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Predicting the therapeutic result of repetitive transcranial magnetic stimulation

(rTMS) treatment could save time and costs as ineffective treatment can be

avoided. To this end, we presented a machine-learning-based strategy for

classifying patients with major depression disorder (MDD) into responders (R) and

nonresponders (NR) to rTMS treatment. Resting state EEG data were recorded

using 32 electrodes from 88 MDD patients before treatment. Then, patients

underwent 7 weeks of rTMS, and 46 of them responded to treatment. By applying

Independent Component Analysis (ICA) on EEG, we identified the relevant brain

sources as possible indicators of neural activity in the dorsolateral prefrontal

cortex (DLPFC). This was served through estimating the generators of activity

in the sensor domain. Subsequently, we added physiological information and

placed certain terms and conditions to offer a far more realistic estimation than

the classic EEG. Ultimately, those components mapped in accordance with the

region of the DLPFC in the sensor domain were chosen. Features extracted from

the relevant ICs time series included permutation entropy (PE), fractal dimension

(FD), Lempel-Ziv Complexity (LZC), power spectral density, correlation dimension

(CD), features based on bispectrum, frontal and prefrontal cordance, and a

combination of them. The most relevant features were selected by a Genetic

Algorithm (GA). For classifying two groups of R and NR, K-Nearest Neighbor

(KNN), Support Vector Machine (SVM), and Multilayer Perceptron (MLP) were

applied to predict rTMS treatment response. To evaluate the performance of

classifiers, a 10-fold cross-validation method was employed. A statistical test

was used to assess the capability of features in differentiating R and NR for

further research. EEG characteristics that can predict rTMS treatment response

were discovered. The strongest discriminative indicators were EEG beta power,
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the sum of bispectrum diagonal elements in delta and beta bands, and CD. The

Combined feature vector classified R and NR with a high performance of 94.31%

accuracy, 92.85% specificity, 95.65% sensitivity, and 92.85% precision using SVM.

This result indicates that our proposed method with power and nonlinear and

bispectral features from relevant ICs time-series can predict the treatment

outcome of rTMS for MDD patients only by one session pretreatment EEG

recording. The obtained results show that the proposed method outperforms

previous methods.

KEYWORDS

electroencephalography (EEG), repetitive transcranial magnetic stimulation (rTMS),
major depressive disorder (MDD), prediction treatment response, independent
component analysis (ICA), classification, machine learning approaches, non-linear
processing

1. Introduction

Major Depressive Disorder (MDD), more commonly known
as clinical depression, is a severe condition with potential
morbidity and mortality, affecting and threatening millions of
people worldwide. MDD is typically treated with one type of
antidepressant, however, 50% to 70% of patients are shown
to be categorically unresponsive to medication-based treatments
(Chekroud et al., 2017; Ebrahimzadeh et al., 2021a; Leichsenring
et al., 2022; Turner et al., 2022). Therefore, there has been
an ongoing search for other therapeutic approaches to target
patients with resistant depression. One method that has gained
increasing attention as a safe alternative or complementary
technique to treat MDD is repetitive Transcranial Magnetic
Stimulation (rTMS; Čukić, 2020). rTMS involves a series of
short magnetic pulses directed to the brain to stimulate nerve
cells. The magnetic pulses stimulate area neurons and change
the functioning of the brain circuits involved. This method is a
noninvasive treatment that directs magnetic pulses at the left or
right dorsolateral prefrontal cortex (DLPFC) at regular intervals
to stimulate neurons and trigger action potentials. It may be used
as an adjunctive therapy to increase or hasten the efficacy of
conventional pharmacotherapy through changing and modulating
cortical activity. The overall effectiveness and limited side effects
of rTMS have been established in several studies. Nonetheless,
clinicians prescribe rTMS after conducting a thorough assessment
and a series of trial-and-error tests to improve diagnostic accuracy
and treatment outcomes and, importantly, to prevent patient
relapse which may be the case if the patient is unresponsive
to rTMS. This calls for developing indicators that can help
with predicting rTMS response in order for patients to benefit
from the merits of this treatment and avoid costly, ineffective
procedures. Neurophysiological modalities, including fMRI and
EEG, have been used to this end, between which, EEG, being
more widely available and cost-effective, makes a more robust
biomarker (Bachmann et al., 2013; Patel et al., 2015; Redlich
et al., 2016; Wade et al., 2016; Čukić et al., 2020). This is why
an increasing number of studies have applied EEG-based machine
learning techniques and statistical methods to distinguish rTMS
responders from non-responders (Bares et al., 2007; O’Reardon

et al., 2007; Khodayari-Rostamabad et al., 2011; Arns et al., 2012,
2014; Kito et al., 2012).

The literature also includes similar efforts to determine the
responsiveness of other approaches to resistant MDD treatment.
A number of studies, such as Bares et al. (2007) have dealt
with regarding changes in QEEG prefrontal cordance as a
predictor of response to antidepressants. The effectiveness of
selective serotonin reuptake inhibitors (SSRI), as another potential
predictor of treatment response, has been investigated in the
study of Khodayari-Rostamabad et al. (2013), where Khodayari-
Rostamabad et al. obtained the patient’s initial EEG and used it
to extract features and perform a mixture of factor analysis (MFA)
model. This led to a classification accuracy of 87.9%. SSRI efficacy
was also examined in another study, where logistic regression
(LR) was applied to wavelet features of baseline EEG, producing
an accuracy of 87.5% (Mumtaz et al., 2017). Transcranial Direct-
Current Stimulation (tDCS) is another treatment for mood and
cognition improvement in patients with MDD, which was the focus
of Al-Kaysi et al. (2017). The authors made use of Linear Support
Vector Machine (LSVM), Linear Discriminant Analysis (LDA),
and neural networks to classify features extracted from EEG and
achieved an accuracy of 76% and 92% in mood and cognition
labeling, respectively.

As for rTMS, the authors (Cao et al., 2018a) provided a
meta-analysis reporting relatively low rates of 40.9% and 16.4%
for response and remission, respectively. Bailey et al. (2018)
examined EEG recordings when participants were completing a
Working Memory (WM) task and predicted rTMS response with
an accuracy of 91%. In another effort, they obtained resting state
EEG at baseline and 1 week after the start of the treatment and
combined mood and EEG features using an LSVM classifier. This
yielded a classification accuracy of 86.6% (Bailey et al., 2019).
The extracted EEG features they used included EEG power and
weighted phase lag index (wPLI) in alpha and theta (Bailey
et al., 2019) and gamma (Bailey et al., 2018) frequency bands,
alpha peak frequency (iAPF), and frontal theta cordance (Bailey
et al., 2019; Jaworska et al., 2019). The literature also includes
other EEG features used for the same purpose such as power
spectral features (Khodayari-Rostamabad et al., 2013; Al-Kaysi
et al., 2017), coherence (Khodayari-Rostamabad et al., 2013;
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Mumtaz et al., 2017), mutual information (MI; Khodayari-
Rostamabad et al., 2013), nonlinear features (Hasanzadeh et al.,
2019), time-frequency processing (Ebrahimzadeh et al., 2021a),
and wavelet coefficients (Mumtaz et al., 2017). Among these, EEG
power in different frequency bands and their combinations have
received a lot of attention in predicting MDD treatment (Suffin and
Emory, 1995; Knott et al., 2000; Cook et al., 2002; Bruder et al.,
2008; Spronk et al., 2011; Tenke et al., 2011; Arns et al., 2012;
Pellicciari et al., 2013; Wade et al., 2016; Lebiecka et al., 2018).
For instance, treatment response was shown to be associated with
cordance measures (Leuchter et al., 1994) and, in another study,
with an Antidepressant Treatment Response (ATR) index (Iosifescu
et al., 2009). Olejarczyk et al. (2020) evaluated the impact of rTMS
on functional connectivity in MDD and bipolar disorder by directed
transfer function and indices based on graph theory.

A number of studies have brought their attention to the non-
Gaussian, higher-order nature of EEG to discover supplementary
information that is not detected in the power spectrum. Adopting
this view, Hasanzadeh et al. (2019) used non-linear and bispectral
features to classify rTMS response.

Furthermore, a large strand of literature employs three
prefrontal electrodes, i.e., FP1, FP2, and FPz, to extract predictive
features, as the frontal lobe is believed to contain significant changes
in MDD. Such studies tend to limit their analyses to the outcome
of those electrodes, which could be interpreted as a simplification
of the matter: there is little guarantee that the frontal components
would not affect the channels from other areas namely the central,
parietal, temporal, and occipital. It can then be stated that the
components from the frontal lobe are more involved than those
from other areas. Identifying these components and extracting
features from their time series could lead to more realistic results
compared to those of the other EEG channels. In other words, the
frontal components form a neural network, which is involved in
the rTMS treatment, and the EEG channels reflect their activity.
That said, this article tries to shift the focus to the component
domain. To do this, we first had the channels decomposed to their
components and identified the appropriate components through
analyzing their locations and the dipoles related to the MNI model.
We then used the time series of the selected components to extract
features and performed the classification. To choose predictive
features for rTMS treatment response, we investigated a relatively
comprehensive set of component’s time-series features including
spectral, bispectral, and nonlinear features, namely bispectrum
features, Lempel-Ziv Complexity (LZC), correlation dimension
(CD), fractal dimension (FD), component power in all frequency
bands (delta, theta, alpha, and beta), and frontal and prefrontal
cordance in the theta band, all extracted from pretreatment resting
EEG. In addition to classification, we performed a statistical
test to evaluate the differences of features in two groups of
responders (R) and non-responders (NR). Ultimately, we employed
a Genetic Algorithm (GA) for feature selection. To the extent of
our knowledge, this is the first time that the capability of selected
bispectral, nonlinear, and spectral features on the components
time-series have been investigated simultaneously with the aim of
treatment response prediction.

As illustrated in Figure 1, we first provide the information of
participants, and the procedure of EEG acquisition. After extracting
the relative components and features, we perform the classification

and statistical test. Based on our classification study, we will evaluate
the prediction ability of feature sets in the Results Section. The
features will then be used to categorize the subjects into two groups
of R and NR based on our statistical analysis. The results are
elaborated in the Discussion Section where the limitations of the
current study and suggestions for future work are also presented.
The article is concluded in the Conclusion section.

2. Methods and material

2.1. Participants

We recruited 88 patients with MDD in the age range of
18–54 years. The patients were referred to the Neuraly Clinical
Neuroscience Centre, Tehran, Iran. A psychiatrist diagnosed them
with MDD using the Diagnostic and Statistical Manual-IV (DSM-
IV) diagnostic criteria (Segal, 2010). The Hamilton Rating Scale for
Depression (HRSD) and the Beck Depression Inventory were also
used to assess the participants (BDI-II). All participants have an
HRSD score ≥12 and a BDI-II score ≥15. The demographic and
clinical data of the participants are described in Table 1. Wilcoxon
rank-sum and Friedman tests were used to compare the R and NR
groups, with the results displayed in column 4 of Table 1.

In terms of age, gender, rTMS treatment features, pretreatment
BDI-II and HRSD score, medications, duration of illness, length
of current depression episode, and the number of previous drugs,
there were no significant differences (p > 0.05) between R and NR.
Only the posttreatment BDI-II and 17-item HRSD scores differed
significantly (p< 0.05), with responders scoring significantly lower.
The outcome of rTMS cannot be attributed to differences in
depression severity of the two groups because the pretreatment
BDI-II and HRSD of R and NR are not significantly different.
The existence of Axis I or II disorders, substance misuse, suicide
risk, unstable medical conditions, implanting devices, cardiac
arrhythmia, and pregnancy are all exclusion criteria in this study.
Participants having a current or previous head injury, seizures,
epilepsy, or neurological diseases were also excluded from the
study. In this study, 59 individuals had been on antidepressants,
mood stabilizers, and antipsychotics for more than 4 weeks prior
to the treatment. The Bioethics Committee of the Iran University
of Medical Science authorized all experimental techniques, which
followed the principles of the Declaration of Helsinki standards. All
participants volunteered and provided written consent after being
told about the study procedures and goals. Table 1 summarizes the
demographic and clinical information of the participants.

2.2. Procedure and clinical assessment

A baseline interview was conducted with MDD patients to
collect demographic and depression severity data. The 17-item
Hamilton Rating Scale for Depression (HRSD; Sharp, 2015), the
Montgomery-Asberg Depression Rating Scale (MADRS; Leentjens
et al., 2000), and the Beck Depression Inventory-II (BDI-II; Dozois
et al., 1998) were used to determine the severity of depression.
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FIGURE 1

Block diagram of the proposed approach for prediction of rTMS treatment response in MDD.

TABLE 1 Clinical and demographic information.

Responder (n = 46) Non-Responder (n = 42) Statistics

Sex (F/M) 27/19 25/17 P = 0.940

Age (SD) 41.2 (15.5) 40.3 (13.8) P = 0.108

Years of education (SD) 14.2 (2.3) 14.1 (2.6) P = 0.375

Handedness (R/L/A) 22/18/6 26/15/1 P = 0.101

HDRS 24.5 (4.3) 23.3 (4.4) P = 0.921

Treatment (HF/LF/bilateral) 14/17/15 11/13/18 P = 0.481

Number of previous medications 2.8 (1.5) 2.2 (1.8) P = 0.214

Medications (AD/ AD±MS / AD±MS± AP) 16/21/9 19/21/2 P = 0.592

Anxiety (Y/N) 34/12 27/15 P = 0.131

Disease duration (years) 5.3 (7.6) 6.4 (8.3) P = 0.268

Pre-treatment BDI-II 31.2 (10.1) 29 (9.6) P = 0.098

Post-treatment BDI-II 9 (4.2) 23 (7.4) P < 0.001

Pre-treatment HRSD 36 (7.3) 28 (3.1) P = 0.193

Post-treatment HRSD 7 (5.4) 26 (6.5) P < 0.001

M, Male; F, Female; SD, Standard Deviation; L, Left; R, Right; A, Ambidextrous; HDRS, 17-item Hamilton Depression Rating Scale. HF, High Frequency (10 Hz); LF, Low Frequency
(1 Hz); AD, Antidepressant; MS, Mood Stabilizer; AP, Antipsychotic.

MDD patients received daily (5 days per week) unilateral left
10 Hz rTMS therapy for 3 weeks. Individuals who responded after
3 weeks were given an extra 2 weeks of titrated rTMS treatment
(three sessions in week 4, two sessions in week 5), followed by

another EEG session. Nonresponders were randomly assigned to
continue with unilateral left 10 Hz rTMS therapy, unilateral right
1 Hz rTMS treatment, or sequential bilateral rTMS treatment
consisting of right 1 Hz rTMS followed by left 10 Hz rTMS

Frontiers in Systems Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnsys.2023.919977
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Ebrahimzadeh et al. 10.3389/fnsys.2023.919977

treatment for the next 3 weeks. Individuals who did not respond
by week 3 but did by week 6 were given another 2 weeks of
titrated rTMS treatment (three sessions in week 7, two sessions
in week 8). The procedure for rTMS treatment is shown in
Figure 2. The stimulation intensity was set at 110% of the resting
motor threshold. The left-sided treatment consisted of 40 5-s
trains separated by a 25-s break. One train of 1,200 pulses was
used for right-sided rTMS. These procedures were combined in
bilateral rTMS, but with only 900 right-sided pulses. The coil
was held tangentially to the head and its handle facing back and
away from the midline at 45◦, and the rTMS was applied to the
left/right DLPFC and bilateral DLPFC at a point 5 cm anterior in
a parasagittal line to the motor threshold location (the left abductor
pollicis brevis muscle). A TAMAS (REMED, Daejeon, South Korea)
with a figure-of-eight-shaped coil (field strength 3 Tesla) delivered
the rTMS. At the end of week 1 and week 3, the MADRS and
BDI-II tests were redone. Individuals who had not responded
by week 3 but had responded by week 6 were assessed using
the MADRS, BDI-II, and HRSD at weeks 6 and 8. Anxiolytics
and hypnotics were allowed at stable levels before the start of
the rTMS therapy, but not 8 h before an EEG recording. During
the study period and for at least 5 days before EEG recording
and the first rTMS session, no antidepressants, antipsychotics, or
anticonvulsants were allowed. It is necessary to mention since it can
be quite a serious ethical and medical issue to prohibit the use of
antidepressants for patients with depression, whose pre-treatment
HRSD scores indicate severity of about 30 points, individuals
who had these conditions were excluded from participating in
this study. At the beginning and end of the treatment, resting
EEG was obtained. The participants’ EEGs were recorded for
5 min in each session while they sat in a comfortable chair in
a shielded room with their eyes closed (Ahmadlou et al., 2012;
Hasanzadeh et al., 2019). The participants were told not to fall
asleep during the experiment. Responding to treatment is defined
as more than 50% decrease in BDI_II scores or HRSD or by BDI
≤ 8 (HRSD ≤ 7) which indicates remission (Hasanzadeh et al.,
2019).

2.3. EEG recording and pre-processing

All EEG recordings took place at the Neuraly
Clinical Neuroscience Centre, Tehran, Iran. A 32-channel
eWave32 amplifier was used for EEG signal recording which
followed the International 10–20 System of electrode placement on
the scalp. The amplifier, made by ScienceBeam1, has a sampling rate
of 1k samples/second, allowing us to precisely study the temporal
dynamics of information processing in the brain (with a referential
montage, where the reference electrode was placed in the FCz
position; Raeisi et al., 2020; Seraji et al., 2021; Seraji, 2021). We
applied standard pre-processing procedures in EEGLAB (available
at https://sccn.ucsd.edu/eeglab/ version 2021) to reduce noise
and artifacts from the EEG signals (Ebrahimzadeh et al., 2021b).
First, the sampling rate of the signal was reduced to 250 Hz, and

1 http://www.sciencebeam.com/

filtered by a Butterworth band-pass filter at 1–60 Hz. Then, all
the channels were reviewed, and those with a standard deviation
greater than ±3.1 from the mean standard deviation (across all
channels) were excluded as the channels that contain artifact. For
eliminating the power-line noise at 50 Hz, the Clean Line algorithm
was used (Ebrahimzadeh et al., 2019a,b). The advantage of this
algorithm over the notch filter is that it adaptively estimates and
removes sinusoidal artifacts without creating band-holes in the
EEG power spectrum (Ebrahimzadeh et al., 2021b). Next, the
ICA algorithm was applied on the EEG signal and the irrelevant
components corresponding to eye blink, eye movement, cardiac
pulsatile, muscular tension, swallowing, or machine vibration were
visually identified using the component’s scalp map, spectral power
activity, and spectral power distribution (Ebrahimzadeh et al.,
2019c, 2021c; Sadjadi et al., 2021). After identifying all the artifact
components, the data were re-composed without them. Finally, the
average reference was used to re-reference all of the data. We kept
300 s of each subject’s EEG signal to equalize the length of data for
all participants, taking into account the parts of the EEG data that
were eliminated.

2.4. LORETA

To determine brain electrical sources, researchers use the
LORETA method (low resolution electromagnetic tomography).
LORETA is a Laplacian-weighted minimum norm algorithm that
relies on the patient’s prior neuroanatomical and physiological
knowledge as well as a mathematical restriction. The method
is based on projecting the brain’s electric activity onto all
of the points in a 3D grid. Unlike dipole source modeling
approaches, every site whose activity is reformed is considered
a potential source (Jaworska et al., 2019). As a result, the
model does not require a predetermined number of sources.
The smoothest spatial distribution is chosen by minimizing
the Laplacian of weighted current sources. The idea is that
neighboring voxels should have an electrical activity that is
as comparable as possible, such as the same orientation and
activation. The LORETA approach, being time dependent,
allows for an inverse solution by using spatial coefficients as
input. It is sufficient to have a one-time sample to generate
a combination of sources. That said, we separated EEG
activities into time windows for a solution, and investigated
the 5-s segments.

2.5. Independent component analysis (ICA)

Independent Component Analysis (ICA) is used for a statistical
decomposition of multi-channel EEG signals for source separation.
The EEG signal is made up of a variety of contributions, and
utilizing this method, independent components can be isolated
from the mixed signals. ICA converts a multivariate random
signal into a signal with mutually independent components. We
extracted the time series of each component of the DLPFC area
and then elicited the features. We chose the first three components
to study since each participant had at least three components in
the DLPFC region, and the first three components are more likely
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FIGURE 2

The procedure for rTMS treatment and the selection of two responsive (R) and nonresponsive (NR) groups.

to play a substantial role (Figure 3; Ebrahimzadeh et al., 2019a,c,
2021b,c).

2.5.1. Region of interest (ROI)
Referring to the existing literature, we have defined a region-

of-interest method to obtain the volumetric measurements of

DLPFC. In a number of studies, it is shown that the DLPFC
site is optimally identified as the midpoint of a line drawn
between the F3 and AF3 EEG points (Fitzgerald et al., 2009;
Ahdab et al., 2010; Peleman et al., 2010). In addition, authors
of Paxinos and Mai (2015), Brodmann (1909), Fischl and Dale
(2000), and von Economo et al. (2008) have highlighted the
fact that the human cerebral cortex is a highly folded sheet
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FIGURE 3

Application of ICA on EEG after rTMS treatment. (A) Extracted components from ICA in the frontal region. (B) Extracted dipole from ICA in the frontal
region. (C) Extracted components time-series from ICA in the mentioned region.

of neurons with a thickness varying from 1–4.5 mm (overall
average being around 2.5 mm). Considering both views, we have
determined the ROI as a cylinder that has a circle centered in the
middle of F3 and AF3 with a radius of 25 mm and a thickness
of 2.5 mm.

2.6. Feature extraction

After extracting the time series of linked components,
features extraction is the next stage in predicting treatment

response to rTMS. We evaluated a total of 23 features in
four categories: nonlinear, spectral, bispectral, and cordance.
Each feature (excluding cordance) was computed for all selected
components of both groups of R and NR. Thus, for each measure,
we have a feature set containing 23 feature vectors corresponding to
three components making a total of 69 features. The next sections
describe the measures that were investigated.

2.6.1. Power spectrum
The signal’s power in its frequency components is represented

by the power spectrum. Delta (1–4 Hz), Theta (4–8 Hz), Alpha
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(8–12 Hz), and Beta (12–24 Hz) are common frequency bands. The
components time series were used to calculate the average powers.
The power spectrum of the components bands was calculated
using a Fast Fourier Transform based on the Welch method for
each band of each component. The Welch’s approach separates the
signal of N samples into K data segments of M samples, with D
samples possibly overlapping. After that, the overlapping portions
are windowed, i.e., multiplied by a symmetric bell-shaped window.
The periodogram of each windowed data segment can then be
computed using the discrete Fourier transform (DFT). The average
adjusted periodogram of all segments is then calculated as the final
estimate of the spectrum. In this study, a non-overlapped window
with 1,000 samples (1 s length) was chosen for each band of each
component.

2.6.2. Cordance
Cordance is a quantitative EEG approach that embodies

information from the EEG spectra’s absolute and relative powers.
Many researchers have used cordance as a way of distinguishing
depression and predicting treatment outcomes (Bares et al., 2015;
Baskaran, 2016; Bailey et al., 2018, 2019). Age, gender, and the
degree of baseline depression have little impact on cordance. The
ratio of the delta, theta, alpha, or beta band power over the total
power in the full frequency range, which eliminates individual
differences, has been termed as the relative EEG power. Some of
the previous studies have shown decreased prefrontal cordance
of the theta frequency band after the treatment (Cook et al.,
2002; Bares et al., 2007, 2015; Cao et al., 2018b; Bailey et al.,
2019). Therefore, in MDD, prefrontal theta cordance can be a
documented neurophysiological biomarker for predicting response
to antidepressants. In this work, theta cordance from extracted
component time series in prefrontal was calculated according to the
following three steps:

First, the power spectra (P) were averaged for each component.
The absolute and the relative power (Ps,f and P̄s,f respectively) were
expressed as:

P̄s,f =
Ps,f
Ps,f ′

(1)

where s is the electrode site and f and f ’ are the specific frequency
band and all bands, respectively.

Second, the absolute and relative EEG powers were normalized
by dividing them by the maximum absolute and relative powers in
each frequency band (f) as:

PANORM(s,f ) =
P(s,f )

max (Ps)
(2)

PRNORM(s,f ) =
P̄(s,f )

max (P̄s)
(3)

Finally, the cordance values at each electrode site (s) for each
frequency band (f ), Cs,f , were calculated as:

Cs,f = (PANORM(s,f ) − 0.5)+ (PRNORM(s,f ) − 0.5) (4)

In this study, we calculated theta cordance from extracted
component time series in prefrontal.

2.6.3. Nonlinear features
Various methods have been proposed over the last two decades

for obtaining EEG nonlinear properties to characterize brain
activities. The first and most important characteristic of EEG is
its dynamic “complexity,” which may be quantified via complexity
analysis. The degree of unpredictability in time series is mostly
represented by the complexity analysis. In this study, we computed
four nonlinear features. All nonlinear measures were calculated for
epochs of component time series with the length of 3,000 samples
and then have been averaged over all epochs. Thus, for every
component, we have four values that are corresponding to each
nonlinear measure for every subject.

2.6.3.1. Permutation entropy (PE)
Permutation entropy (PE) is a new feature extraction method,

which has low computational complexity, robustness, and simplicity
(Grova et al., 2008; Berger et al., 2017; Ebrahimzadeh et al., 2018a;
Hasanzadeh et al., 2019; Čukić et al., 2020). It can be used to
investigate the local order structure of a dynamic time series and
measure the degree of regularity in the EEG data. PE turns an
EEG time series into an ordinal pattern sequence. It converts
non-stationary time series into a set of ordinal patterns, each of
which describes the order relationship between the present and a
set of equidistant previous values at a given point in time.

The PE values reported in this work were divided by log(m!) for
normalization. They are dimensionless quantities in the interval [0,
1] (Berger et al., 2017).

For a scalar time series X(n) = [x (1), x (2),..., x (n)], the
reconstruction time series is:

X(i) = [x(i), x(i+ τ),..., x(i+ (m+ 1)τ )] I = 1, 2,..., n(m− 1)τ
(5)

where m is “the length of the pattern”, that is the number of sample
points included in each pattern and the “time lag” (τ) is the number
of samples that spanned each section of the pattern. Then, x(i) is
rearranged in increasing order:

x(i+ (j1 − 1)τ ) ≤ x(i+ (j2 − 1)τ ) ≤ ... ≤ x(i+ (jm − 1)τ ) (6)

For m different numbers, there will be j = m! permutations. The
vectors X(i) can be mapped to one of the m! permutations. Next, for
the time series X(n), the probability of each permutation occurring
(p) can be defined as:

pj =
nj∑m!

j = 1 nj
(7)

where nj is the number of times the jth permutation is occurring.
The permutation entropy of the time series x(i) = [x (1), x (2),

..., x (n)] is defined by:

Hx(m) = −
∑m!

j = 1
pjln pj (8)

When the time series is random, Hx(m) approaches its maximum
value of ln(m!); when the time series is regular (non-random),
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Hx(m) approaches zero. Finally, the corresponding normalized
permutation entropy is:

PE =
Hx(m)

ln j
(9)

The smallest value of PE is zero, which means
the time series is very regular; and the largest
value of PE is one, which means the time series is
completely random.

2.6.3.2. Fractal dimension (FD)
Earlier research has shown that EEG complexity analysis

using FD may be employed successfully in a variety of clinical
settings, implying that FD could be a good indicator of the
efficacy of rTMS therapy (Lebiecka et al., 2018). The level
of self-similarity of a time series is measured using an FD
algorithm, which relates to how many times a pattern in the
time series is repeated. FD was calculated using the Higuchi’s
fractal dimension (HFD) technique (Ahmadlou et al., 2012;
Bachmann et al., 2013; Čukić, 2020). The signal is represented
by a sequence x = [x (1), x (2),..., x(n)], where n is the
total number of samples and x(i) indicates the ith sample of
x. From a given sequence, k subsequences Xk

m will be defined
as:

Xk
m : X (m) , x

(
m+ k

)
, ...,X

(
m+ jk

)
,m = 1, 2, ..., k, (10)

j = int
(
N −m

k

)
(11)

where m is the initial time and k is the interval
time.

The average length of each subsequence Xk
m can be calculated

according to:

Lkm =
1
k

∑k

i,j

∣∣∣∣X (m+ ik
)
− X

(
m+ (i− 1) k

) ∣∣∣∣N − 1
j

(12)

where N−1
j is a normalization factor. The total average length for

scale k, L(k), is computed as the average of the k values, for m = 1,
2, ..., k, that is:

L
(
k
)
=

1
k

∑k

m = 1
Lkm (13)

The calculation is repeated for k values ranging from 1 to
kmax. kmax is considered to be the number when the
slope of the best line fitted to the diagram of L(k) vs. 1

k
plotted in a log-log plane remains constant (kmax ≥2).
The slope of this line is HFD of the time series L. The
line is defined by the linear regression coefficient which
is determined by the least squares method. kmax = 16 is
shown to perform the best for this type of signal
(Spasic et al., 2005; Lebiecka et al., 2018; Čukić et al.,
2020).

Ln L
(
k
)
∼ HFD ln

1
k

(14)

2.6.3.3. Lempel-Ziv Complexity (LZC)
The rate at which new patterns arise in time series is indicated

by a nonlinear dynamic measure. The activities of adding or
removing the patterns of the underlying system are examined
when employing LZC (Aboy et al., 2006). The LZC method is
based on coarse-graining, which converts the signal s(n) into a
limited sequence of a few symbols (Li et al., 2008). Traditionally,
the coarse-graining procedure turned the signal s(i) into a binary
sequence x(i) = x (1), x (2),..., x(i). By comparing the signal values
with a threshold, the original signal is converted into a binary (0,
1) sequence, with the median of the signal values chosen as the
threshold.

x (i) =
{

0, if s(1)<Td
1, otherwise (15)

Then by scanning the EEG sequences {x(i)} from the beginning,
different patterns that appear in the signal are counted by c(n). It
has been proven that the upper limit of complexity measure c(n)
with a median threshold is:

Lim
n→∞

c (n) = b (n) =
n

log(n)2

(16)

The complexity measure c(n) is normalized to b(n), to make the
measurement independent of the length of the data, and LZC will
be obtained by:

LZC =
c (n)
b (n)

(17)

By transforming the signal into a finite sequence {x(n)}, c(n) will be
the complexity of the sequence {x(n)} and will denote the number
of distinct patterns in the sequence.

2.6.3.4. Correlation dimension (CD)
Based on embedding theory and phase space reconstruction,

the correlation dimension of a dynamic system is established.
Considering the state points, x(1), x(2),...,x(n), new m dimensional
vectors can be reconstructed by choosing a time delay t and
embedding dimension m.

X (i) = [x (i) , x (i+ t) , ..., x (i+ (m− 1) t)] ,

i = 1, 2,..., n− (m− 1) t (18)

The correlation dimension is obtained by:

C (r, n) =
2

n (n− 1)

∑n

i = 1

∑n

j = i+1
θ
(
r −

∣∣xi − xj
∣∣) (19)

D (r, n) = lim
r→0

ln C (r, n)
ln r

(20)

where θ is the Heaviside step function which is defined as
θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0; C(r, n) is the correlation
integral and D(r, n) is the correlation dimension. The procedure is
repeated for increasing m.
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2.6.4. Bispectrum features
The spectral band power can show phase variations, but does

not reveal interactions between the signal’s frequency components.
Note that a signal’s “shape” is determined by its phase, and signals
with different wave forms might have the same power spectrum
(Acharya et al., 2015).

Bispectrum is a higher-order statistical signal processing
technique that examines both the amplitude and the degree
of phase coupling of a signal. In the context of EEG signal
categorization, bispectrum has demonstrated promising results.
The two-dimensional Fourier transform of a signal’s third order
correlation is defined as the signal’s bispectrum Bis(f1, f2).
Bispectrum divides a signal’s skewness (third order moment)
throughout all frequencies, characterizing the intensity of
interaction between all frequency pairings in the target band.

Bis
(
f1, f2

)
= lim

T→∞

(
1
T

)
E
[
X
(
f1 + f2

)
X∗
(
f1
)
X∗
(
f2
)]

(21)

where X(f) is the Fourier transform of a time series x(t), * is the
complex conjugate, T represents time, and E denotes the expected
value. Indeed, bispectrum indicates cross-correlation between
frequency components in a two-dimensional frequency plot. The
phase coupling information between the frequency components at
f1, f2, and f1 + f2, can be extracted from Bis (f1, f2). The degree of
phase coupling between frequencies components is obtained by the
following normalized bispectrum:

Bisnorm
(
f1, f2

)
=

Bis
(
f1, f2

)√
P
(
f1
)
P
(
f2
)
P
(
f1 + f2

) (22)

The power spectrum is denoted by P(f), and the magnitude of the
normalized bispectrum has a value between 0 and 1. The squared
magnitude of the normalized bispectrum will be 1 if the Fourier
components at the frequencies f1, f2, and f1+f2 are perfectly phase-
coupled in every realization, and 0 if they are completely random.

To distinguish the distribution of the bispectral plots of
distinct EEG data, quantitative characteristics must be defined.
The bispectrum of a genuine signal is uniquely described in the
triangle 0≤ f2 ≤ f1 ≤(f1+f2)≤1, assuming no bispectral aliasing.
For characterization of the entire bispectrum, features are defined
by integrating along straight lines going across the non-redundant
region. Three features were collected from the bispectrum region in
this investigation. These features are defined as follows.

Average of magnitude:

Mave =
1
L
6�

∣∣Bis (f1, f2
)∣∣ (23)

where L is the total number of sample points in the bispectral
density array and� is the triangle region shown in Figure 4.

Bispectral entropies:

P1 = −6npn log pn (24)

pn =

∣∣Bis (f1, f2
)∣∣

6�
∣∣Bis (f1, f2

)∣∣ (25)

P2 = −6iqi log qi (26)

FIGURE 4

The non-redundant region of bispectrum plot.

qi =

∣∣Bis (f1, f2
)∣∣2

6�
∣∣Bis (f1, f2

)∣∣2 (27)

where P1 and P2 are the normalized bispectral entropy and
normalized bispectral squared entropy which are also between
0 and 1.

2.7. Feature selection

Before performing classification, we use feature selection for
two main reasons: first, to eliminate the irrelevant features which
can raise the complexity of classification and lower its accuracy,
and second, to address the dimensionality problem. That said,
after extracting EEG features, we applied a genetic algorithm (GA)
to pick out the most discriminating features. GA is a group of
computational models based on natural selection and genetics
laws. In a high-dimensional space, it is considered as a stochastic
strategy that outperforms deterministic optimization strategies.
The GA begins with a population of individuals that represent a
potential solution to a particular optimization issue and evolves
over generations to a group of more optimal or fit individuals.
Then, it replicates the offspring using basic genetic procedures such
as selection, crossover, and mutation. A fitness value is assigned
to each individual or community, and the fitness of the candidate
individual is assessed. Finally, GA selects the best individuals from
the existing population (Amoozegar et al., 2019).

2.8. Classification

We suggested a novel strategy to predict the rTMS treatment
response based on classification analysis to separate responders
from non-responders by the K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), and Multilayer Perceptron (MLP)
classifiers. We ran our analysis on a different set of extracted
features from the component time series. First, we assessed the
capacity of the researched features to predict treatment response
by applying classification to each measure individually. Then, in a
second classification study, a mixture of features from each of the
four categories (nonlinear, spectral, bispectral, and cordance) were
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utilized to classify R and NR. Finally, we assessed a combination
of all features for classifying R and NR. For all analyses, the
classification process detailed below was comparable. After feature
extraction, the feature sets were separately standardized by the
z-score normalization to minimize amplitude variations caused to
differences in subjects and electrode placements. Afterwards, we
employed GA to pick the most informative features.

In all analyses, the number of features was determined by a
trial-and-error method to discover a value that maximizes accuracy
while avoiding overfitting of the classifier. The square root of the
total number of features in the related study was used to match
this ideal number of features in our analysis, except for prefrontal
cordance analysis, where due to the small number of features, we
used all features.

A 10-fold cross-validation method was used to assess the
classifiers’ performance. Except for two or three groups, the EEG
data of 88 subjects were separated into 10 parts, with the number
of signals in each part being equal. The classifier was trained using
nine parts and the remaining part was used to test it. This process
was performed 10 times, and the average and standard deviation of
accuracy, sensitivity, and specificity were obtained.

2.8.1. Multilayer perceptron (MLP)
A three-layer MLP with the error back propagation method

and variable learning rate was used. For component time series
(Ebrahimzadeh et al., 2011, 2018a,b, 2019d; Ebrahimzadeh and
Pooyan, 2013; Nikravan et al., 2016), the input layer has the same
number of nodes as the input vector length. The output layer, on the
other hand, only has one node, which means that only two classes
can be classified. The optimal number of neurons in the hidden
layer was found by selecting and training all feasible combinations
of the selected numbers of neurons in the hidden layer. It is worth
noting that the entire training procedure was based only on the
training data. We moved on to testing the network using the testing
data after the training is completed. The network did not use the
testing data while determining the best architecture to maximize the
network’s generalization.

A linear transfer function and a sigmoid function were used in
the output nodes and the hidden layer, respectively (Ebrahimzadeh
et al., 2013). The network training continues until the error
becomes less than 0.01, or 1,000 training iterations are completed
(Ebrahimzadeh et al., 2014).

2.8.2. K-Nearest neighbor (KNN)
After saving labeled feature vectors, this classifier calculates

the shortest distance between saved and new feature vectors
(Ebrahimzadeh et al., 2018a,c). The KNN algorithm is divided into
three steps: (a) calculating distances between all previously classed
samples; (b) selecting the K samples with the least distance values;
and (c) approving new data. A new sample will be added (classified)
to the largest cluster from the K selected samples. We looked at the
values of K from 1 to 12 to compare with Hasanzadeh et al. (2019)
and found that K = 7 delivers the best results. To make the tables
easier to read, we used three K values (3, 7, and 12).

2.8.3. Support vector machine (SVM)
SVM is a machine-learning technique that has proven to be

effective in a variety of classification tasks. It focuses on the training
examples near the edge of the class descriptors to find the optimal
separating hyperplane (the plane with the largest margins) between
the two classes of the training samples in the feature space. This
method not only fits an ideal hyperplane, but also effectively uses
less training samples, resulting in good classification accuracy with
small training sets.

SVM is a well-known supervised learning model for
classification and regression. The primary principle of SVM is
to transfer the input data from the N-dimensional input space
to the M-dimensional feature space M>N, where the data classes
can be separated linearly (Ebrahimzadeh et al., 2018a). In other
words, the SVM is a statistical learning theory-based extension of
nonlinear models of the generalized portrait algorithm (Nikravan
et al., 2016; Ebrahimzadeh et al., 2019d). The purpose of regression
is to choose the best model from a group of models (known as
estimating functions) in order to accurately anticipate future values.
The estimation function for support vector regression is:

f (x) = (w.8(x))+ b (28)

where w⊂Rn, b⊂R and Φ is a nonlinear function that maps x into a
higher dimensional space. W and b are the weight vector and bias,
respectively. The weight vector (w) can be written as:

w =
∑L

i = 1
(∝i− ∝

∗
i ) (29)

By substituting Equation (29) into Equation (28), the generic
equation can be rewritten as:

f (x) =
∑L

i = 1

(
∝i− ∝

∗
i
)
(8 (xi) .8(x))+ b. (30)

f (x) =
∑l

i = 1

(
∝i− ∝

∗
i
)
k (xi.x)+ b (31)

where the function k (xi . x) = (Φ(xi). Φ(x)) is known as the kernel
function and ∝ = (∝ 1, ∝ 2, ..., ∝ l) is the vector of non-negative
Lagrange multipliers.

The choice of kernel functions and kernel parameters depends
mainly on the application. Among the useful kernel functions are
radial basis functions (RBFs) and polynomial kernel functions:{

−|x− xi|2

2σ 2

}
(32)

[(x ∗ xi)+ 1]d (33)

where σ and d are kernel width and order, respectively, which were
experimentally defined to achieve the best classification result. In
this work, RBFs and polynomial kernel functions were used with
different sigma values (σ = 0.8, 1, 1.2) and orders (d = 1, 2, 3).

2.9. Statistical comparison

Statistical testing seeks to understand how a system works,
whereas machine learning approaches seek to anticipate future
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FIGURE 5

Source localization of rTMS stimulation foci in left prefrontal cortex (L-DLPFC) for a responder subject. (A) Dipole coordinates of the identified focus
in left side on a default MRI. (B) Position of foci identified by ICA on the surface of the skull. (C) Source localization in right DLPFC by eLORETA.

behavior (unobserved consequence; Bzdok et al., 2018). Therefore,
they can be used in conjunction with the current investigation
to provide a more thorough assessment of the studied features’
potential to detect R and NR responses to rTMS treatment. We
also ran a statistical test to compare the results of our data to
those of earlier studies that used statistical analysis. Since some
of the data did not have a normal distribution, we used analysis
of variance (ANOVA) to compare every feature between the two
groups.

2.10. Evaluation

Accuracy (AC), Sensitivity (SN), Specificity (SP), and Precision
(P) are used to assess the proposed method’s capacity to predict
response to rTMS treatment. TP stands for true positives (correctly
predicted R), TN for true negatives (correctly predicted NR), FN for
false negatives (incorrectly predicted NR), and FP for false positives
(incorrectly predicted R).

Accuracy (AC): the ratio of correct predictions to the total
predictions

AC =
TP+ TN

TP+ TN+ FN+ FP
(34)

Sensitivity (SN): the ratio of true positives to the total positives

SN =
TP

FN+ TP
(35)

Specificity (SP): the ratio of true negatives to the total negatives

SP =
TN

TN+ FP
(36)

Precision (P): the ratio of predicted positive cases that were correct

P =
TP

FP+ TP
(37)

3. Results

Since the effects of stimulation on inactive neural networks in
the frontal and pre-frontal areas as brain sources are always greater
than EEG channels, we first identified the rTMS-stimulated foci in
the mentioned areas and then extracted nonlinear features from the
desired foci. In order to identify the relative foci, first the location
of the focus in the standard MNI is visually determined and after
confirming the dipole coordinates of the representative of that focus
in the frontal region, the desired component is determined as the
excitable focus. The obtained results indicate the presence of foci
in the L-DLPFC (Figure 5), R-DLPFC (Figures 6, 7), and center
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FIGURE 6

Source localization of rTMS stimulation foci in right prefrontal cortex (R-DLPFC) for a non-responder subject. (A) Dipole coordinates of the identified
focus in right side on a default MRI. (B) Position of the foci identified by ICA on the surface of the skull. (C) Source localization in right DLPFC by
eLORETA.

of DLPFC (Figure 8) each of which is confirmed by the dipole
coordinates and eLORETA results.

Figure 5 shows the position of a focus identified by the ICA
algorithm, which is also confirmed by eLORETA algorithm. The
focus shown on the left side of DLPFC belongs to a responder
subject.

Figures 5 and 6 are the identified foci on the right side of
the prefrontal region that belong to a NR subject and a R subject,
respectively. It is noteworthy that although the NR subject has a
recognizable focus in the mentioned area, the extracted features
reveal a significant difference between the NR and R subjects in
terms of prediction of the rTMS treatment which will be explained
further.

In some subjects undergoing bilateral treatment, the main focus
is localized in the center of the frontal region. These patients often
have symptoms of depression as well as insomnia and anxiety
(Figure 7).

3.1. Analytical results

We extracted 23 features from each component time series:
four nonlinear features, including PE, LZC, FD, and CD, four
power features, which contain delta, theta, alpha, beta bands, and
12 bispectrum features, i.e., BispSL, Bisp2M, and BispEn in all

bands, and three cordance features, i.e., IC1CORD-T, IC2CORD-T,
and IC3CORD-T features in theta band. Then, by applying the GA
feature selection, 12 features were selected. Our study shows that
these selected features from the relevant components can be used
as suitable markers for prediction of rTMS treatment response. In
other words, the components identified in DLPFC can be a more
suitable platform and tool for extracting effective features.

Table 2 depicts the efficiency of the 23 selected features in
predicting rTMS treatment response in MDD, which was evaluated
by analysis of variance (ANOVA) on the learning set. According to
this table, all of the bispectrum, cordance, and non-linear features
had acceptable discriminating power, as implied by P-Value. The
results of ANOVA test in spectrum features also showed that T,
A, and B power differ significantly between R and NR, while
due to the high P-Values of frequency peaks in the Delta band,
these features cannot distinguish the two groups with statistical
significance. Therefore, we used 22 features with statistically
significant discrimination, excluding the frequency peaks in Delta
band from the aforementioned features to form the feature vector.

In this study, our main focus is to use the genetic algorithm
as a more advanced method of feature selection. After an initial
evaluation of features, their optimal combination, consisting of
12 features, was selected by GA. The SVM classifier parameters
and kernel width (σ) must be chosen with attention and caution
to optimize the learning cost and prediction performance. To do
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FIGURE 7

Source localization of the rTMS stimulation foci in right prefrontal cortex (R-DLPFC) for a responder subject. (A) Dipole coordinates of the identified
focus in right side on a default MRI. (B) Position of the foci identified by ICA on the surface of the skull. (C) Source localization in right DLPFC by
eLORETA.

so, we compared the classifier’s performance by evaluating the error
function using an independent validation set and selecting the
classifier with the minimum error relative to the validation set.
Because this technique can cause overfitting in the validation set,
the test dataset was used to confirm the performance of the chosen
classifier. In other words, based on a 10-fold cross-validation, the
data were divided into 10 equal parts and in each stage, 10% of the
data were used as the test dataset and the rest of the data as the
training dataset. In fact, nine of the observations were selected as
test data and 79 as train data, and this process was repeated 10 times.
The optimum values of the parameters, chosen when the error on
the validation dataset reached a minimum, were 0.7 for σ and 3 for
order (d).

Table 3 illustrates the performance of the two classifiers with
variable parameters, i.e., SVM and KNN. The features were used
as input of GA to reduce their number and improve the proposed
algorithm’s performance. For classification, we utilized SVM and
KNN. We assessed the performance of classifiers with various
kernels and Ks, such as polynomials of order 1, 2, and 3, and RBFs
with various sigma values (σ = 0.7, 1, 1.3) for the SVM classifier.
We tested values of k from 1–13 and found that k = 7 in the KNN
classifier achieved the best results. To reduce the complexity of
Table 3, we display four k-values (3, 7, 10, and 13). It is highlighted
that the input of the classifiers is the components features extracted
by GA.

Four measures based on Equations (34) to (37) were used to
evaluate the performance of the proposed approach. If for example,
a responder (R) is correctly classified as R, it is a TP. On the
other hand, if an NR is classified as NR, it is a TN. Any NR that
is wrongly classified as an R will result in an FP, whereas any R
that is mistakenly classified as an NR will result in a FN. Table 4
summarizes the results of the test data classification for each class.

The obtained sensitivity, specificity, precision, and accuracy
of the proposed method are shown in Table 5. Note that the
SVM classifier outperformed the other classifiers and achieved
94.31% accuracy, 95.65% sensitivity, 92.85% specificity, and 93.61%
precision, respectively.

We applied feature sets extracted from components time-series
to classifiers in the following forms to evaluate the capability of the
selected features in the prediction of response to rTMS treatment:
each feature independently, the combination of features in each
group of nonlinear, spectral, bispectral, and cordance features. Our
proposed classification approach was evaluated using the following
criteria: classification accuracy, specificity, sensitivity, and precision.
Table 6 shows these criteria in relation to each measure which were
calculated based on the three components with the highest average
λ (weight of extracted independent components) in the frontal area
and reduced to 12 features by GA. The evaluation of classification
by the combination of studied features is also given in Table 6.
As can be seen, combinational features are more capable than the
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FIGURE 8

Source localization of the rTMS stimulation foci in center of frontal for a responder subject. (A) Dipole coordinates of the identified focus in the
center of frontal region on a default MRI. (B) Position of the foci identified by ICA on the surface of the skull. (C) Source localization in right DLPFC
by eLORETA.

TABLE 2 Results of the ANOVA test.

Extracted features from components P-Value

Nonlinear (PE, LZC, FD, CD) 0 ≤ 0.0001

Power (Theta, Alpha, Beta) 0 ≤ 0.0001

Power (Delta) 0.04

Bispectrum (BispSL, Bisp2M, and BispEn in all bands) 0 ≤ 0.0001

Cordance (IC1, IC2 and IC3) 0 ≤ 0.0001

individual features which is why they have been used in this study
as the input to predict the rTMS treatment response.

4. Discussion

Identification of biomarkers for predicting the therapeutic
outcome of antidepressant treatment by rTMS is the main goal
of the current research as it can transform the lengthy process
of finding the right treatment for patients with MDD. We have
explored the potential of pretreatment cortex activity and extracted
features from components as a putative biomarker of treatment
response.

Given that EEG channels do not always represent the foci
stimulated by rTMS, in this study, we focused on the extraction

of affected foci in the frontal region. The components in the
frontal lobe indicate the neural behavior of networks that are
activated by electromagnetic stimulation and point to the sources
activated during treatment. It seems that one of the factors that can
elucidate the improved results of this article, compared to those of
previous studies, is the analysis of temporal behavior of the relevant
sources rather than the EEG channels. As the classification results
illustrated, our proposed method led to high classification accuracy.
Table 7 compares our results with those of the previous studies
that applied machine learning techniques for prediction of MDD
treatment response.

In an attempt to formulate a method for prediction of rTMS
clinical effects, we obtained various features from pretreatment
resting-state EEG of patients with MDD who had undergone the
rTMS procedure, including 34 non-responders and 34 responders.
While much of the literature is dedicated to the power of alpha and
theta frequency bands (Bailey et al., 2018, 2019), our data analysis
results suggest that beta power, when derived from the relevant
component time-series, can make for a prognostic biomarker of
more significant potential. Similarly, a number of studies such as
Lieber and Prichep (1988) and Knott et al. (2000) show that a
high rate of beta activity is associated with the depression level.
It can then be concluded that the high beta power is linked to
lower levels of treatment responsiveness. As for other frequency
bands, although theta and alpha bands produced a rather high
classification accuracy, only alpha and delta power could be used

Frontiers in Systems Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnsys.2023.919977
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Ebrahimzadeh et al. 10.3389/fnsys.2023.919977

TABLE 3 Performance of the KNN and SVM classifiers with different parameters using the combined feature vector.

Classifier Sensitivity Specificity Accuracy

SVM-Poly (d = 1) 81.37% 97.12% 93.52%

SVM-Poly (d = 2) 83.24% 97.40% 92.24%

SVM-Poly (d = 3) 83.63% 97.41% 93.72%

SVM-RBF (σ = 0.7) 82.61% 98.77% 93.21%

SVM-RBF (σ = 1.0) 81.17% 98.87% 93.19%

SVM-RBF (σ = 1.3) 81.44% 97.63% 92.75%

KNN (K = 3) 77.26% 96.37% 92.37%

KNN (K = 7) 80.36% 97.12% 93.18%

KNN (K = 10) 78.12% 96.22% 89.17%

KNN (K = 13) 76.44% 94.22% 87.64%

TABLE 4 Classification results by SVM, KNN, and MLP, using combined
feature vectors.

TP FP FN TN

SVM 44 3 2 39

KNN 41 6 5 36

MLP 42 5 4 37

to statistically differentiate between the two groups (Olejarczyk
et al., 2020). Our results confirm that responders exhibit a greater
pretreatment alpha power compared to non-responders, which has
also been observed in other studies including (Ulrich et al., 1984;
Suffin and Emory, 1995; Knott et al., 2000; Bruder et al., 2001,
2008; Lebiecka et al., 2018). Bruder et al. (2008) elucidated that this
increased alpha power could point to the correspondence between
low arousal and low serotonergic activity. They showed that the
fact that 5-HT mediates arousal and serotonergic activity might be
suggestive of the activity of the mesencephalic raphe nuclei and
cortical afferents (Bruder et al., 2008).

Heller et al. (1995) linked depression to dysfunction of
temporoparietal mechanisms which may mediate emotional
arousal. They found that delta power was lower in rTMS responders
than in non-responders, which was also highlighted in other
studies such as Knott et al. (1996) and Knott et al. (2000). Our
results depict the significant differences in frontal delta power
of responders and non-responders. In comparison, however, the
power of theta frequency band has been reported to be of less
relevance since both responders (Woźniak-Kwaśniewska et al.,
2015) and non-responders (Arns et al., 2012) seemed to have high
theta power. We also detected no major differences between the
two groups with relation to the theta power. This was also the case
in a previous study (Cook et al., 1999). Furthermore, we found
the nonlinear features to be of great potential in predicting rTMS
treatment response, while they have been relatively overlooked in
the literature. The correlation of dimension (CD), for example,
was considerably lower in responders, which produced a high
classification accuracy of 87%.

We also investigated the predictive abilities of frontal and
prefrontal theta cordance which led to classification accuracy of
80.4% and 78.3%, respectively. Our statistical analysis shows that
these measures fail to differentiate between the two groups. This is
in line with the results of other studies such as Arns et al. (2012) and
Bailey et al. (2019).

To evaluate the outcomes, we applied different classifiers
and achieved the accuracy of classification using the determined
features both individually and in combination (Table 6). Then,
we drew a comparison between the obtained results and those
of previous works such as (Hasanzadeh et al., 2019; Table 7).
As shown, the proposed method has outperformed the previous
ones, except for the result of the cognition output in the study
of Al-Kaysi et al. (2017), where they aimed to predict mood
and cognition output separately. To this end, they designated
0 or 1 values to mood and cognition based on whether their
scores from the middle of treatment had decreased or increased
compared to the baseline scores. They then used machine learning
techniques to predict theses values, also known as the outputs,
based on the EEG features. It should be highlighted that after the
treatment, the cognition output exhibited alterations in the Symbol
Digit Modalities Test (SDMT). The results of cognition output are
irrelevant to depression therapy prediction because SDMT is not
a depression severity rating scale. The mood prediction, on the
other hand, highlighted changes in MADRS with a comparatively
low accuracy of 76%. A similar study (Bailey et al., 2018)
employed both mood and EEG measures and achieved higher
accuracy.

The mood measures are generally subject to expert rating
and therefore can be different from one to another. Since the
proposed method is solely based on the EEG activity, we believe
it is more appropriate than that of the mentioned study. In
addition, Bailey et al. (2018) separated the two groups of responders
and non-responders using two sessions of EEG, one prior to
the treatment and one after a week of treatment, whereas we
have used only one session of pretreatment EEG and obtained
high classification results (accuracy = 91.3%, specificity = 91.3%,
sensitivity = 91.3%). The fact that only one session of EEG recording
is required, brings to attention the efficiency of the proposed
method. It also lifts the financial and mental burden of undergoing
a week-long, possibly ineffective treatment.

The major novel aspect of this study was applying predictive
analytics and machine learning on the component time-series
extracted from scalp EEG to interpret and summarize the
neural activity in DLPFC. We were able to identify outstanding
features from a big amount of data using machine learning to
recognize outcome predictors that were previously undetectable.
This capability is greatly enhanced by using time series of foci
identified as stimulated neural networks. In fact, the proposed
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TABLE 5 Classifier performance in percentage, for 10-fold cross validation and combined feature vector.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

SVM 94.31 95.65 92.85 93.61

KNN 87.50 89.13 85.71 87.23

MLP 89.77 91.30 88.09 89.36

TABLE 6 Accuracy of SVM, KNN, and MLP classifiers with the selected features (individually and in combination) for classifying NR and R.

Features SVM KNN MLP

Non-Linear 84.91% 76.82% 78.24%

Power 91.82% 78.13% 80.66%

Bispectrum 89.23% 81.67% 82.15%

Cordance 76.18% 82.73% 71.63

Combination 94.31% 87.50% 89.77%

TABLE 7 Comparison of classification results of studies that applied machine learning techniques for prediction of MDD treatment response with those
of the current study.

Features Accuracy (%) Specificity (%) Sensitivity (%)

Band Power (Metin et al., 2020) 80.0 - -

Power Spectral, eLORETA, multiscale-entropy-based, microstate-based
(Zhdanov et al., 2020)

79.2* 91.0 67.3

MADRS, PSD, iAPF, theta Cordance, wPLI (Bailey et al., 2019) 86.60 89.0 84.0

MADRS, eLORETA, Theta Cordance (Jaworska et al., 2019) 87.6 90.3 83.2

Theta frequency band (Erguzel et al., 2015) 89.1 - 94.4

PSD, Alpha asymmetry (Al-Kaysi et al., 2017) 76 (Mood) 92 (Cognition) - -

Power Spectral, , cordance, asymmetry (Cao et al., 2018b) 81.3 82.1 91.9

Wavelet (Mumtaz et al., 2017) 87.5 95 80

PSD, PSD ratio, Coherence, Mutual Information
(Khodayari-Rostamabad et al., 2013)

87.9 80.9 94.9

MADRS, Working Memory accuracy, PSD, wPLI (Bailey et al., 2018) 91.0 92.0 91.0

Non-Linear, power, Bispectrum, cordance (Hasanzadeh et al., 2019) 91.3 91.3 91.3

Time-Frequency domain analysis (Ebrahimzadeh et al., 2021a) 82.43 75.0 86.0

Our proposed method based on components analysis 94.31 92.85 95.65

*Only the baseline EEG data, MADRS, Montgomery and Asberg Depression Rating Scale; PSD, power spectral density; wPLI, weighted phase lag index.

method indicates the high ability to predict the response to
treatment based on neuronal activity.

We obtained these results using EEG and machine learning in
a standard clinical setting of rTMS therapy for MDD, indicating
that these methods are useful tools for studying cortical networks
and possibly guiding TMS treatment. We were able to restrict the
data’s intrinsic complexity and choose electrophysiological variables
relevant to therapy-induced alterations and response prediction
using the algorithms we used. This method shows potential in
constructing treatment regimens, devices, and measurements to
enable screening and personalizing treatment viable in the office
setting, given the price and accessibility of EEG and the application
of data-driven approaches.

This study aimed to evaluate features of extracted components
from EEG as potential predictors of MDD treatment responses in
patients who received excitatory rTMS to L-DLPFC. The results
denote that EEG decomposition components embody different
energies in different patients which can be used to separate
the responders from non-responders. We show that performing
non-linear analyses on the time-series of the EEG components

can lead to more promising results and reliable predictors of
rTMS treatment response, in comparison with the classical linear
methods. Furthermore, we applied MLP, KNN, and SVM classifiers
to different features extracted from pretreatment EEG, including
nonlinear, power spectrum, bispectrum, and cordance extracted
from ICs, and also a combination of them. Component’s power of
beta and power of all frequency bands yield classification accuracy
of 94.3%, which explains that component power, particularly in
beta band, is a valid biomarker of treatment response. Correlation
dimension and some of the features based on bispectrum amplitude
also have significant predictive abilities. We believe that the
appropriate results of the proposed method are suggestive of its
potential for clinical applications.

4.1. Limitations and future research
directions

The lack of a sham condition is one of the work’s limitations.
Previous work points to changes in cortical networks during
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placebo responses (Cook et al., 2002; Hunter et al., 2006; Benedetti
et al., 2011). Furthermore, brain connectivity on functional imaging
may predict placebo responses (Tétreault et al., 2016), which
emphasizes the importance of future sham-controlled studies.
Although the size of our samples is larger than other studies, it is
still relatively small compared to the extracted features. Overfitting,
in which the algorithm learns tendencies in the data that are
not generalizable to new samples, is a common concern with
such studies. We tried to address this by employing regularization
(reducing model complexity), cross-validation (training and testing
the model on different data), and shuffling (demonstrating that the
suggested approach does not learn random patterns in the data).
The other limitation that this sample size creates is that the variables
setting apart the responders from non-responders can only be
identified based on their response to rTMS treatment in general.
Therefore, replication with a larger sample size is needed to confirm
the validity of our findings.

Another concern is that it is possible for the results to have
been affected by unpredictable sampling bias. For one thing, most
of the participants were not quite sure about the number of their
prior depressive episodes. More detailed clinical features such as
the current medication dosage were also not recorded. In addition,
it is relatively likely that we have dismissed EEG measures with
high predictive potential. The sample size also did not allow for
a separate analysis of left and right, and bilateral rTMS treatment
response in the randomization phase of the study after the initial
3 weeks of left-sided treatment (which was consistent across all
participants). Although, to our knowledge, previous research has
not yet detected such differences (Fitzgerald et al., 2018), we still
believe that deciding if and to what extent left or right-sided rTMS
treatment is effective for a patient seems to be a priority for future
research work.

Notwithstanding these limitations, we discovered reliable and
therapeutically relevant results. To maximize the benefits from this
research, future work can be focused on the following:

(1) Independent replication in a larger sample to confirm
the predictive ability of the features chosen in this study, or
the most predictive features from the literature. (2) Once the
predictive ability of our features is proven to be effective in
large samples, the focus then should be laid on simplifying and
manualizing the calculational procedures to enable a more practical
clinical application. An improved machine learning algorithm
(perhaps using deep learning for more sophisticated prediction
in larger datasets) could then use anonymous data from patients
across clinics for better prediction accuracy and generalizability.
(3) Research should be conducted to find out whether the outcomes
for the patients categorized as non-responders would be worse
if they undergo failed treatment as opposed to not undergoing
the treatment altogether. If it is established that non-responders
show increased depression severity after undergoing unsuccessful
treatment, there will be a strong case that the prediction
of non-response should result in referrals to an alternative
treatment (rather than undergoing rTMS treatment). However, if
outcomes remain relatively the same for participants undergoing an
unsuccessful treatment, the treatment could still benefit the patient,
because even if response prediction outcomes are accurate, there
is still a small chance patients will respond in reality (Bailey et al.,
2018). (4) Regardless of the answer to point 3, there is still an

obvious need for alternative treatment methods to be developed for
non-responders. With regard to brain stimulation, this could entail
predicting whether left or right-sided treatment is most suited for
particular individuals, and applying rTMS to the medial prefrontal
cortex instead of the DLPFC (Dunlop et al., 2017). (5) Investigating
the statistical effect of treatment heterogeneity as a paradigm on
their classification matrices. Ideally, the type of treatment should
be entered as a covariant in the analyses to determine if it has a
significant effect on classification.

5. Conclusion

The aim of this study was to evaluate the ability of components
extracted from EEG to predict response of rTMS treatment in MDD
patients. As expected, the features extracted from the foci of the
frontal region had more capability and capacity to differentiate
between the two groups (R and NR) than the EEG channels.
We have also shown through the use of an advanced machine
learning method that nonlinear and frequency features of the
components can predict rTMS treatment response. The obtained
results show that the proposed method is more capable than other
similar methods. Machine learning successfully predicted lack of
response to rTMS with high specificity and identified pre- and
post-rTMS status using EEG coherence. This approach may provide
mechanistic insights and may also become a clinically useful
screening tool for rTMS candidates. In future studies, we intend
to obtain defined features from other sources decomposed from
EEG to improve the classification accuracy. In addition, examining
sources identified in other areas of the brain can also increase the
yield of studies in the field of rTMS treatment. Further work can
also be done on the application of the proposed method to other
neurological diseases such as migraine and obsessive-compulsive
disorder.
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Čukić, M. (2020). The reason why rTMS and tDCS are efficient in treatments of
depression. Front. Psychol. 10:2923. doi: 10.3389/fpsyg.2019.02923

Frontiers in Systems Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnsys.2023.919977
https://doi.org/10.1109/TBME.2006.883696
https://doi.org/10.1109/TBME.2006.883696
https://doi.org/10.1159/000438457
https://doi.org/10.1016/j.neucli.2010.01.001
https://doi.org/10.1016/j.ijpsycho.2012.05.001
https://doi.org/10.1016/j.ijpsycho.2012.05.001
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.mehy.2019.109360
https://doi.org/10.1016/j.clinph.2013.11.022
https://doi.org/10.1016/j.clinph.2013.11.022
https://doi.org/10.1016/j.brs.2011.12.003
https://doi.org/10.1155/2013/251638
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jpsychires.2006.06.005
https://doi.org/10.1177/1550059413520442
https://doi.org/10.1177/1550059413520442
https://doi.org/10.1038/npp.2010.81
https://doi.org/10.3390/e19120692
https://doi.org/10.3390/e19120692
https://doi.org/10.1016/j.biopsych.2007.10.009
https://doi.org/10.1016/j.biopsych.2007.10.009
https://doi.org/10.1016/s0006-3223(00)01016-7
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.3389/fpsyt.2018.00413
https://doi.org/10.1109/TBME.2018.2877651
https://doi.org/10.1109/TBME.2018.2877651
https://doi.org/10.1001/jamapsychiatry.2017.0025
https://doi.org/10.1016/S0893-133X(02)00294-4
https://doi.org/10.1016/S0893-133X(02)00294-4
https://doi.org/10.1016/s0165-1781(99)00010-4
https://doi.org/10.1016/s0165-1781(99)00010-4
https://doi.org/10.3389/fpsyg.2019.02923
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Ebrahimzadeh et al. 10.3389/fnsys.2023.919977
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