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A novel meroterpenoid cabagranin D was isolated with related neolignans
cabagranins A–C from the leaves of Piper cabagranum (Costa Rica).
Cabagranins A–C represent the first examples of 3,3′-neolignans isolated from
the plant genus Piper, and the meroterpenoid cabagranin D displays an
unprecedented Diels–Alder conjugate of an unsubstituted phenylpropenone
and α-phellandrene. Details of the full structural elucidation of these
compounds and a discussion of their potential biosynthetic relationships
are presented.
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1 Introduction

The Piper genus of plants (Piperaceae) is the source of a diversity of compounds
isolated from over 2,600 accepted species distributed across the tropics (Parmar et al.,
1997; Gutierrez et al., 2013; Mgbeahuruike et al., 2017; Gomez-Calvario and Rios, 2019;
Salehi et al., 2019; Fan et al., 2023). Numerous studies have characterized the role of
these compounds in various ecological interactions and uncovered novel compounds
with a wide diversity of biological activities, including antimicrobial and anti-herbivore
activities (Xu and Li, 2011).

In a phytochemical survey of Piper species within the Radula clade, we identified Piper
cabagranum as having a unique chemistry based on GC-MS and 1H NMR analysis of crude
extracts (Uckele et al., 2021). We observed that general categories of natural products like
lignans, sesquiterpenes, and flavonoids were shared among closely related species; however,
1H NMR analysis of crude leaf extracts revealed that specific structural motifs varied widely
(Richards et al., 2018; Uckele et al., 2021). This divergence in functional motifs likely stems
from the distinct evolutionary paths of these plant species, creating fertile ground for the
discovery of new natural products. The unique spectral features encountered in the crude
methanolic extract of P. cabagranum (Costa Rica) distinguished it from the other 70 species
in our study and motivated the phytochemical characterization of this species, with the goal
of understanding the role of specialized metabolites in mediating ecological interactions. Our
work led to the discovery of an unprecedented meroterpene Diels–Alder conjugate
cabagranin D, 5 (Figure 1). Furthermore, this work identified a new series of
dehydrodieugenol-derived 3,3′-neolignans (cabagranins A–C; 1–3) which involve novel
biosynthetic connections between cabagranin D (5) and the co-isolated neolignans
(Figure 1). We here report the isolation, structural, and stereochemical characterization
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of new meroterpenoid 5 and neolignans 1–3—natural products
from P. cabagranum (Costa Rica).

2 Materials and methods

2.1 Plant material

Leaf samples of P. cabagranum were collected from La Selva
Biological Station and the Tirimbina Biological Reserve and verified
(voucher # EJT3531) in March 2012. The leaves were oven-dried
(35°C–40°C) and ground to a fine powder.

2.2 Extraction and isolation

The ground leaf material (1 g) was twice extracted with 400 mL
of HPLC-grade hexanes for 2 h under mechanical agitation. The

supernatants were pooled and evaporated under reduced pressure.
The spent plant material was then twice extracted with HPLC-grade
(Fisher Scientific, Hampton, NH) acetone under the same
conditions, and the supernatants were combined and evaporated
under reduced pressure, resulting in 200 mg of crude acetone extract
and 100 mg of hexane extract. The crude acetone extract (180 mg)
was dissolved in methanol (3 mL) and then purified via RP-HPLC
(Poroshell C18, 21.2 mm× 150 mm, Agilent, Santa Clara, California,
United States) using a 20 min gradient of 30%–100% acetonitrile:
water (Optima grade: Fisher Scientific, Hampton, NH) and held for
7 min at 100% acetonitrile using an Agilent 1260/1290 Infinity II
equipped with an Agilent 6140 Quadrupole LC/MS (Santa Clara,
California, United States). This separation yielded compounds 1
(63 mg, elution time = 8.1 min), 2 (3 mg, elution time = 9.4 min), 3
(4 mg, elution time = 10.4 min), 4 (2 mg, elution time = 13.6 min),
and 5 (2 mg, elution time = 18.9 min). The hexane extract (100 mg)
was further purified through solid phase extraction (C-18 Sep-
Pak) using a 10% step gradient of acetone:water from 50% to

FIGURE 1
Structures of neolignans 1–4 and the meroterpenoid 5 isolated from P. cabagranum.
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100% acetone, yielding a 70% acetone:water fraction that was
enriched in compound 5. Further purification using the
preparatory HPLC methods described above yielded an
additional 3 mg of compound 5.

2.3 Spectroscopic acquisition methods

High-resolution mass spectrometry data were collected using
an Agilent TOF LC/MS (model G6230B, Santa Clara, California,
United States). NMR spectra were gathered using a two-channel
400 MHz Varian VNMRS spectrometer (399.78 MHz 1H and
100.53 MHz 13C) equipped with an ATB automation probe
(400 ATB PFG) (Agilent, Santa Clara, California,
United States). Circular dichroism experiments were
performed on a Jasco J-1500 CD-spectrometer (model J-1500-
150, Jasco Corporation, Tokyo, Japan). Polarimetry experiments
were conducted on a Jasco P-2000 polarimeter (Jasco
Corporation, Tokyo, Japan).

2.3.1 High-resolution mass spectrometry
measurements

High-resolution mass spectrometry (HRMS) analysis was
performed using an Agilent TOF LC/MS (Santa Clara, California,
United States) fitted with an electrospray ionization source (ESI).
The isolated compound was taken up into methanol (1 μg/mL) and
injected directly into the ionization source. Instrument parameters
were: gas temperature, 325°C; gas flow, 5 L/min; nebulizer, 20 psig;
and ion polarity, positive.

2.3.2 Nuclear magnetic resonance measurements
Reported chemical shifts were recorded in parts per million (δ)

using CD3OD as a standard for 1H and 13C (δH 3.31; δC 49.0).
Coupling constants (J) are reported in Hz. Nuclear magnetic
resonance (NMR) assignments were made based on 1H and 13C
spectra, as well as various 2D experimental spectra (COSY, HMBC,
HSQC, and NOESY). For individual compounds, 1H spectra were
acquired using the parameters set automatically by the instrument
with the number of transients (nt = 128), 13C spectra with the

TABLE 1 1H and 13C NMR assignments for the isolated compounds 1–3 in CD3OD.

Position Cabagranin A (1) Cabagranin B (2) Cabagranin C (3)

1H (J in Hz) 13C 1H (J in Hz) 13C 1H (J in Hz) 13C

1 135.2 129.5 129.4

2 6.74 (1H, dd, 2.1, 0.6) 122.6 7.36 (1H, d, 1.9) 129.9 7.52 (1H, d, 2.1) 127.4

3 133.9 132.5 132.9

4 144.3 152.2 151.1

5 149.1 149.5 149.3

5-OMe 3.90 (3H, s) 56.5 3.98 (3H, s) 56.7 3.98 (3H, s) 56.6

6 6.96 (1H, d, 2.0) 109.9 7.46 (1H, d, 1.9) 109.5 7.59 (1H, d, 2.1) 110.9

7 5.07 (1H, d, 5.6) 76.0 9.76 (1H, s) 193.0 191.1

8 6.05 (1H, ddd, 17.1, 10.3, 5.9) 142.3 7.33 (1H, dd, 17.0, 10.6) 133.4

9-cis 5.16–5.09 (1H, m) 114.5 5.87 (1H, dd, 10.6, 2.0) 129.6

9-trans 5.28 (1H, dt, 17.1, 1.6) 6.37 (1H, dd, 17.0, 2.0)

1′ 136.9 137.0 137.2

2′ 6.65 (1H, d, 2.2) 124.4 6.68 (1H, dd, 2.1, 0.6) 124.0 6.68 (1H, dt, 2.0, 0.6) 124.2

3′ 126.7 127.1 126.7

4′ 146.2 146.2 146.4

4′-OMe 3.58 (3H, s) 61.1 3.60 (3H, s) 60.9 3.60 (3H, s) 61.1

5′ 153.9 153.8 154.0

5′-OMe 3.86 (3H, s) 56.3 3.88 (3H, s) 56.3 3.88 (3H, s) 56.4

6′ 6.83 (1H, d, 2.1) 113.1 6.87 (1H, d, 2.1) 113.6 6.87 (1H, d, 2.0) 113.7

7′ 3.35 (2H, br d, 6.7) 40.8 3.38 (2H, br d, 6.7) 41.0 3.38 (2H, dt, 6.7, 0.8) 41.0

8′ 5.98 (1H, ddt, 16.8, 10.0, 6.7) 138.9 5.99 (1H, ddt, 16.9, 9.9, 6.7) 138.8 5.99 (1H, ddt, 16.9, 10.0, 6.7) 138.9

9′-cis 5.04 (1H, ddt, 10.0, 2.2, 1.3) 116.0 5.05 (1H, ddt, 10.0, 2.0, 1.3) 115.9 5.05 (1H, ddt, 10.1, 2.0, 1.3) 116.1

9′-trans 5.16–5.04 (1H, m) 5.18–5.07 (1H, m) 5.11 (1H, ddt, 17.0, 2.0, 1.6)
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number of transients (nt = 15,000), 1H–1H gCOSY (nt = 4 × 128),
1H–13C gHMBCAD (nt = 8 × 512), 1H–13C gHSQCAD (nt = 4 ×
256), and 1H–1H NOESY (nt = 32 × 256).

2.3.3 Polarimetry measurements
Polarimetry measurements were taken on a Jasco P-2000

polarimeter. Each compound was dissolved in 10 mL of
dichloromethane and placed into a 10-cm polarimeter cell
along with a dichloromethane blank. The samples were
placed in the polarimeter to obtain the optical rotation
in degrees.

2.3.4 Electronic circular dichroism measurements
Electronic circular dichroism (ECD) measurements were

obtained on a Jasco J-1500 CD spectrometer. The isolated
compound was dissolved in methanol (0.5 mM) and placed
into the CD spectrometer along with a methanol blank. The

acquisition parameters were as follows: photometric mode, CD,
HT; measure range, 400–200 nm; data pitch, 0.5 nm; CD scale,
200 mdeg/0.1 dOD; FL scale, 200 mdeg/0.1 dOD; D.I.T., 1 s;
bandwidth, 1.00 nm; accumulations, 1; and scanning speed,
10 nm/min.

3 Results and discussion

Cabagranin A (1) was purified from the 50% acetone:water
eluent as a colorless oil, which was found to have the formula
C21H24O5 from HRESIMS m/z = 379.1551 [M + Na]+,
corresponding to an oxygenated dehydrodieugenol derivative. 1H
NMR analysis revealed the clear presence of a bis-phenylpropanoid
with differing propenyl units (Table 1). One of these units was
hydroxylated at C-7, indicated by the resonance δH 5.07 (d, J =
5.6 Hz)/δC 76.0, which was coupled to the C-8 vinylic methine δH

FIGURE 2
2D NMR correlations establishing the proposed structures and relative configurations of cabagranins A–D.

FIGURE 3
Proposed rearrangement of alcohol 1 to the cinnamyl alcohol derivative through a p-quinone methide intermediate.
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6.05 (ddd, J = 17.1, 10.3, 5.9 Hz)/δC 142.3 based on COSY and
HMBC analyses. HMBC correlations to quaternary oxygenated
aromatic carbons led to the assignment of the three different
methoxy singlets as aryl methyl ethers (Figure 2).

Proton resonances in the aromatic region indicate the
presence of two pairs of meta-coupled protons (δH 6.96/

6.74 and δH 6.83/6.65, J ~ 2 Hz), each pair displaying HMBC
correlations with each set of the two aromatic O-substituted
carbons (δC 144–154) and one of the benzylic carbons (δC
76.0 and 40.8, respectively). NOESY correlations between the
most shielded protons in each ring supported the proximity of
the two rings through direct linkage. Lastly, NOESY correlations
were used to assign the location of three methoxy groups across
the aromatic rings, which supported the lone phenol being para
to the modified propenyl moiety.

Attempts to evaluate the enantiopurity of cabagranin A (1) and
assign the absolute configuration of the alcohol were unsuccessful
due to decomposition of the material under a variety of
derivatization conditions. ECD analysis demonstrated no Cotton
effects and a low optical rotation value {[∝ ]20D = +4.1 (c 0.38,
CH2Cl2)}, leaving the optical purity of this compound in question.
We found that the labile hydroxyl group of cabagranin A (1)
rearranged into a cinnamyl alcohol derivative when it remained
dissolved for months at room temperature or when treated with
aqueous acid (Figure 3).

Further purification of the 50% acetone:water fractions resulted
in four minor components that retained most of the structural
features in 1, including 4, which is presumed to be the biosynthetic
precursor to 1, and a coumarin (Scheme 1, see SI). Two new
compounds were isolated from this fraction which bore the
identical bis-aryl phenol moiety of 1 but differed in their
modified propenyl moieties. These compounds were assigned as
cabagranin B (2), which contains an aldehyde substituent, and
cabagranin C (3), which contains a 1-propenone substituent
(Figure 1). It is important to note that neolignans containing the
vinyl ketone substituent of 3 have only been isolated in a few cases
and that most reports suggest that this product is the result of
lignin pyrolysis.

Cabagranin D (5) was isolated as the predominant
component of the 70% acetone:water fractions and found to
have the formula C31H38O5 from HRESIMS m/z = 513.2653 [M
+ Na]+. NMR spectral analysis indicated the presence of the
3,3′-biaryl structure analogous to 1–4 in addition to an iso-
propyl group (δH 0.85), an allylic methyl (δH 1.76 and δC 20.0),
and a vinylic proton [δH 5.49 (dt, J = 6.5 and 2.0 Hz), δC 121.9]
(Table 2). 1H–1H COSY correlations were consistent with a
[2.2.2] bicyclic structure, which was supported by key HMBC
correlations between H-2 and H-6 aryl methines and the H-8
methine with the carbonyl carbon at δC 202. Relative
configuration of C-8 and C-5″ were assigned from NOESY
correlations between H-8 to H-5″ and H-8″ to H-3’’. Further
2-D NMR correlations were consistent with the structural
assignment of 5, which is postulated to be the endo product
of a Diels–Alder cycloaddition between the enone of 3 and
the monoterpene α-phellandrene (6, Figure 1). This new
molecule seems to represent a novel late-stage merger
between a terpene and a neolignan, presumably through a
Diels–Alder reaction.

Compound 5 was found to be optically active and have an
optical rotation of [∝ ]20D = −56.3 (c 0.03, CH2Cl2). The ECD
spectrum of 5 showed strong Cotton effects at 250, 290, and
330 nm (Figure 4). Simulation of the ECD spectra using time-
dependent density functional theory (TDDFT) calculations
(M06/6- 31G+*) of energy-minimized structures of both

TABLE 2 1H and13C NMR data for cabagranin D (5) in CD3OD.

Position Cabagranin D (5)

1H (J in Hz) 13C

1 128.8

2 7.44 (1H, d, 2.0) 126.5

3 133.1

4 150.2

5 149.1

5-OMe 3.95 (3H, s) 56.6

6 7.48 (1H, d, 2.0) 110.8

7 202.4

8 3.50 (1H, ddd, 9.4, 5.8, 1.9) 48.4

9 1.77–1.70 (2H, m) 29.5

1′ 137.2

2′ 6.67 (1H, d, 2.0) 124.2

3′ 126.5

4′ 146.4

4′-OMe 3.60 (3H, s) 61.0

5′ 113.6

5′-OMe 3.88 (3H, s) 56.3

6′ 6.87 (1H, d, 2.0) 154.0

7′ 3.37 (2H, br d, 6.8) 41.0

8′ 5.99 (1H, ddt, 16.9, 10.0, 6.7) 138.9

9′-cis 5.05 (1H, dq, 10.0, 2.0) 116.0

9′-trans 5.11 (1H, dq, 17.0, 2.0)

1″ 2.40 (1H, m) 37.5

2″ 144.6

3″ 5.49 (1H, dt, 6.2, 1.7) 121.9

4″ 2.93 dt (1H, 6.5, 2.0) 38.7

5″ 1.48 (1H, m) 48.5

6″-α 1.80 (1H, m) 32.7

6″-β 0.97 (1H, m)

7″ 1.76 (3H, d, 1.7) 20.0

8″ 1.08 (1H, m) 34.5

9″ 0.88 (3H, d, 6.5) 21.7

10″ 0.82 (3H, d, 6.6) 20.9
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enantiomers of cabagranin D in an implicit solvent model (PCM)
for methanol strongly aligned with the UV absorbances and sign
corresponding to an endo cycloaddition of R-(-)-α-phellandrene
(6) with cabagranin C from the face opposite the iso-propyl
substituent, thus confirming the assignment of the absolute
configuration of 5.

4 Conclusion

The co-isolation of the series of neolignans 1–4 supports the
proposed biosynthetic pathway shown in Scheme 1. This
hypothesis suggests that eugenol undergoes oxidative
dimerization followed by monomethylation to yield
compound 4. The major constituent of the crude extract is
formed through the selective oxidation of the allyl group of the
phenolic ring. A variety of neolignans have been isolated from
other Piper species, but this represents the first example that
contains a hydroxylated propenyl side chain (Macedo et al.,
2017). While the conversion of the alcohol to ketone 3 is
anticipated to be facile, compound 3 was not always present
in detectable concentrations in the crude extracts of the leaves.
The high electrophilic reactivity of 3, its rare occurrence (Chen
et al., 2012; de Sousa et al., 2017; de Sousa et al., 2020), and the
presumed toxicity of the vinyl ketone suggest that this

compound could be an artifact of isolation and is not present
in high concentrations in vivo (Chen et al., 2012; de Sousa et al.,
2017; de Sousa et al., 2020).

The discovery of meroterpenoid 5 effectively represents a
Diels–Alder cycloaddition reaction between ketone 3 and α-
phellandrene (6). Although some similar examples exist, the
isolation of 5 provides the first example of a Diels–Alder product
between an unsubstituted phenylpropenone and a terpene
(Pasfield et al., 2013; Alves et al., 2017; Qiu et al., 2018;
Tortora et al., 2022; Zhou et al., 2023). Given the instability
of 3, we hypothesize that the ketone precursor could be formed
in situ and simultaneously trapped by α-phellandrene in a single
enzymatic step. In this scenario, the Diels–Alder product could
emerge from the activity of an oxidase enzyme acting on the
hydroxyl group of compound 1. This oxidation of 1 would lead
to the formation of a vinyl p-quinone methide intermediate,
representing the protonated enone, which would produce 5
(Scheme 1) from the reaction with α-phellandrene. Recent
research highlights the role of redox-active enzymes that have
likely diverged from their ancestral functions to act as
Diels–Alderases in the biosynthesis of prenylated phenol and
alkaloid natural products (Oikawa and Tokiwano, 2004; Gao
et al., 2020; Gao et al., 2022; Liu et al., 2023). Other investigations
have shown that phenols and their ethers can act as redox tags in
electrocatalytic Diels–Alder reactions and that silver

FIGURE 4
Comparison of the calculated ECD spectra of both enantiomers of cabagranin D using time-dependent density functional theory (TDDFT)
calculations and experimental ECD spectra.
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nanoparticles can catalyze related Diels–Alder reactions
involving phenolic chalcones and terpenoid dienes (Cong
et al., 2008; Cong et al., 2010). When comparing biomimetic
Diels–Alder reactions involving a chalcone and a 2,4-
disubstituted diene, it was found that the desired reactions
with moderate yield require high pressures or temperatures,
or strong Lewis acids (ONeill et al., 2006; Tee et al., 2016; Chai
et al., 2020; Tangdenpaisal et al., 2022). However, when using
enzymatic (Gao et al., 2020) or redox-active catalysts (Cong
et al., 2010; Ohmura et al., 2023), nearly identical reactants can
undergo the Diels–Alder reaction at room temperature or even
below, demonstrating a more efficient and milder process. While
these reports support our hypothesis, we cannot distinguish the
role of Lewis-acid or single-electron processes in catalyzing the
proposed Diels–Alder reaction. Ongoing experimental and
computational investigations are evaluating our biosynthetic
hypothesis surrounding the formation of 5.

The compounds isolated in this study establish P. cabagranum
as a chemically distinct species within its genus, primarily due to the
presence of oxidized 3,3′-neolignans and a distinctive neolignan
meroterpenoid, cabagranin D, marking the first occurrence of a

Diels–Alder between a vinyl ketone dienophile and a terpene diene.
It inspires future studies on the biosynthetic origins of this
unique compound.
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