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We previously discovered that gut microbiota can serve as universal microbial biomarkers

for diagnosis, disease activity assessment, and predicting the response to infliximab

treatment for inflammatory bowel diseases (IBD). Much still remains unknown about

the relationship between alterations in gut microbiota and IBD affected bowel region, in

particular in the case of ulcerative colitis (UC) and colonic Crohn’s disease (cCD) without

endoscopic and biopsy data. In the current study gut microbiota from a population in

China was found to be distinct from that of the Western world [Human Microbiome

Project (HMP) data]. Furthermore, both gut microbiota greatly differed from microbiota

of other anatomical locations (oral, skin, airway, and vagina), with higher alpha-diversity

(Chinese gut > HMP gut > oral microbiome > airway microbiome > skin microbiome

> vaginal microbiome), and marked differences in microbiome composition. In patients

with IBD in China, UC was characterized by the presence of Gardnerella, while cCD

was characterized by the presence of Fusobacterium. Moreover, gut microbiota, such

as Gardnerella and Fusobacterium, may be potential biomarkers for identifying UC

from cCD. Together, this study revealed crucial differences in microbial communities

across anatomical locations, and demonstrated that there was an important association

between IBD affected bowel region and gut microbiota.
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INTRODUCTION

Inflammatory bowel diseases (IBD) involves ulcerative colitis (UC) and Crohn’s disease (CD).
The chronic course of these diseases can lead to complications, such as narrowing of the
gastrointestinal tract, fistulas, abscesses, toxic megacolon, bowel perforation or obstruction, and
even carcinogenesis. IBD is common in Europe andNorth America, but the IBD incidence in China
has increased in the past decade (1–3), and it has gradually emerged as the main cause of digestive
system diseases and chronic diarrhea. In clinical practice, differential diagnosis of UC and CD is
based primarily on clinical manifestation, endoscopy, and histopathological features. However, a
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definitive diagnosis of UC or CD can be difficult to make,
especially in the case of UC and colonic CD (cCD) without
endoscopic and biopsy data. Therefore, the identification of
biomarkers for distinguishingUC fromCD, particularly UC from
cCD, is clinically relevant.

Accumulating evidence suggests the gut microbiota has a
significant effect on the onset and progression of IBD (4). In
patients with IBD, the fecal microbiota diversity is decreased
compared to healthy controls (4). Furthermore, major alterations
of intestinal microbial diversity in treatment-naive CD are
strongly associated with disease status (5–7). Frequent features
of patients with IBD, which could distinguish these individuals
and healthy subjects, include decreased bacterial diversity,
reduced abundance of several communities from the phylum
Firmicutes, and increased abundance of Gammaproteobacteria
(8–13). However, most published studies describing intestinal
microbiota in IBD are based on western populations, whose
genetic history, ethnic background, geographical environment,
dietary habits, and lifestyle are distinct from those in the Asia-
Pacific region. Published reports on gut microbiota from Chinese
patients with IBD in China are limited (14–16), andmainly target
to specific bacterial populations. However, some crucial actors
in the gut microbiota imbalance of IBD may not yet be known.
Our previous study discovered that gut microbiota could serve
as universal microbial markers to facilitate diagnosis, activity
assessment, and predicting the response to infliximab treatment
for IBD (17).

In the current study, the possibility of a universal microbial
signature for IBD affected bowel region is explored. In addition,
the microbiota of Chinese and Human Microbiome Project
(HMP) populations from different anatomical locations are
compared based on the sequences they contain.

MATERIALS AND METHODS

Ethical Statement
Ethical approval was obtained from the Ethical Committee of
Nanfang Hospital, Southern Medical University (NHMEC2013-
081). And all the subjects included in this study were provided
with written consent.

Patients and Samples
Seventy-two patients with CD (39 males, 33 females, mean
age 32 years) and 51 patients with UC (28 males, 23 females,
average age 42 years old) (Supplementary Table 1) from the
Gastroenterology Department in Nanfang Hospital, Southern
Medical University in South China were recruited to the
study along with 73 healthy volunteers aged 20–55 (gender-
and age-matched to the patients) (Supplementary Figure 1).
Exclusion criteria included age <18 years, prior IBD treatment,
use of probiotics or antibiotics within 1 month, microbial-
related chronic diseases such as metabolic diseases (diabetes,
hypertension, obesity, metabolic syndrome), cardiovascular
diseases, chronic kidney disease, liver diseases, autoimmune
diseases, allergic disorders, neuropsychiatric disorders and
cancer, and currently pregnant or lactating.

Fecal samples were collected from recruited individuals prior
to treatment, who were newly diagnosed and were not received
any IBD treatments including anti-inflammatory drugs, immune
system suppressors, biologics, antibiotics or surgery, and were
processed in <2 h to prevent the exposure of strictly anaerobic
bacteria to oxygen. Feces were immediately frozen and kept
at−80◦C.

Differential IBD Diagnosis
UC and CD diagnoses adhered to Lennard-Jones criteria (18).
Consistent with the Montreal criteria (19), UC was subdivided
into extensive UC (pancolitis, E3), left-sided colitis (E2), and
ulcerative proctitis (E1) based on disease severity; CD location
was classified as ileum CD or colonic CD.

Extraction of Fecal Genomic DNA
Total DNA from stool samples was extracted with the TIANGEN
Stool DNA Kit (TIANGEN Biotech, Beijing) as previously
described (20). Concentrations of DNA were determined by
Agilent 2100 Bio-analyzer (Calipe Driven, G2939A, Germany),
and samples were kept at−20◦C prior to PCR analysis.

PCR Amplification, Illumina Sequencing,
and Bioinformatics Analysis
PCR amplification of bacterial 16S rRNA V4 fragments
was performed by using barcoded V4-515F 5′-
GTGCCAGCMGCCGCGGTAA-3′ and V4-806R 5′-
GGACTACHVGGGTWTCTAAT-3′ primers. The PCR
amplification conditions were done as previously described (17).
A QIAquick Gel Extraction Kit (Qiagen) was used to purify the
PCR products. Libraries were sequenced at the Beijing Genomic
Institute (Shenzhen, China) by MiSeq (Illumina) with 250-bp
paired-end reads according to the manufacturer’s instructions.

After removing sequences containing ambiguous bases or
mismatches in the primer regions, paired-end sequences were
overlapped according to BIPES (21) protocol. A total of 693,788
sequences were acquired from 199 samples, with an average
of 2,560 ± 1,249 (SD) sequences per sample. Chimeras were
removed with UCHIME using de novo mode (parameters: –
minchunk20 –xn 7 –noskipgaps 2) (22).

All samples were normalized to 1,005 sequences per sample
and uploaded to QIIME (version 1.80) for downstream analyses
(23). UCLUST was used to cluster sequences using closed-
reference operational taxonomic unit (OTU) picking against the
Greengenes database (version gg_13_8) with identity parameter
set to 0.97 (24). Phylogenetic diversity (PD) whole-tree values
were calculated to evaluate α-diversity, and UniFrac distance was
applied to analyze β-diversity. Differentially abundant features
were identified using linear discriminant analysis effect size
(LEfSe) (25). Random forest (RF) classification models were
conducted using the R package ranger. Models were calculated
using the area under the curve (AUC) in the receiver operating
characteristic (ROC) analysis.
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Human Microbiome Project (HMP)
Database Analysis
HMP datasets were downloaded from http://hmpdacc.org/
HMQCP/ and the V4 regions from all sequences were selected
for comparison. HMP data and IBD data were combined for
downstream analyses.

Quantitative PCR Assays Targeting
Bacterial 16S rRNA
The bacteria selected for reverse-transcription-quantitative-PCR
(qPCR) assays were Gardnerella, Fusobacterium nucleatum,
Lactobacillus, and Bifidobacterium and the respective qPCR
primers are listed in Supplementary Table 2. Each qPCR
comprised 10 µL TaKaRa Premix Taq, 2 µL template DNA, 0.4
µL each primer (10µM), and 7.2 µL double-distilled H2O and
then following: 95◦C for 30 s, then 40 cycles of 95◦C for 5 s, 55◦C
for 30 s, and 72◦C for 30 s (Roche LightCycle@ 480 II system).
DNA copy was expressed by the relative cycle threshold at which
DNA for each target relative to the cycle threshold at which
“universal bacterial” DNA (16s) using formula 2−1Ct (relative
fold difference compared to the universal 16s) (26).

Statistical Analysis
Statistical analysis of the diversity indices was conducted using R
(version 3.0.2) by Wilcoxon test and FDR (False Discovery Rate)
adjusted. qPCR analysis between UC and cCD was performed
in GraphPad Prism 6 (San Diego, USA) by t test (two-tailed).
P-values <0.05 (p < 0.05) were considered significant.

RESULTS

Microbial Communities Vary Between
Populations and Anatomical Locations
HMP data from 6,885 samples (445 airway, 3,726 oral, 437
gut, 1,713 skin, and 564 vaginal) from healthy American
subjects were included in analyses. Principal coordinates
analysis (PCoA) revealed that compared to oral, skin, vaginal,
and airway microbiota, gut microbiota from the 73 healthy
population in China was much more similar to the gut
microbiota of the western population (HMP), although the
two gut populations were distinct (Figure 1A). Bacterial α-
diversity and relative abundance of gut microbiota are shown
in Figures 1B–D. Gut bacterial α-diversity was significantly
higher in the population of healthy Chinese subjects compared
to the western population, and microbiota diversity varied
depending on anatomical location (Chinese gut > HMP
gut > oral microbiome > airway microbiome > skin
microbiome > vaginal microbiome) (p < 0.05; Figure 1B).
In terms of microbiome composition, Bacteroidetes and
Bacteroides were enriched in gut samples, while there were
more Fusobacteria, Fusobacterium, Streptococcus, Proteobacteria,
Prevotella, and Veillonella in oral samples. Both skin and
airway samples had increased abundance of Actinobacteria and
Staphylococcus. Firmicutes, one of the most important phyla,
and Lactobacillus were highly enriched in vaginal samples
(Figures 1C,D). Compared with western gut samples (HMP),

the gut samples from healthy Chinese subjects contained
more Firmicutes and Proteobacteria, but fewer Bacteroidetes
(Figure 1C). Comparison of bacterial communities at the
genus level revealed fewer Bacteroides and more Prevotella
in samples from Chinese subjects than in western samples
(Figure 1D).

Distinctive Bacterial Communities in CD,
UC, and Healthy Controls
72CD, 51 UC, and 73 healthy controls from south China were
recruited in the gut microbial analysis. The clinical activity
parameters (Supplementary Table 1) including CRP (36.56 ±

42.03 vs. 20.30 ± 41.99 mg/L), ESR (40.03 ± 26.26 vs. 21.65
± 18.20 mm/h), and fecal calprotectin (2202.99 ± 3652.87 vs.
1332.26 ± 1424.49 mcg/g) were also collected in CD and UC,
respectively. The median CDAI score was 258.62 in CD, and
the median Mayo score was 8 in UC, which indicated the active
diseases in the enrolled IBD patients.

A total of 693,788 sequences were acquired from 196
samples, with a mean of 2,560 ± 1,249 sequences per sample.
In patients with CD and UC, especially those with UC, α-
diversity indices were markedly reduced compared to healthy
controls. Microbial diversity was slightly reduced in patients
with UC relative to those with CD, but this difference was
not significant (Figure 2A). Gut microbiota can be divided
into three enterotypes based on three dominant bacteria
clusters including Prevotella (27), Consequently, bacterial β-
diversity was determined using PCoA and the UniFrac
distance across samples from patients with IBD and healthy
control samples, with each sample colored by Prevotella. β-
Diversity differed significantly between IBD and healthy controls
(ANOSIM test, p = 0.001), but no significant difference
was observed between samples from patients with CD and
those with UC (Figure 2B). The weighted UniFrac distance
measured the heterogeneity of gut microbiota within diseased
and health (Figure 2C), and indicated that the microbial
community varied more in healthy populations than in
diseased populations.

To identify some key differences of intestinal microbial
communities between UC and CD, IBD-associated bacterial
biomarkers were further explored. UC was characterized
by the presence of Actinobacteria, Proteobacteria, Bacilli,
Bifidobacteriaceae, Bifidobacteriales, Coriobacteriales,
Enterococcus, Enterococcaceae, Streptococcus, Steptococcaceae,
Lactobacillales, Enterobacteriaceae, Enterobacteriales, and
Pseudomonadales. CD was characterized by the presence of
Fusobacterium, while healthy controls (HC) were predominantly
enriched in Prevotella, Prevotellaceae, Bacteroidales, Roseburia,
Lachnospiraceae, Ruminococcaceae, and Clostridiales (Figure 3).

Identification of Lesion Location in UC and
CD by Microflora Biomarker
Using the Montreal classification (19), CD was subdivided
into ileal CD (N = 24, 33.33%) and colonic CD (cCD, N =

48, 66.67%) based on the extent of the disease. UC was also
divided into extensive UC (pancolitis, E3, N = 27, 52.94%),
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FIGURE 1 | Diversity and abundance of bacteria from the gut and other anatomical locations (oral, skin, airway, and vagina) obtained from healthy subjects in China

and Human Microbiome Project (HMP) data. (A) Bacterial β-diversity, illustrated by principal coordinate (PC) plots of unweighted UniFrac distance. PC1, PC2, and

PC3 captured most of the similarities in microbiota, as shown by percentages. (B) Bacterial α-diversity according to the Shannon diversity index. Bacterial diversity

differed significantly between a healthy population from China and HMP samples. (C) Microbial composition at the phylum level. (D) Microbial structure at the genus

level. HC, healthy controls. *, p < 0.05.

left-sided UC (distal UC, E2, N = 14, 27.45%), and ulcerative
proctitis (E1, N = 10, 19.61%) (Supplementary Table 1). LEfSe
revealed that more bacterial biomarkers were found for cCD
than for ileal CD. Actinomyces, Actinomycetaceae, Rothia,
Micrococcaceae, Leuconostoc, Streptococcus, Streptococcaceae,
Veillonella, Bulleidia, Klebsiella, and Pseudomonadaceae,
which mainly belong to the phylum Proteobacteria and
order Actinomycetales, were enriched in cCD, while
Alistipes, Gemellaceae, Gemellales, and Peptostreptococcus
were more abundant in ileal CD (Figure 4A). For UC,

Pseudomonadaceae and Pseudomonadales were enriched

in E1, while their abundance was much lower in E2 and

E3. Streptococcus and Streptococcaceae were predominant

in E2, and Actinomycetaceae, Gemellaceae, Gemellales,

Enterobacteriaceae, and Enterobacteriales were enriched in

E3 (Figure 4B).

Identification of Key Microbial Phenotypes
Responsible for Differentiation Among UC,
Colonic CD, and Non-colonic CD
In clinical practice, differentiation of UC from CD is consistently
difficult, especially without endoscopy and biopsy data. To
establish whether gut microbiota can serve as biomarkers
for disease phenotype, OTUs were identified and determined
to be significantly different in UC, colonic CD (cCD),
and non-colonic CD (uCD). Gardnerella was significantly
more enriched in UC, while Fusobacterium was increased in
cCD (Figure 5A). To further verify the bacterial sequencing
observations, quantification of Gardnerella, Fusobacterium
nucleatum, Lactobacillus, and Bifidobacterium from 20 UC and
21 cCD patients’ fecal samples were conducted by qPCR assay.
Both Gardnerella and Bifidobacterium were also significantly
increased in UC compared to cCD, while there was no significant
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FIGURE 2 | Bacterial diversity in patients with CD or UC and healthy controls (HC). (A) Bacterial α-diversity was measured by the PD whole tree value. (B) Microbial

β-diversity shown by principal coordinate plot of the UniFrac distance across UC, CD and HC, with each sample colored by Prevotella, which is more enriched in

healthy populations. Each group is defined by a different shape (diamond = HC, circle = CD, triangle = UC). (C) Heterogeneity of gut microbiota in weighted UniFrac

distance within diseases and health.

difference in Fusobacterium nucleatum between UC and cCD
(Figures 5B–E). To further address whether there are some taxa
to be used to help predict UC from cCD, we performed a
random forest trained prediction model. The use of total gut
microbiota at the genus level presented the 76.3% accuracy to
distinguish UC from colonic CD (Figure 5F), while the accuracy
was as high as 88.6% when 10 taxa including Fusobacterium,
Gardnerella, Odoribacter, Holdemania, Ruminococcus, Sneathia,
Paraprevotella, Lactobacillus, and Bacteroidales_S24-7 were used
in the prediction model (Figure 5G). However, the AUC was
only 70.7% when using top 3 taxa containing Gardnerella and
Fusobacterium (Figure 5H). These findings indicate that gut
microbiota, such as Gardnerella and Fusobacterium, may be
potential biomarkers for identifying disease location in patients
with IBD.

DISCUSSION

Microbiota composition is known to depend on geographic
origin (28), dietary habits (29, 30), obesity (31), ethnic

background and genetic characteristics (32), and/or other
lifestyle factors. However, there is limited information
about differences in microbiota composition among human
populations outside of Europe and the US. In this study,
population-based variation was revealed to be an important
factor in microbiota diversity and composition across anatomical
locations (gut, airway, oral, skin, and vagina) in healthy
populations, as demonstrated by differences between populations
from China and the HMP. To our knowledge, this study is the

first to identify distinctive gut bacterial communities in healthy
populations in China and the Western world.
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FIGURE 3 | Discriminative taxa determined by LEfSe between healthy controls (HC) and IBD groups. (A) Taxa listed according to LDA values, including LDA value of

each significantly discriminative taxon. (B) Cladogram showed discriminative patterns in taxonomic lineages. LDA cutoff was set to 3.5.

FIGURE 4 | Gut microbial biomarkers for disease location identified using LEfSe. Location classification was determined for CD (A) and UC (B). CD was classified as

ileal or colonic, and UC was classified as extensive UC (pancolitis, E3), left-sided (distal) UC (E2), or ulcerative proctitis (E1). HC, healthy controls.

IBD, including UC and CD, are chronic inflammatory
gastrointestinal diseases. Distinctive features of CD are
penetrating inflammation, which may involve any part of
the digestive tract, while UC usually involves superficial
inflammation of the rectum extending to the adjacent mucosa.
When IBD is determined, it can be difficult to distinguish CD
from UC due to overlap in histologic and endoscopic features of
the two conditions. Moreover, in clinical practice, the location
of UC is graded according to invasive colonoscopy, and CD is

graded according to gastroscopy, capsule endoscopy, and even
colonoscopy. The current study aimed to identify non-invasive
biomarkers for distinguishing UC from CD, especially UC from
colonic CD (cCD).

Increasing attention has been paid to the gut microbiome
in the pathogenesis and management of IBD (13, 33–36). For
example, adherent-invasive Escherichia coli (E. coli) occurred
more frequently in patients with CD than in non-IBD controls
(37, 38). Martinez-Medina et al. (39, 40) reported a lower
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FIGURE 5 | (A) Gut microbiome profiles performed well for classifying IBD affected bowel region (UC, N = 51; cCD, N = 48). (B–E) Bacterial quantification targeting

Gardnerella, Fusobacterium nucleatum, Bifidobacterium, and Lactobacillus quantified by qPCR (UC, N = 20; cCD, N = 21); (F–H) Receiver operating characteristic

(ROC) plot with area under the curve (AUC) by all taxa in genus level (F), top 10 taxa (G) and top 3 including Gardnerella and Fusobacterium (H). cCD, colonic Crohn’s

disease; nCD, non-colonic Crohn’s disease; UC, ulcerative colitis. *, p < 0.05.

prevalence of adherent-invasive E. coli in patients with colonic-
CD (25% of colonic samples and 50% of ileal samples) than
in patients with ileal-CD (58.3% of colonic samples and 66.7%
of ileal samples). Differences in the genetic predisposition and
immunoreactivity of gut microbiota based on lesion location
have also been reported (41), indicating that the gut microbiome
pattern may present as variability in disease phenotype. Previous
researches did not determine the location of CD or distinguish
betweenUC and cCD. It is important that differences in intestinal
microbiota are identified in relation to disease phenotype as
they may provide information about potential biomarkers for
conditions such as IBD.

Consistent with previous studies on colonic mucosa-
associated bacterial microbiota (42), diversity in the study
cohort with IBD was reduced compared to controls, with

a greater reduction in diversity observed in patients with
UC (not statistically significant compared to CD). Detailed
compositional changes in the gut microflora of patients with
IBD were investigated at different bacterial taxonomic levels.
At the genus level, Fusobacterium was more abundant in
patients with CD by 16S sequencing, while there was no
marked difference in Fusobacterium by qPCR quantification.
As it is difficult to address microbiota in the species level
especially in the strain level by bioinformatic analysis after
16S sequencing. Furthermore, Fusobacterium in the genus
level was divided into many different species and strains
including Fusobacterium nucleatum. So it is not surprise in the
difference between Fusobacterium tested by 16S sequencing
and Fusobacterium nucleatum verified by qPCR. However, it
is worth noting that Fusobacterium nucleatum was reported to
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contribute to colorectal carcinoma by promoting a beneficial
microenvironment for carcinoma progression in UC (43) and
has also been suggested as a biomarker for IBD (44). The
presence of Fusobacterium has been associated with long-term
complications in patients with CD, such as colorectal cancer and
fistula. Bacterial species from the genera Prevotella, Roseburia,
and Clostridiales (typically indigenous) were significantly lower
in patients with IBD, while Enterococcus and Streptococcus
(typically pathogens or opportunistic pathogens) were markedly
higher. Gardnerella is a genus of Gram-variable, facultatively
anaerobic bacteria, of which Gardnerella vaginalis (G. vaginalis)
is the only species. G. vaginalis is considered to be main cause
of bacterial vaginosis and is present in a dispersed form or as
a biofilm. Schilling et al. (45) discovered that the positive rate
of G. vaginalis biofilm were increased in patients with UC and
CD compared with healthy individuals. Moreover, a link was
also found between steroid-refractory or -dependent disorder
and G. vaginalis biofilms. In the current study, Gardnerella
was significantly more enriched in fecal samples from patients
with UC. These microbiota composition data indicate that
Gardnerella and Fusobacterium may be potential biomarkers for
identifying CD and UC.

There are several limitations to the current study. First,
despite promising correlations between microbial alterations
and disease phenotypes, a causative role of the variation in
microbiota has not been determined, and our understanding of
the dynamic role of gut microbiota in the IBD affected bowel
region remains incomplete. In addition, research on new-onset
IBD suggests that the decreased microbial diversity noted in
adults may not be found in pediatric or elderly patients. Despite
these shortcomings, the present study provides a comparison of
bacterial communities between healthy populations in China and
the Western world (HMP data), and also the microbial dysbiosis
in patients with IBD in China. Moreover, the study aimed
to identify microbial biomarkers of lesion location in patients
with CD and UC, especially the key phenotypes responsible
for differentiating UC, colonic CD (cCD), and non-colonic CD,
which would further define clinical guidelines for IBD treatment.
The study conceptually demonstrates the potential to use the gut
microbiome to aid in UC and CD diagnosis and is therefore
of significant clinical value in the management of IBD. Future
studies are necessary to characterize the functions of gut flora
in IBD and attempt to manipulate the commensal microflora in
patients with IBD.
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