of a delivery system that favors improved
biological activities of polyphenols with better stability is
of utmost importance for their clinical use. The activities
of polyphenols in HM reveal some interesting applications
especially their ability to modulate several signaling pathways
such as PI3K and key proteins like NF-kB. The objective of this
review is to discuss the chemistry, and biological activities of
polyphenols on HM and explore some delivery systems that can
enhance their efficacy for use in clinical practice.

Chemistry of polyphenols

Polyphenols are a diverse class of secondary metabolites
that are derivatives of shikimic acid and phenylpropanoid – the
shikimate biosynthesis pathway (Figure 1). This biochemical
pathway serves for the production of polyphenolic compounds
in bacteria, fungi and plants by converting the simple
carbohydrate molecules (resulting from the pentose phosphate
pathway and glycolysis) into phenylalanine and tryptophan
(21). Shikimic acid is named after the highly toxic Japanese
shikimi (Illicium anisatum) flower from which it was first
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FIGURE 1

Shikimic acid pathway.

isolated (22). Shikimic acid is a key intermediate of the
shikimate biosynthesis pathway and acts as a precursor in
the synthesis of the drug oseltamivir phosphate (Tamiflu),
a neuraminidase inhibitor that acts against such viruses as
the avian influenza virus H5N1, and the human influenza
virus H1N1 (23). The shikimate pathway in micro-organisms
is responsible for the production of aromatic amino acids
L-phenylalanine (L-Phe), L-tyrosine (L-Tyr), and L-tryptophan
(L-Trp) (24, 25). However, in plants, these aromatic acids
though important for protein synthesis, also serve as precursors
for diverse secondary metabolites that are important for plant
growth (26). The principal aromatic phenolic compounds
synthesized from L-Phe and L-Tyr are cinnamic acids
and esters, coumarins, phenylpropenes, chromones (C6-
C3), stilbenes, anthraquinones (C6-C2-C6), chalcones,
flavonoids, isoflavonoids, neoflavonoids (C6-C3-C6), and

their dimers and trimers, respectively (C6-C3-C6)2,3, lignans,
neolignans (C6-C3)2, lignans (C6-C3)n, aromatic polyketides,
or diphenylheptanoids (C6-C7-C6).

Flavonoids

Flavonoids are a large class of polyphenolic secondary
metabolites found in fruits, grains, vegetables, flowers, and
certain beverages. They play a variety of roles in plants, and
are responsible for the color and aroma of flowers and fruits as
well as protect plants from different biotic and abiotic stresses
especially ultraviolet (UV) light (27). They may also function
against frost hardiness, drought resistance, heat acclimatization
and freezing tolerance (28, 29). Thus, they have potential
applications in the nutraceutical, pharmaceutical, cosmetic
and biotechnology industries. Flavonoids can be divided into
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FIGURE 2

Chemical structures of some polyphenols.

six subclasses based on chemical structures: anthocyanidins,
flavanones, flavonols, isoflavones, flavone, and flavan-3-ol (30)
(Figure 2 and Table 1). The glycosylated flavonols are the most
widely distributed in the diet (31). On the other hand, flavonoids
account for about 60% of all natural polyphenols (14).

Currently, there are about 15,000 naturally occurring
flavonoid compounds (31). Flavonoids generally consist of

a benzopyrone core skeleton which is characterized by the
presence of 15 carbon atoms as the base skeleton, organized
in the form C6–C3–C6 (A + C – B) (two benzenic rings A
and B) and linked by a unit of three carbons that may or not
form a third-ring structure (pyran ring C). Flavonoids occur
in various forms in nature; they come as either O-glycosides
or C-glycosides which play a role in their bioactivities (32).
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TABLE 1 The major classes of dietary flavonoids.

Class Types Sources

Flavones Apigenin, baicalein Celery, thyme, parsley,
chamomile

Flavonols Quercetin, kaempferol Onions, kale, cucumbers,
raspberries

Flavan-3-ols Epigallocatechin gallate,
catechin

Green tea, berries,
apricot, red wine

Flavanones Naringenin, Hesperetin Grape fruits, oranges,
lemon

Isoflavones Genistein, daidzein Soybeans, raisins, nuts,
lentils

Anthocyanidin Delphindin, cyanidin Black berries,
pomegranates

They also occur as aglycones or can be hydroxylated or
methylated (33).

Flavones

Flavones are a class of flavonoids commonly found in some
food and fruits giving a yellow or orange color. Their chemical
structure is characterized by a double bond between C3 and C4,
a keto group at C4, and no substitution in C3. Flavones have
emerged as important metabolites that are involved in plant
signaling and defense (34). They are also involved in protection
against UV light (35) and oxidative stress (36); allelopathy
(37); lignification (38) and pathogen resistance (39). Some of
the better-known flavones include luteolin, wogonin, apigenin,
tangeretin and chrysin.

4’,5,7-Trihydroxyflavone, also known as apigenin which
can be synthesized through a two-step pathway is present
in black and green tea (40). Apigenin has been shown to
have some good activities against leukemia cell lines including
suppression of cell proliferation, induction of cell cycle arrest
and induction of apoptosis in leukemia cell lines (41, 42). Also,
apigenin when combined with etoposide or cyclophosphamide-
induced apoptosis via the mitochondrial pathway, increases the
expression of pro-apoptotic cytochrome c, SMAC/DIABLO, and
HTRA2/OMI, which promoted caspase-9 and -3 activation (43).
Interestingly, apigenin has low intrinsic toxicity to normal cells.

Flavonols

Flavonols are a class of flavonoids that have the 3-
hydroxyflavone backbone; having a double bond between
positions 2 and 3 and an oxygen (a ketone group) in position
4 of the C ring, like flavones from which, however, they differ
in the presence of a hydroxyl group at the position 3 (IUPAC
name: 3-hydroxy-2-phenylchromen-4-one). They are distinct
from flavanols like catechins. They are colorless molecules found

mainly in the skin and leaves of fruits and vegetables since their
biosynthesis is stimulated by light. The majority of flavonols
exist as O-glycosides and rarely as C-glycosides (44). They are
also very diverse in methylation and hydroxylation patterns
along with flavones; they are perhaps the largest subgroup
of flavonoids in fruits and vegetables (27). Some fruits and
vegetables rich in flavonol include elderberry juice, rocket
lettuce, red onions, fresh cranberries, fresh figs, apples, fresh
capers, dried parsley and tea. The consumption of flavonols
is found to be associated with a wide range of health benefits
including antioxidation (45), anti-inflammatory (46), and anti-
obesity (47) and reduced risk of vascular disease. The major
flavonols that are well-studied include kaempferol, quercetin,
fisetin, isorhamnetin, and myricetin. Recent studies have shown
that flavonol has good anticancer activities including against
leukemia (48). Quercetin has been shown to induce cell
death via downregulation of VEGF/Akt signaling pathways and
mitochondria-mediated apoptosis in AML cells (49). The cell
death is caspase-dependent apoptosis, and this also depends on
the decrease of mitochondria membrane potential (MMP) and
Bcl-2 proteins induced by quercetin. Kaempferol was shown
to decrease cell viability in tested acute promyelocytic cell
lines with an associated decrease in Akt, BCL2, ABCB1, and
ABCC1 genes expression, while the expression of CASP3 and
BAX/BCL-2 ratio were significantly increased (50). Recently,
an O-methylated flavonol was shown to target multiple kinases
that play critical roles in survival signaling in AML, including
FLT3, MNK2, RSK, DYRK2 and JAK2 (51). Thus, it can
be developed as a novel therapeutic for drug-resistant acute
myeloid leukemias.

Flavan-3-ol

Flavan-3-ol also known as flavanol or dihydroflavonols
are the 3-hydroxy derivatives of flavanones. Flavan-3-ol are
considered the most complex subclass of flavonoids, ranging
from the simple monomers to the oligomeric and polymeric
proanthocyanidins. In the monomeric form, they have two
chiral centers at C2 and C3 which give rise to four isomers for
each level of B-ring hydroxylation (52) and also the absence of
a double bond between C-2 and C-3. Unlike other flavonoids,
they rarely exist as glycosides in plants (53) flavanols are found
in common foods, including cereals, legumes, fruits, vegetables,
forages, hops, beers, red wine, tea, cocoa, grapes, and apples.
They are known to exhibit health benefits including acting
as antioxidants, anticancer, cardioprotective, anti-microbial,
anti-viral, and neuroprotective agents. Some of the well-
known flavan-3-ol include: (+)-catechin; (+)-gallocatechin;
(–)-epicatechin; (–)-epigallocatechin; (–)-epicatechin 3-gallate;
(–)-epigallocatechin 3-gallate; theaflavin; theaflavin 3-gallate;
theaflavin 3′-gallate; theaflavin 3,3′-digallate; and thearubigins
(54). A few of the health benefits of flavan-3-ol include: acute
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promyelocytic cell lines treated with various concentrations of
catechin significantly reduced their proliferation, and induced
cell apoptosis, in association with mitochondria damage, ROS
production and caspase activation (55). Epigallocatechin 3-
gallate (EGCG) inhibited multiple myeloma cell line U266
proliferation and induced apoptosis by targeting EZH2 and
modulating the mitochondrial apoptosis pathway (56). In a
similar experiment, EGCG treatment reversed leucocytosis,
anemia and thrombocytopenia, and prolonged survival of
PML/RARα mice; in combination with all-trans retinoic acid
(ATRA) yielded increased expression of CD15 marker (57).

Flavanones

Flavanones are an important group of flavonoids also called
dihydroflavones. They have two benzene rings, A–B bound
by a dihydropyrone ring C, with chirality at C3 of the C
ring, and no double bond between C-2 and C-3 which is the
only difference between flavones and flavanones (27). They
occur mainly as the S- or (–)-enantiomer with the C-ring
attached to the B-ring at C-2 in the α-configuration (58). Like
some other groups of flavonoids, flavanones also do occur as
hydroxyl, glycosylated, and O-methylated derivatives. They are
generally found in almost all citrus fruits and are responsible
for the bitter taste of their juice and peel (59). Some examples
of flavanones include Hesperitin, naringenin and eriodictyol.
Flavanones found in citrus have some pharmacological activities
including anti-inflammatory (60), and antioxidation (27). Some
flavanones have been reported to possess anticancer properties
through the regulation of some key pathways (61).

Isoflavones

Isoflavones are a distinct group of flavonoids that have
the B-ring attached at C-3 rather than at the C-2 position
of the pyran ring, a feature that distinguishes them from
flavones are found almost exclusively in leguminous plants
where they play a role in plant-microbe interactions (62).
Isoflavones are also known to act as phytoalexins in plants
i.e., compounds produced by the plants during stress
or pathogen attacks (63). They are often referred to as
phytoestrogens because of their similarity to 17-β-estradiol.
Isoflavones may occur as aglycons or as glycosides (64),
but their biological activity is from their aglycones (65).
Sources of isoflavone include soybeans, chickpeas, fava
beans, pistachios, peanuts, and other fruits and nuts (66).
Examples of isoflavone include Genistein (7,4’-dihydroxy-
6-methoxy isoflavone), daidzein (7,4’-dihydroxyisoflavone),
glycitein (7,4’-dihydroxy-6-methoxy isoflavone), biochanin A
(5,7-dihydroxy-4’-methoxy isoflavone), and formononetin (7-
hydroxy-4′-methoxy isoflavone). Isoflavones are known to have

health benefits which can also be seen in the increased number
of isoflavone-containing nutritional health products. Some of
these health benefits include the prevention of osteoporosis
(59, 67), cardiovascular diseases (68), antioxidation and
anti-inflammatory (69). It also has chemopreventive and
chemotherapeutic roles, especially in hormone-dependent
cancers (70). In a recent meta-analysis, the consumption of soy
isoflavones was reported to reduce the risk of breast cancer in
pre-menopausal and post-menopausal women (71). Genistein
and daidzein inhibited cell migration, invasion, proliferation
and sphere formation, and induced cell cycle arrest and
apoptosis in metastatic ovarian cancer models (72). Genistein
is also reported to have an antiproliferative effect on leukemia
(73), lymphoma (74) and myel2oma (69, 75).

Phenolic acids

Phenolic acids are aromatic acids consisting of an aromatic
ring with one or more hydroxy or methoxy groups. Phenolic
acids are divided into two major subgroups: hydroxybenzoic
and hydroxycinnamic acid. Hydroxycinnamic acid is more
abundant than hydroxybenzoic acid. Hydroxycinnamic acids
are secondary metabolites derived from phenylalanine and
tyrosine and they all have a C6C3 carbon skeleton with
a double bond in the side chain that may have a cis or a
trans configuration. They may be present as free carboxylic
acids or in bound forms as amides, esters or glycosides (76).
Hydroxycinnamic acids share a similar pathway of production
with the likes of lignins, 89 coumarins, lignans, stilbenes,
chalcones, anthocyanins and flavonoids (77). They are well-
distributed in most plants including many species that are
consumed as food or processed into beverages. They are
abundant in fruits, vegetables, cereals, legumes, soybeans,
coffee, and tea (77, 78). The most common hydroxycinnamic
acids are ferulic, caffeic, p-coumaric, and sinapic acids (79). On
the other hand, hydroxybenzoic acids have a general structure
of C6-C1. They can be found in some foods like red fruits,
onions and black radish, etc. (21). Examples of hydroxybenzoic
acids are gallic, vanillic, syringic, 2,3-dihydroxybenzoic acid
(Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic
acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid),
3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-
monohydroxybenzoic acid (33, 80). Phenolic acids have
many health benefits. These include anti-inflammatory
and antioxidative actions (81, 82), antidiabetic (83), and
hepatoprotective (84), and antineoplastic (85, 86). Caffeic
acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE)
is reported cytotoxic and anti-proliferative actions on RPMI
8226, H929, U266 and ARH77 cell lines, and also synergises
with bortezomib in growth inhibition and reduction of NF-kB
binding activity and IL6 levels (87). In preclinical studies, caffeic
acids and its analogues have also been reported to downregulate
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specificity protein 1 and IKZF1-IRF4-MYC axis in myeloma
cells including cell lines resistant to immunomodulatory
drugs lenalidomide and pomalidomide (88). Gallic acid (3,4,5-
trihydroxy benzoic acid) was observed to significantly induce
apoptosis in AML cell lines via a caspase-dependent pathway
in a dose-dependent manner and augment some chemotherapy
agents’ efficacy (89). It is also reported to induce apoptosis in
the Jurkat cell line (90).

Stilbenoids

Stilbenoids are non-flavonoid polyphenols just like the
lignans, coumarins and xanthones (91). They are hydroxylated
derivatives of stilbene with a C6–C2–C6 structure. Stilbenoids
can be either monomers or polymers. They do exist as
aglycones or glycosidic conjugates and can be further processed
by methylation, glucosylation and prenylation (92). Like
isoflavones, stilbenoids are regarded as plant phytoalexins (92,
93). They are found in some foods such as grapes, rhubarb,
passion fruit, berries, white tea and red wine (94, 95). Stilbenoids
demonstrate various health benefits, including antioxidant,
anti-inflammatory (96), anti-microbial activities (97) and anti-
neoplastic (98, 99). In leukemia, a stilbenoid tyrosine kinase
inhibitor was once reported to inhibit the proliferation of the
Jak2-V617F expressing human erythroleukemia in a caspase-
dependent manner as well as the cleavage of PARP (100).

Molecular activities of polyphenols

From a clinical point of view, hematological malignancies
(HM) are generally incurable. While therapeutic options
have improved, disease relapse and resistance are rather not
uncommon. Chemotherapy and immunotherapy remains the
mainstay of treatment, but not without their associated side
effects. For example, treatment with CD19 chimeric antigen
receptor (CAR) T cells the most recent approved innovative
therapy for patients with lymphoid malignancies, especially with
relapsed/refractory disease (101) is not without serious adverse
effects. Its high therapeutic response rate is accompanied by
serious side effects such as cytokine release syndrome (CRS)
and severe neurotoxicity termed immune effector cell-associated
neurotoxicity syndrome (ICANS) (102). In a recent multicenter
observational study of patients treated with CD19-targeted
CAR T-cell therapy for relapsing lymphoma, 43% developed
neurotoxicity and more than half of the patients (64%) had
grade 1–2 severity and 34% had grade 3–4; a further 80%
developed CRS (103). These side effects along with the fact that
some patients do not respond to CAR T cell therapy or relapse
after remission underscore the need for newer therapies. One
potential source of therapeutics can be polyphenols; albeit some
of the pathways and strategies muted to enhance CAR T cell
therapy are already known targets of polyphenols (104).

Like many approved antineoplastic drugs, polyphenols
target different molecular pathways that are involved in
carcinogenesis. Some of these targets are involved in cell
signaling, proliferation and survival, cellular stress response,
apoptosis, etc. For example, mutations in some components of
the NF-kB pathway especially its regulators like NFKB2, TRAF2,
TRAF3, CYLD, NFKB1, TACI, NIK, REL, NFKB2, IKBA,
CYLD, NEMO, etc., that are involved in both the canonical
and non-canonical pathway plays a role in multiple myeloma
development (105, 106). Resveratrol, a stilbenoid is reported to
prevent the ubiquitination of NEMO and IKK-mediated NF-
κB activation (107), and mangiferin, a xanthone, is observed to
cause a decrease in the expression of phosphorylated NF-κB-
inducing kinase (NIK) (108). With their various actions similar
to other approved drugs, polyphenols represent prospective
therapeutic options for hematological malignancies.

The phosphatidylinositol
3-kinase/protein kinase B pathway

The phosphatidylinositol 3-kinase (PI3K)/protein kinase
B (Akt) and the mammalian target of rapamycin (mTOR)
signaling is one of the most important intracellular pathways.
It is involved in the control of many physiological cellular
processes as well as the development of malignancies through
cell growth, proliferation, and survival (109) (Figures 3, 4).
They also play a role in metabolism. The activation of the
PI3K/AKT pathway reprograms cellular metabolism through
increased activities of nutrient transporters and metabolic
enzymes in cancer cells (110). The activation of the PI3K/AKT
signaling is downstream of a network of receptor tyrosine
kinases (RTKs), cytokine receptors, integrins, and G protein-
coupled receptors (GPCRs). Thus, the PI3K is divided into
three classes I, II, and III made up of catalytic and regulatory
domains. There are four Class I PI3K isoforms subdivided into
Class IA PI3K (PI3K α, β, and δ) and class IB PI3K (PI3K γ);
three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single
Class III PI3K (111). The Class IA are dimers made up of a
regulatory subunit p85 (p85α, p55α, p50α, p85β, p55γ), and
a catalytic subunit (p110α, p110β, p110δ). The Class IB also a
dimer comprise of the regulatory subunits (p101 or p84) and the
catalytic subunit p110γ (112, 113). While PI3Kα and PI3Kβ are
ubiquitously expressed in different tissues, PI3Kγ is expressed
in T lymphocytes (114), whereas PI3K γ is mainly expressed in
B lymphocytes and its precursors (115). When PI3K is activated,
it stimulates the phosphorylation of its phospholipid substrate
phosphatidylinositol 4,5-bisphosphate (PIP2) to produce the
second messenger phosphatidylinositol 3,4,5-trisphosphate
(PIP3). PIP3 then recruits a subset of signaling proteins with
pleckstrin homology (PH) domains to the membrane, including
3-phosphoinositide-dependent protein kinase (PDK1) and
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FIGURE 3

Pl3K/Akt/mTOR pathway.

FIGURE 4

Targeting Pl3K/Akt/mTOR with different outcomes.

AKT, resulting in its phosphorylation at threonine-308 and
activation (116).

AKT exist in three isoforms: AKT1, AKT 2, and AKT3.
AKT is known to phosphorylate a diverse group of downstream
substrates including forkhead box protein O (FOXO), glycogen
synthase kinase-3 (GSK-3), and Bcl-2 associated death promoter

(BAD). It inhibits the proline-rich AKT substrate of 40 kDa
(PRAS40) and tuberous sclerosis complex 2 (TSC2) through
inhibition of the GTPase activity of the TSC1/TSC2 complex,
thereby activating mTOR complex 1 (mTORC1) through the
RAS homologue enriched in brain (RHEB) (117, 118). MTORC
exist in two different protein complexes form which are
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mTORC1 and mTORC2. mTORC1 can be directly inhibited
by the natural product rapamycin (119). mTORC1 complex
consists of a catalytic subunit mTOR, regulatory-associated
protein of mTOR (RAPTOR), mammalian lethal with SEC13
protein 8 (MLST8), and the regulatory proteins PRAS40 and
DEP domain-containing mTOR-interacting protein (DEPTOR).
mTORC1 plays a key role in cell growth through some substrates
that include ribosomal S6 kinase-1 (S6K-1) and eukaryote
translation initiation factor 4E binding protein-1 (4EBP-1)
(120). mTORC1 also regulate other substrates like unc-51-
like autophagy-activating kinase 1 (ULK-1), a key regulator
of autophagy, transcription factor EB (TFEB), a regulator of
lysosome biogenesis, and Grb-10, an insulin-receptor binding
protein (121, 122).

The constitutive activation of the PI3K pathway is rather
common in hematological malignancies (123, 124) and certain
PI3K isoforms are expressed mainly in hematopoietic cells. This
gave room for the development and approval of novel PI3K
inhibitors and research into other novel ones.

Polyphenols and
phosphatidylinositol
3-kinase/protein kinase
B/mammalian target of rapamycin

The PI3K/Akt/mTOR pathway is seen as a prime target
because of its frequent activation in many cancers including
hematological malignancies (125, 126). Several in vitro and
in vivo studies have shown that this pathway has direct effects
on multiple cellular functions as earlier mentioned. PI3K
signaling is reported to affect every step of carcinogenesis,
and it is also shown to be a prognostic factor as well as
a predictor of response to chemotherapy (127). Thus, this
pathway is targeted in various studies using small molecules and
natural products (128). Several polyphenols including quercetin,
curcumin, resveratrol, apigenin, etc., are known to exert some
antineoplastic actions through several mechanisms including
the PI3K/Akt/mTOR pathway. The treatment of the flavonoids
isorhamnetin, genkwanin and acacetin against some breast
cancer cell lines decreased the levels of PI3Kγ-p110, phospho-
PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6K, and
phospho-ULK in them, thus showing their potential as an
inhibitor of the PI3K/Akt/mTOR pathway (129). Currently,
there are about four approved PI3K inhibitors (113), two
mTORC1 inhibitors (130) and no Akt inhibitor (131) for the
management of cancers. While there haven’t been many studies
on the effect of polyphenols on the PI3K/Akt/mTOR pathway
in hematological malignancies, a few done shows their efficacy.
Quercetin has been reported to modulate AKT signaling leading
to attenuation of cell survival, inflammation, and angiogenesis
in lymphoma-bearing mice (132). Constitutive activation of Akt

has been observed in various types of leukemia (133, 134) which
is responsible for the anti-apoptotic mechanisms. Apigenin has
been noted to inactivate Akt with concomitant down-regulation
of Mcl-1 and Bcl-2 which results in apoptosis (42). Curcumin
treatment of pre-B ALL cell lines with various translocations
induced dephosphorylation of the constitutive phosphorylated
AKT/PKB and downregulation of IAPs (135). In primary CLL
B cells, curcumin was also observed to inhibit the constitutive
activation of pro-survival pathways including Akt (136).

Some of these effects of the attenuation of the
PI3K/Akt/mTOR pathway are autophagy and apoptosis.

Autophagy

Autophagy is a cellular mechanism that leads to intracellular
degradation of cell components and organelles through a
lysosome-dependent regulated mechanism in order to adapt to
metabolic stress and survival (137). Autophagy is controlled
by a group of autophagy-related genes (Atg genes) as well as
several proteins that play a role in the regulation of initiation
of autophagy including mTOR which acts as a sensor for
growth factors and nutrient availability. Thus, PI3K/Akt/mTOR
pathway is a negative regulator of autophagy (138, 139).
Polyphenols are known to induce autophagy in leukemic cells.
Resveratrol has been shown to be an autophagic modulator
in MOLT-4 and HL-60 cells (140). It also induces autophagy
in imatinib-sensitive (IM-S) and resistant (IM-R) K562 cells
(141). The polyphenols emodin, cis-stilbene, apigenin and
rhein have been reported to induce autophagy of myeloid
(K562 cells) and lymphoid leukemia cells (CCRF-CEM) (142).
Curcumin has also been shown to have inhibitory effects
on leukemia by inducing autophagy. A study by Guo et al.
discovered that curcumin induces autophagic cell death in
human Philadelphia chromosome-positive acute lymphoblastic
leukemia SUP-B15 cells via activating RAF/MEK/ERK pathway
(143). Pi3k is known to regulate MEK/ERK signaling (144);
ERK and Akt are known to activate MTORC1 signaling thus,
promoting autophagy (145). Curcumin use has also been
associated with the autophagic death of the CML cell line
K562 cells (146). A curcumin derivative has also been shown
to induce autophagy in the THP-1 cell line (147). Polyphenols
have so far demonstrated the ability to induce autophagy in
hematological malignancies.

Apoptosis

Apoptosis is a form of cell death. It is divided into
two, namely: the extrinsic pathway, which is dependent on
caspase 8 activation and mediated by death receptors; and the
intrinsic pathway which is caspase 9-dependent and mediated
by mitochondria (148). Dysregulations have been identified in
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these two pathways which are associated with pathogenesis,
prognosis and resistance to standard chemotherapeutic agents.
Several studies have shown that the deregulation of apoptosis
is a common and causative event in hematologic malignancies
and has prognostic significance (149, 150). The death receptors
are members of the tumour necrosis factor receptor (TNFR)
family including Fas (CD95), tumor necrosis factor α receptor
1 (TNFR1), tumor necrosis factor α ligand-receptor 1(TRAIL-
R1, DR4), tumor necrosis factor α ligand-receptor 2 (TRAIL-R2,
DR5), DR3, and DR6. Death-inducing ligands e.g., FasL/CD95
ligand (CD95L), tumor necrosis factor α ligand (TNFα) initiate
the extrinsic pathway by interactions with the death receptors.
Adaptor proteins are then recruited to the Fas-associated death
domain (FADD) and TNF receptor-associated death domain
(TRADD) on the death receptor. Inactive forms of some caspase
protease families (procaspase 8 and 10) are recruited, forming a
“death-inducing signaling complex” (DISC), and resulting in the
activation of caspases 8 and 10 (151). There is also the activation
of caspase 3, 6, and 7 which lead to apoptotic cell death (148).

The intrinsic pathway on the other hand is a form
of regulated cell death initiated by a balance between the
proapoptotic and anti-apoptotic BCL-2 family proteins within
mitochondria. A series of molecular events involving intrinsic
stimuli and BCL-2 family proteins form the mitochondrial
outer membrane permeabilization (MOMP) complex resulting
in the release of cytochrome c, a second mitochondria-derived
activator of caspase (SMAC) and mitochondrial serine protease
(Omi). The release of cytochrome c leads to its binding of
apoptotic protease-activating factor-1 (APAF-1) and dATP, to
form an apoptosome which in turn activates caspase 9. In
the process of apoptosome formation, SMAC and Omi inhibit
inhibitors of apoptosis proteins (IAP) which are endogenous
inhibitors of caspase function (152, 153). Activation of apoptotic
caspase 9 shall then lead to the activation of downstream
“executioner” caspases.

The complex nature of apoptosis requires that it be closely
regulated. Several signaling pathways have been shown to
impact apoptosis. The most notable is the phosphatidylinositol
3′-kinase (PI3K) pathway (154). Activated PI3K activates
PKB/Akt which leads to the expression of anti-apoptotic genes
through the activation of nuclear factor κB (NF-κB) (155). It
also influences pro-apoptotic gene expression by inactivating the
forkhead superfamily transcription factors AFK and FKHRL1.
Activation of Akt is known to inhibit apoptosis through the
upregulation of bcl-2 expression (156, 157) and the inhibition
of bad (158, 159). Another regulator of apoptosis is the
extracellular signal-regulated kinase 1/2 (ERK1/2) signaling
pathway which regulates the activity of the bcl-2 family of
proteins (160). It is also involved in the ubiquitination of
pro-apoptotic proteins BIM, BAD, BIK, etc., for degradation
(161, 162).

Several polyphenols have been shown to induce apoptosis
in hematological cancers (163). Curcumin treatment of B Pre-
ALL cell lines causes downregulation of cIAP1 and XIAP (135).
Gossypol a polyphenol isolated from the seed, roots, and stem
of the cotton plant (Gossypium sp.) and originally used as a
herbal drug in China (164) is known as a bcl-2 inhibitor as
well as inducing autophagy in Burkitt lymphoma cells (165,
166). Gossypol compounds have hence been tried in some
small clinical trials to determine efficacy (167, 168). Piceatannol
induces a Fas/FasL upregulation in U937 cells (169). Resveratrol
is observed to sensitize carfilzomib-induced apoptosis through
the upregulation of SMAC, and downregulation of SIRT1, a
positive modulator of survivin (170). Resveratrol also induced
apoptosis in K562 cells through the activation of p38 and JNK,
and the inhibition of ERK; it also increased caspase 3 cleavage
as well as the expression of bim (171). In the treatment of
multiple myeloma cells with bortezomib and gambogenic acid,
a prenylated xanthone was observed to induce apoptosis via
the activation of PARP cleavage, P53, Caspase-3 cleavage and
Bax and inhibition of Bcl-2 expression (172). Curcumin also
synergises with carfilzomib to significantly downregulate the
nf-kb pathway (173). In a recent clinical study, Ramakrishna
et al. showed that oral administration of up to 8 g of curcumin
daily to MM patients is well tolerated and can decrease the
paraprotein load, free light chains, bone turnover, and% plasma
cell dyscrasia (174). Zaidi et al. reported similar activities of
curcumin in a multiple relapsed MM patient on curcumin
(175). quercetin and kaempferol derivatives have been shown
to induce activation of caspase-3, -8 and -9, subsequent
cleavage of PARP, and significantly suppressed XIAP, cIAP-
1 and cIAP-2 in a dose-dependent manner along with the
upregulation of proteins (Bax and Bad), and downregulation
of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and cytochrome
c release (176).

These studies provide considerable evidence that
polyphenols can induce apoptosis in hematological cancers,
through the activation of death receptors, upregulation of
pro-apoptotic proteins and induction of caspase 8, 3, and 9.
Moreso, PI3K/Akt/mTOR pathway is an important pathway for
the growth, survival and chemoresistance of leukemic cells. It
is targeted especially in lymphoproliferative neoplasms (113,
177). Polyphenols can therefore be attractive candidates for this
pathway in the management of hematological malignancies.

Cell cycle

The cell cycle is a complex process that involves numerous
regulatory proteins that direct the cell through a specific
sequence of events culminating in mitosis and the production
of two daughter cells. It is a fundamental step in the growth,
development and maintenance of living things. It has two
basic stages it passes through to divide and produce new cells.
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These are the interphase (the S phase, where cells duplicate
their DNA contents through DNA replication; the G1 phase,
where cells synthesize mRNA and proteins in preparation for
mitosis; G2 phase, a period of rapid protein synthesis. It is
a point in the G2 phase of the cell cycle where cells become
arrested in response to DNA damage) (178, 179); M (Mitotic)
phase, chromosome segregation and cell division take place
at this phase (consists of prophase, metaphase, anaphase and
telophase). The cell cycle is a closely-controlled process by a
family of serine/threonine protein-dependent kinases known
as cyclin-dependent kinases (CDKs) (180) (Figure 5). Their
regulatory subunits are known as cyclins and are involved in the
regulation of CDK’s activities. CDK activities are also regulated
by endogenous CDK inhibitors. There are two families of CDK
inhibitors, the inhibitor of cyclin-dependent kinase 4 (INK4)
family and the CDK interacting protein/kinase inhibitory
protein (Cip/Kip) family (181, 182). The INK4 family includes
p15 (INK4b), p16 (INK4a), p18 (INK4c), and p19 (INK4d),
whilst the Cip/Kip family includes p21 (Cip1/Waf1), p27 (Cip2),
and p57 (Kip2) (183, 184). They play a role in the inhibition
of the CDK-cyclin complexes, thereby halting the cell cycle
progression. Some other proteins play a role in the cell cycle.
These are proto-oncogenes and they fall into two categories:
gain-of-function mutations in proto-oncogenes, which enhance
cell growth and division; and loss-of-function mutations in
tumor suppressor genes that inhibit unhindered cell growth and
cell cycle checkpoint activation among other things (185). The
loss of function mutations includes the p53 and retinoblastoma
(Rb) protein (186) while the gain of function mutations include
K-ras and Bcr-abl protein (187). The Rb family of proteins
play a key role in the regulation of the cell cycle progression
from the G1 to S phase. This function is achieved through
the negative regulation of the E2F transcription factors and
the binding to histone deacetylases and chromatin remodeling
complexes. Mitogenic signaling leads to the activation of CDKs,
especially CDK 4 and 6 which phosphorylates and inactivates
Rb protein leading to E2F activation and its target genes (188).
The p53 protein is an important element in cell cycle regulation
and apoptosis. It is called the guardian of the genome because
of its role in tumor initiation. It performs multiple regulatory
functions by receiving information, modulating and relaying
the information, and carrying out multiple downstream signals
such as cellular senescence, cell metabolism, inflammation,
autophagy, and other biological processes which control the
survival and death of abnormal cells (189, 190). Mdm2 and
MdmX are negative regulators of p53. Mdm2 promotes Lys
ubiquitination at the C-terminus, targeting p53 for proteasomal
degradation (191). Due to its central regulatory role in tumor
development, it is known as a tumor suppressor protein (192,
193). The p53 protein is reported to be the most mutated gene
in most human cancers with a frequency of about 50% (194),
however, it has a low incidence in hematological malignancies
(195, 196).

Polyphenols and cell cycle arrest

The cell cycle has been observed as one key area for cancer
cell proliferation. The cyclins and CDKs play an important role
in the cell cycle and are known to be up or downregulated
in several cancers including lymphomas and leukemias (197).
Resistance to chemotherapy has been linked to the G0 phase
of the cell cycle as well as the overexpression of some
cyclins in cancers (198–200). Given the importance of the
cyclins and CDKs for cell cycle control, these make attractive
targets for chemotherapeutic intervention in hematological
malignancies. Busa et al., reported that palbociclib, a breast
cancer-approved CDK4/6 inhibitor suppressed AML in patient-
derived Xenograft (201). Thus, G0/G1 phase and cyclin D1
are potential targets for the management of hematological
malignancies (202, 203). Polyphenols and polyphenol-rich
extracts have equally shown potential as cell cycle inhibitors
(204, 205). Shih et al. showed that the polyphenol fraction
of jelly fig (Ficus awkeotsang Makino) achenes caused G2/M
cell cycle arrest in U937 cells (206). Resveratrol has been
reported to arrest cell cycle progression in HL-60 leukemia
cells by inducing the overexpression of cyclins A and E
(207). Resveratrol has also been reported to inhibit cell
cycle progression among other activities in acquired drug-
resistant cancer cell lines including leukemia (208). Punicalagin,
quercetin and delphinidin also induced G0/G1 and S phase
cell cycle arrest in Jurkat, MOLT-3, HL-60, THP-1 and KG-
1a leukemia cell lines (209, 210). Pomegranate juice has
also been muted to exert some antileukemic effects; this was
reported in a 44-year-old Caucasian man who was diagnosed
with a T cell lymphoblastic lymphoma but had spontaneous
remission without any chemotherapy treatment. The patient
admitted to regularly drinking pomegranate juice, during
the period after diagnosis. However, there was a tumor
recurrence. Pomegranate juice extracts could be speculated
to have caused the initial spontaneous remission (211). The
pleiotropic molecule curcumin has been shown to induce G1
phase arrest in HL-60 cells and G2/M phase arrest in K562
cells (212), upregulate p21 and inhibit cyclin D1 in ML-
2 and OCI-AML5 cells (213), and downregulation of cyclin
D1, downregulation MDM2 and increase in p53 in multiple
myeloma cell line (214). Quercetin, apigenin, emodin, rhein
and cis-stilbene have all been shown to act synergistically with
doxorubicin and etoposide to cause S and/or G2/M phase cell
cycle arrest in lymphoid leukemia cell lines (215). 5-fluorouracil
when combined with quercetin, apigenin and rhein caused a
synergistic decrease in ATP levels, and induction of cell-cycle
arrest in leukemia cell lines (216). The chalcone butein has also
been shown to markedly downregulate the protein expression
levels of CDK4, CDK6, cyclin D1, cyclin D2, cyclin E and
phospho-pRb in HTLV-1-infected T cells, both in vitro and
in vivo suggesting its therapeutic potentials in ATLL (217). It
is thus evident that polyphenols are capable of both reducing
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FIGURE 5

The cell cycle.

CDKs, whilst increasing p53, resulting in cell cycle arrest and
highlighting their therapeutic potential in preventing cell cycle
progression and cell division in hematological malignancies.

The kynurenine pathway

The kynurenine pathway (KP) is a metabolite pathway
that is involved in generating cellular energy in the form of
nicotinamide adenine dinucleotide (NAD+) (218). Tryptophan
is the starting block of the pathway and 99% of it is catabolised
in this pathway, if not incorporated into proteins via protein
synthesis (Figure 6) (219). The conversion of tryptophan to
kynurenine is mediated by either indoleamine 2,3-dioxygenase
(IDO) or by tryptophan 2,3-dioxygenase (TDO) as rate-
limiting enzymes. The KP is involved in the depletion of
serum tryptophan and its conversion to biologically active
metabolites. These metabolites include kynurenic acid,
3-hydroxykynurenine, anthranilic acid, xanthurenic acid,
picolinic acid and quinolinic acid (Figure 7). These metabolites,
along with the enzymes responsible for their production,
have implications in a plethora of disease states. Chief among
these enzymes are the rate-limiting enzymes that aid the
conversion of tryptophan to kynurenine, indoleamine 2,3-
dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO).
IDO is a heme-containing enzyme physiologically expressed
in a number of tissues and cells. IDO is encoded by the IDO1

gene located on chromosome 8. IDO1is primarily regulated at
the transcriptional level, and the regulatory proteins involved
are (i) NF-KB (220), (ii) the aryl hydrocarbon receptor (AhR)
(221, 222), and (iii) CTCF (223). Endogenous NO production
can cause proteasomal degradation of IDO1 (224), but IFN-
gamma can upregulate mRNA expression (225). IDO1 and
its cognate tryptophan metabolites have been described to
have immunomodulatory properties. Kynurenine can control
T-cell immune responses especially through the generation
of FoxP3+ T regulatory cells via AhR binding (226, 227);
3-hydroxykynurenine aids the depletion of CD4(+) T, CD8(+)
T, B lymphocytes and induce the action of regulatory T cells
(228); 3-Hydroxyanthranilic acid has immunomodulatory
effects on macrophages and lymphocytes through the inhibition
of PI3K/Akt/mTOR and NF-κB activation (229, 230) and inhibit
Th1 and Th2 cells and increase the percentage of regulatory T
cells; quinolinic acid is known to confer resistance to cancers
(231); picolinic acid suppresses proliferation and metabolic
activity of CD4 + T cells (232).

IDO1 activity has been associated with many diseases
including hepatitis B infection (233), malaria (234), psychiatric
disorders (235), atherosclerosis (236) as well as cancer and the
immune escape often observed in tumors (237, 238). IDO1 was
originally thought to be an anti-cancer molecule because of its
ability to deplete the tryptophan needed for cell metabolism
and growth. However, the immunosuppressive ability has shown
it is more of a pro-cancer molecule. IDO1 is overexpressed
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FIGURE 6

Kynurenine pathway.

in more than 50% of tumors (239) including hematological
malignancies. Like in solid tumors, hematological malignancies
are known to create an immunosuppressive environment to

FIGURE 7

Cheemical structure of kynurenine pathway metabolites.

foster immunological tolerance of cancer cells. IDO1 has been
described as one of the ways used for immunosuppression
in several hematological tumors. While its mechanism is not
well understood, increased IDO1 and kynurenine are associated
with the inhibition of NK cell function (129, 240), activation
of T regulatory cells (241); and recruitment and activation
of myeloid-derived suppressor cells (MDSCs) (242). All these
foster the immune escape of cancer cells. AML cells, but not
normal hematopoietic stem cells (HSCs), have been shown
to constitutively express IDO1 (243) which in turn causes an
increase in circulating CD4 + CD25 + FOXP3 + t cells in
AML patients. A recent systematic review by Wells et al. shows
that IDO expression in AML is associated with poor prognosis
(244) and measurement of IDO and its kynurenine metabolites
may be incorporated into prospective prognostic algorithms
(245). It also confers a poor prognosis in childhood AML (246,
247). In CLL, kynurenine-treated CLL cells are more resistant
to the apoptotic effect of venetoclax, a bcl-2 inhibitor (248).
While pro-inflammatory mediators such as tumor necrosis
factor-alpha (TNF-α) can induce an increase in IDO activity
by acting synergistically with IFN-γ (249), anti-inflammatory
cytokines such as interleukin (IL)-10 inhibit IDO activity
(250). There is an association between IDO1 expression and
cyclooxygenase (COX)-2. Studies have shown that the COX-
2 inhibitor celecoxib inhibits IDO-mediated immune tolerance
through regulatory T cells as well as suppresses the Interferon-
γ-Induced expression of indoleamine 2,3-dioxygenase (IDO) in
human leukemia cell lines (251, 252). Thus, suggesting the use
of COX-2 inhibitors as potential drugs to circumvent IDO1-
mediated immune tolerance in AML. From previous studies,
it is known that anti-inflammatory compounds like salicylic
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acid slow down Th-1 type immune response, slowing down
tryptophan breakdown (253). Coffee extracts were also reported
to prevent tryptophan breakdown, essentially preventing the
effects of kynurenine and other metabolites (254). In recent
studies, several flavonoids including baicalein, mangiferin,
EGCG, curcumin, etc., have been reported to correct the
Th17/Treg imbalance restoring immunocompetence of effector
T-cells (255).

The effect of IDO1 and kynurenine metabolites cannot
be understated, especially their role in tumor immunology.
Preclinical studies in a mouse model show that IDO inhibitor,
DL-methyltryptophan suppresses tumor growth and peritoneal
dissemination, and increases the efficacy of chemotherapeutic
agents (256). Polyphenols are able to regulate these actions and
thus can act as an adjunct in cancer immunotherapy (257, 258).
Resveratrol has been shown to regulate IDO1 in a JAK/STAT1-
and PKCδ-dependent manner (259). Curcumin also inhibited
IDO1 in a JAK/STAT1- and PKCδ-dependent manner and also
reversed IDO-mediated suppression of T-cell responses (260).
However, curcumin does downregulate IDO expression via a
COX-2/PGE2-dependant pathway (261). EGCG has been shown
to inhibit the transcriptional activities of IDO promoters, IFN-
stimulated response element and IFN-γ activation sequence,
activated by STAT1 phosphorylation as well as the enzymatic
activity of IDO1 (262). This is in contrast to flavones such
as apigenin, baicalein, chrysin, and wogonin which inhibit the
enzymatic activity of IDO-1 but not mRNA expression (263).
Furthermore, EGCG inhibited the expression of COX-2 and the
production of Prostaglandin E(2) (264).

Studies have suggested that IDO inhibition could be used
therapeutically in cancer treatment especially AML (265).
One study showed the use of the IDO inhibitor, 1-methyl
tryptophan (1MT) with adriamycin in AML caused significant
inhibition of blast cell proliferation and a significant increase
in lymphocyte counts when used alone (266). Nakamura et al.
also showed that a combination of 1MT and cyclophosphamide
is an effective treatment for IDO-positive lymphoma in
a model mouse by reducing Tregs and breaking tumor
tolerance (267). However, failure of phase III clinical trial
(ECHO-301/KN-252) where Epacadostat an IDO inhibitor
in combination with anti-PD-1 antibody pembrolizumab was
used in metastatic melanoma patients did not demonstrate
improved progression-free survival and OS and thus terminated
early (268, 269) have pushed for a re-think on the clinical
benefits of IDO inhibitors in cancer. However, indoximod,
another IDO inhibitor in phase 1 clinical trial was shown
to be well-tolerated and induced a high rate of complete
remission with MRD-negativity in newly diagnosed AML
patients (270). In phase II clinical trial of patients with advanced
melanoma, indoximod in combination with pembrolizumab
was well tolerated and showed antitumor efficacy that was
worth further evaluation (271). A phase II clinical trial of
indoximod with chemotherapy and radiotherapy in pediatric

cancer patients is currently ongoing (NCT04049669). Other
targets of the kynurenine pathway are being muted for
cancer immunotherapy such as TDO inhibitors (272) and
AhR inhibitors (273). Another proposed option is the use
of COX2 inhibitors since COX2 enhance the expression of
IDO1 in tumors (274, 275). Polyphenols do inhibit COX-2
in cancer cells (276, 277) Celecoxib have also been shown
to exert antineoplastic activity in AML cell lines (278) as
well as in CML cell line (279). Polyphenols can be used
as immunomodulatory agents in combination with some
established therapies to attenuate the kynurenine pathway or
enhance cellular immunity in hematological malignancies. In a
clinical study of elderly AML patients, green tea was reported
to exert an immunomodulatory effect in combination with
low-dose cytarabine (280). Various studies have shown that
the expression of IDO1 in AML portends a poor prognosis
(244, 281, 282). Targeting hematological malignancies with
IDO1 or COX2 polyphenolic inhibitors may be another
therapeutic option.

Polyphenols in hematological
malignancies: Clinical studies

Preclinical studies have shown the efficacy of various
polyphenols such as curcumin, apigenin, EGCG, quercetin,
resveratrol, etc., in cancer. They have been studied extensively
both in vitro and in vivo by various groups and found to
have good activity against different types of cancer. However,
clinical studies using natural products including polyphenols
are still in infancy and are often targeted at improving the
efficacy of standard chemotherapy and also reducing the adverse
reactions from chemotherapy. Most clinical trials are however,
targeted at solid tumors (33). This may be because of the
successes recorded in the non-phytochemical-based therapies
especially the immune-based ones (283). The Food and Drug
Administration (FDA) from 2011 to 2021 approved 52 new
drug registrations for hematological malignancies; 29 of them
were for small molecule drugs and 23 of them were for
macromolecules (284). Flavopiridol (Alvocidib) a plant-derived
semisynthetic flavone that acts as a cyclin-dependent kinase
inhibitor was given an orphan drug designation in CLL, but
subsequent studies showed it has significant activity against
CLL as well as significant toxicities (285). Some other phase
II studies as a combination therapy in AML showed it had
higher rates of complete remission and a similar toxicity profile
when compared to chemotherapy-only treatment (286, 287). In
a recent phase II trial of three novel regimens against AML,
the flavopiridol combination therapy regimen had a higher
response rate than the other two regimens showing it could be
pursued for further clinical development (288). Recently, a novel
flavopiridol formulation was developed which showed improved
pharmacokinetics and efficacy against AML both in vitro and
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in vivo (289). This shows the potential of polyphenols in
leukemia management.

In multiple myeloma, curcumin and curcumin analogs in
clinical trials were reported to have significant activity and
clinical response (290). In a cohort study of 52,000 adults
followed for 13 years, the consumption of green tea was
observed to be inversely proportional to the risk of total
hematological malignancies especially AML (291). The use of
polyphenols in the management of light chain amyloidosis is
considered with some interest. A case of improvement in cardiac
symptoms of AL amyloidosis in a patient purposely drinking
high amounts of green tea have been reported (292, 293).

Some clinical trials on these are still on (NCT01511263,
NCT02015312) (294). Similarly, in a phase I and phase II
clinical trial with CLL patients (Rai stage 0 to II), green tea
extracts with doses ranging from 400 to 2,000 mg showed
a good tolerance, as well as a decline in both the absolute
lymphocyte count and in lymphadenopathy (295–297). In a
cohort of 11 patients with various indolent lymphomas (CLL,
follicular lymphoma (FL), Waldenstrom macroglobulinemia
(WM), monoclonal gammopathy of undetermined significance
(MGUS), and splenic Marginal zone lymphoma (MZL) who
were given two bags of green tea daily and followed up, there
was a clinical response with improvement in biomarkers and
lymphadenopathy (298). In the IDEAL trial, the use of caloric
restriction and increased intake of proteins and polyphenol-
rich diets boosted the effectiveness of chemotherapy in acute
leukemia patients (299). PIM1 kinase positive CLL patients
were given quercetin therapy (500 mg twice daily) in a study;
clinical response along with zero toxicity were noted (300). In a
recent phase I trial, combretastatin a stilbene from the African
Bushwillow Combretum caffrum was added to cytarabine in
relapsed/refractory AML and it showed an overall response rate
of 19% with a significantly longer overall survival in those that
achieved a complete remission (301).

Despite the various drawbacks, it is evident that polyphenols
are safe for human clinical trials and can serve some purpose
in the management of hematological malignancies. These
compounds should be considered serious candidates and efforts
should be intensified to set up a well-planned clinical trial to
consider them for approval.

Delivery system for polyphenols

The roles polyphenols play in cell regulation and cancer
formation cannot be understated. They along with other
phytochemicals are usually the mainstay of traditional herbal
medicine. Wherein polyphenols are an important source of
possible therapeutic agents, their major drawbacks are their
bioavailabilities and pharmacokinetics. Oral administration of
polyphenols has varying absorption potential according to
their chemical nature. The presence of functional groups

can also affect polyphenol absorption. Overcoming these
challenges is needed to get polyphenols into the clinics. One
of the ways attempted to overcome this challenge is the
synthesis of polyphenol analogs. Analogs have been shown
to improve compound stability and their bioavailability (302).
The curcumin analog EF24 and EF31have been shown to have
increased bioavailability (303) and with good anticancer activity
(304, 305). Another set of curcumin analogs GO-Y078 and
GO-Y030 were discovered to be 7 to 12-fold more potent
growth inhibitors for myeloma cells, and 6- to 15-fold more
powerful suppressors of IRF4, JAK/STAT3, PI3K/AKT, and NF-
κB pathways than curcumin (306). EGCG synthetic analogs
are also known to possess anticancer activities through several
mechanisms (307). Thus, polyphenol analogs are one of the ways
to improve their bioavailability and efficacy.

Nanotechnology is a promising tool to enhance the efficacy
and delivery of drugs. The use of nanotechnology is expected
to solve the problem of bioavailability and bioactivities of
polyphenols by reducing particle size as a drug. A curcumin
chitosan nanoparticle developed was found to have a tenfold
increase of curcumin over native curcumin (308). A number
of FDA-approved nanodrugs are on the market including
vyxeos liposomal used in the management of AML and
marqibo for the management of ALL (309). Thus, the aspect
of the use of polyphenol-laden nanoformulations as anticancer
therapies is a possibility. Curcumin nanodisks have been
reported to induce apoptosis in mantle cell lymphoma and with
improved bioavailability (310). Resveratrol nanoformulations
in combination with standard chemotherapies have been
tested across various cancers both in vitro and in vivo
with good bioavailability and bioactivity reported (311, 312).
Thus, resveratrol-based nanoformulations are being seen as
a viable option in cancer treatment (313). A nano-drug
delivery system with folic acid-functionalized EGCG showed
good bioavailability and enhanced toxicity to ovarian cancer
cells both in vitro and in vivo (314) showing potential as a
treatment option.

Conjugated antibodies for cancer therapy are a well-
developed strategy. They are composed of a monoclonal
antibody tethered to a cytotoxic drug (known as the payload)
via a chemical linker. They target the specificity of a
monoclonal antibody to reach target antigens expressed on
cancer cells for the delivery of a potent cytotoxic payload.
To date, nine conjugated antibodies have been approved
by the FDA and more than 80 conjugated antibodies
are under clinical development worldwide (315). Examples
include inotuzumab ozogamicin a recombinant humanized
IgG4 conjugated antibody used in the management of B cell
precursor ALL (316). Ozogamicin is the drug conjugate, a
natural product from the class of calicheamicins (a class of
enediyne antitumor antibiotics derived from the bacterium
Micromonospora echinospora). Polyphenol antibody conjugate
is also a strategy to deliver drugs to cancer cells. Polyphenol
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antibody conjugate is also known to improve bioavailability as
well as efficacy. Nirachonkul et al. showed that anti-CD123-
curcumin-loaded PLGA/poloxamer nanoparticles (anti-CD123-
Cur-NPs) exhibited more cytotoxicity than curcumin-loaded
PLGA/poloxamer nanoparticles (Cur-NPs) in leukemia stem
cells (317). In another experiment, antibody-coupled curcumin
was 230-fold more effective in eliminating B16F10 melanoma
cells in vitro, and in vivo compared to curcumin alone, and also
more efficacious than antibodies against the melanoma surface
antigen Muc18 (318). These results show that the conjugation of
some polyphenols can be efficacious against some hematological
malignancies and can be explored further in clinical trials.

Hybrid combinations, a term coined by Wagner and
Efferth in 2017 can be described as a combination of
synthetic drugs with chemically defined constituents from
plants (secondary metabolites) aiming to increase the
pharmacological activity of the formulation and simultaneously
reduce the toxic side-effects of the drugs (319). The synergy
created by the hybrid combinations increases chemotherapy
cytotoxicity and overcome resistance through their multi-target
actions (320). Quite many hybrid combinations have been
described for various cancer therapies (321). The combination
of a chemotherapy formulation of cysteamine-modified
cadmium tellurium (Cys-CdTe) quantum dots coloaded with
daunorubicin and gambogic acid (GA) nanoparticles displayed a
dose-dependent antiproliferative activity on multidrug-resistant
lymphoma Raji/DNR cells in vitro and in vivo (322). Also,
the curcumin-thalidomide hybrid combination was tested
on MM1S, RPMI18226 and U266 human multiple myeloma
(MM) cells and observed to generate higher levels of ROS
after treatment and other biological activities compared to
curcumin alone (323). Similarly some polyphenols especially
apigenin have been noted to enhance the efficacy of alkylating
agents in leukemia cell lines (324). Hybrid combinations have
shown potential, and have even led to the creation of integrative
oncology programs in some universities (325).

Future perspectives

This review have shown the potentials of polyphenols and
their viability as either alternatives or complimentary options in
the management of hematological malignancies. More attention
are being focused on polyphenols in recent times probably
because of their dexterity and pleiotropic effects. This interest
can be seen in the number of recent research articles published
over the past two decades. For example, between 1966 and
2004 only four scientific studies were published on gambogic
acid, but since 2004 more than 370 reports for its general
medicinal applications have been published of which about
260 are on cancers (326). This increased interest have led to
additional studies of gambogic acid as a combination therapy
with bortezomib to determine efficacy in multiple myeloma

(327, 328). A phase II clinical trial also noted its dosage and
safety profile in malignant tumors (329), and the fact that it
does not cause bone marrow suppression was a plus (330).
Unfortunately, like other polyphenols bioavailability is low,
thus limiting its clinical potentials (331). In order to improve
its clinical efficacy, several delivery systems such as micelles,
nanoparticles and structural modifications are being deployed
for greater availability (332, 333).

Lately, targeting the immune system have gained much
grounds in the management of cancers in general and immune-
based therapies are readily available for cancer treatment.
The immunomodulatory activities of polyphenols are well
documented (334, 335), and they are seen as possible
immunoadjuvants (257). For example, apigenin have been
shown to reduce the expression of PD-L1 in melanoma cells
(336) as well as in K-ras mutant lung carcinoma in vivo (337).
A curcumin analog bisdemethoxycurcumin in combination
with an anti-PD-L1 antibody was able to cause an increase in
CD8 + T cells as well as reduce PD-1 expression in an in vivo
mouse model of bladder cancer (338).

Given the complexity of hematological malignancies, the
use of combination therapies that target multiple signaling
pathways is a standard management practice. Polyphenol fits in
well for such combination therapies. However, improving their
bioavailability is necessary to achieve their full potentials. It is
hoped that one or more of the polyphenols will pass through
phase III clinical trials sucessfully and find its way to the clinics.

Conclusion

Taking into account the advances in the areas of
pharmacotherapy and hematological cancer research, it is
evident that polyphenols have an important role to play
hematological malignancies which I propose can come in the
form of combination chemotherapy (339) or maintenance
therapy (340). However, before polyphenol-based cancer
therapies can be deployed to the clinics, further pre-clinical
studies and clinical trials would be needed to be done to
validate their use. This will ensure safety and standards in the
clinical settings.
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