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When we interact with the environment around us, we are sometimes active

participants, making directed physical motor movements and other times

only mentally engaging with our environment, taking in sensory information

and internally planning our next move without directed physical movement.

Traditionally, cortical motor regions and key subcortical structures such as the

cerebellum have been tightly linked to motor initiation, coordination, and directed

motor behavior. However, recent neuroimaging studies have noted the activation

of the cerebellum and wider cortical networks specifically during various forms of

motor processing, including the observations of actions and mental rehearsal of

movements through motor imagery. This phenomenon of cognitive engagement

of traditional motor networks raises the question of how these brain regions

are involved in the initiation of movement without physical motor output. Here,

we will review evidence for distributed brain network activation during motor

execution, observation, and imagery in human neuroimaging studies as well as

the potential for cerebellar involvement specifically in motor-related cognition.

Converging evidence suggests that a common global brain network is involved

in both movement execution and motor observation or imagery, with specific

task-dependent shifts in these global activation patterns. We will further discuss

underlying cross-species anatomical support for these cognitive motor-related

functions as well as the role of cerebrocerebellar communication during action

observation and motor imagery.

KEYWORDS

motor imagery, cerebrocerebellar, neuroimaging, motor network, action observation,
motor execution, distributed brain network, cerebellar function

Introduction

Interacting with the environment around us results in an incoming flow of dynamic
sensory information that is used to guide ongoing motor behaviors. However, the dynamic
nature of our environment demands that our patterns of motor behavior must remain
flexible and diverse. When navigating from point A to B we may step with our right
leg on the first trip, next time we may initiate movement with our left leg because our
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weight is distributed differently, on the next trip we may rotate
and walk backward for a few steps if someone behind us begins
to speak. This constant adaptation of our motor movements in
relation to incoming sensory input from the environment means
that motor control must be inherently flexible, both planning and
generating efferent motor commands based on the continuous
interaction of motor and perceptual processes (Kawato, 1999;
Wolpert and Ghahramani, 2000). Further, we are sometimes
actively executing motor patterns and other times only covertly
engaging with our surroundings-taking in sensory information,
observing the movement of others, or mentally rehearsing without
physical engagement. Observing the movements of others may be
crucial for establishing successful social interactions (Rozzi and
Fogassi, 2017) and both action observation and motor imagery can
lead to improved motor learning (Chye et al., 2022). Imagining
one’s own motor movements, also known as motor imagery, refers
to the mental simulation of performing a physical action (Decety
and Ingvar, 1990; Jeannerod, 2001). Fundamentally, motor imagery
is a neural process of mental rehearsal of movement, including
motor cognition but without any motor output. The very existence
of this mental capacity immediately begs the question of how our
brain subserves both the execution of motor movements and the
imagining of those same motor actions.

In this review we explore the distributed brain networks that
are involved in motor execution, observation, and imagery. In
particular, we identify major brain regions that play a vital role
in both direct motor control and indirect motor cognition. We
explore the evidence for common distributed brain networks,
largely involving motor, pre-motor, and parietal cortex, as well
as subcortical structures, such as the cerebellum. These major
brain areas are individually known to play well established roles
in coordinated sensorimotor integration and motor execution,
but are also connected by one of the largest projection tracks in
the brain, the cortico-ponto-cerebellar pathway, and together they
form important functional communication networks (Apps and
Watson, 2013; Palesi et al., 2017; McAfee et al., 2022). A series
of recent meta-analyses of functional neuroimaging data suggests
that these shared distributed networks play a unique role in the
execution, observation, and mental rehearsal of motor movements
(Grèzes and Decety, 2000; Caspers et al., 2010; Molenberghs
et al., 2012; Hétu et al., 2013; Hardwick et al., 2018), however,
key functional specializations also differentiate activation across
these conditions. First, we discuss the structural and functional
implications of the extensive connections between these distributed
brain networks and their potential coordinated role in motor
execution, observation, and imagery. We then consider the
challenges and limitations of investigating motor imagery on the
level of neural circuits and discuss key future perspectives.

Structure and function of distributed
brain networks for motor processing

The generation, execution and ongoing adaptation of
movements is fundamental to our daily lives and wellbeing.
While uncovering fundamental principles of motor control has
been a central focus of neuroscience research for centuries, many
questions remain regarding the precise sequence of events that

lead from thought to movement. Perhaps the most advanced
understanding exists at the level of the control of muscle output
itself, i.e., the physiological relationship between the lower motor
neurons and effector muscles (for example see Stifani, 2014).
However, uncovering the central neural circuitry underlying
the planning and initiation of complex temporal sequences of
movement has proven more of a challenge. Two important
advancements in recent decades have allowed researchers to tackle
these questions in a systematic way. The first is the capacity to
measure proxy readouts of brain activity during active behavior
and cognitive tasks. Here, technologies such as functional magnetic
resonance imaging (fMRI), positron emission tomography (PET),
and electroencephalogram (EEG) recordings have provided a
wealth of data to investigate the neurophysiological underpinnings
of active task engagement in health (Karuza et al., 2014; King et al.,
2019) and during neurological dysfunction (Cope et al., 2021).
Although these technologies remain limited in their practical
application for the assessment of motor tasks (i.e., participants are
generally confined to a supine or seated position and movements
must be limited to reduce associated measurement artifacts; Zeng
et al., 2014), their use has driven the field of cognitive neuroscience
into dynamic new directions and allowed for a detailed analysis
of the structure and function of movement-associated brain
networks. The second major advancement has allowed researchers
to gain insight into the precise neural circuits and network activity
underlying movement preparation, initiation, and generation in
the brain of actively behaving animals. This has arisen from the
development of advanced microscopy and electrophysiological
techniques for recording neural activity while simultaneously
probing and manipulating circuit elements (Dombeck et al., 2007;
Fois et al., 2014; Steinmetz et al., 2021). This has enabled neural
activity on the network and single-cell level to be directly related
to precisely timed stimulus input as well as sequences of ongoing
motor behavior (e.g., Gao et al., 2018; Pakan et al., 2018a,b; Musall
et al., 2019; Henschke et al., 2020, 2021; Dacre et al., 2021).

Together, these approaches have revealed that the execution
of motor output and the cognitive underpinnings of motor
processing both rely on distributed brain networks that span across
similar cortical and subcortical regions (Figure 1). What follows
is an overview of the structural and functional evidence for the
activation of these distributed brain networks and their individual
involvement in movement execution, observation, and imagery.

Movement execution

When we begin a voluntary movement, the sequence of central
motor planning and execution involves networks distributed across
prefrontal, pre-motor, motor, and parietal cortical regions as
well as subcortical structures such as the cerebellum, thalamus
and basal ganglia (Haggard, 2008). Within the cerebral cortex,
substantial evidence implicates medial frontal and parietal
regions in movement initiation. The medial frontal regions
have traditionally been associated with voluntary movements
and parietal pathways with stimulus-driven action (Haggard,
2008); however, this distinction has become less clear with
parietal cortex activation evident during self-initiated movements,
decision making processes, and the sense of movement awareness
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FIGURE 1

Similar global networks but different patterns of activation in cortical and cerebellar regions during movement execution, observation, and imagery.
Schematic representation of cortical (upper panel) and cerebellar (lower panel) activation patterns during movement execution (left), action
observation (middle) and motor imagery (right). Stronger relative activation is indicated by darker colors and striped regions indicate areas with
highly task-dependent activation patterns. Overview of the activation patterns were schematized based on a summary of neuroimaging studies in
humans as discussed in the text. Note that here we focus on premotor, motor, parietal, and sensory cortical networks as well as the cerebellum. An
important role for lateral prefrontal cortex has been reviewed previously (see Rozzi and Fogassi, 2017) and the basal ganglia also plays an important
role in cognitive-motor interactions (e.g., Yágüez et al., 1999; see also Leisman et al., 2014). M1, primary motor cortex; stocktickerPMC, pre-motor
cortex; S1, primary somatosensory cortex; SMA, supplementary motor area, note SMA as indicated here also includes preSMA; visual areas, represent
striate and extrastriate cortical regions, see text for details; cerebellar lobules I-X, crus 1, and crus 2 are indicated on a representation of the unfolded
cerebellar cortex.

(Cunnington et al., 2002; Sirigu et al., 2004; Haggard, 2005; Gold
and Shadlen, 2007; Farrer et al., 2008; Desmurget et al., 2009).
Regardless, both of these circuits converge on the primary motor
cortex (M1), which then leads to movement execution through
descending motor pathways to the spinal cord and ultimately the
effector muscles.

During voluntary actions, fMRI studies in humans show
activation in the supplementary motor area (SMA, including
preSMA regions) during, and even a matter of seconds preceding,
the selection of an action (Lau et al., 2004; Soon et al., 2008).
These studies are supported by physiological recordings showing
neural activity and neuronal recruitment in the preSMA/SMA
region occurring before voluntary movements in both humans
and animals (Shima and Tanji, 2000; Yazawa et al., 2000; Fried
et al., 2011; Chen et al., 2017; Guo et al., 2017) and the
sensation of an “urge” to perform a movement can be evoked
by electrical stimulation of the SMA in humans (Fried et al.,
1991). But how can we define the point of true initiation; what
provides input to these pre-motor regions? The SMA receives
input from lateral prefrontal regions, which are involved in
planning and executing movements, particularly in the context
of goal-directed behavior (Passingham et al., 2000; Borra et al.,
2017; Rozzi and Fogassi, 2017). However, these SMA regions
also receive input from subcortical structures such as the basal
ganglia and cerebellum (Akkal et al., 2007; Sakai, 2013) and, in

turn, send efferent projections back to these subcortical regions
(for review see Bostan and Strick, 2018). The basal ganglia
has a well-established role in suppressing unwanted movements
as well as in the preparation of motor circuits for movement
initiation (Schultz and Romo, 1992; for review see Simonyan,
2019), however, the importance of the connectivity between the
basal ganglia and the cerebellum (Hoshi et al., 2005; Bostan
and Strick, 2018) as well as the general role that the cerebellum
and corticocerebellar loops play in movement initiation has
been underestimated until more recently (see Apps and Watson,
2013; Thach, 2014; McAfee et al., 2022). A unique role for
the cerebellum in context-dependent motor behaviors is also
supported by recent optogenetics studies in rodents that perform
precise circuit manipulations to demonstrate that cerebellar
output directly shapes cortical activity patterns during movement
initiation (Gao et al., 2018; Dacre et al., 2021; Gaffield et al.,
2022). Therefore, the process of voluntary movement initiation
may be more reliant on continually updated and distributed
cortico-subcortical loops rather than on a single spontaneous
point of initiation of “will” (Haggard, 2008; Economo et al.,
2018).

For externally triggered actions, networks connecting sensory
systems to parietal regions and premotor cortex (PMC) play
an important role in sensory-guided movement execution.
Parietal cortex has been described as the interface between
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sensory and motor representations (Andersen and Buneo, 2002)-
with information from early sensory cortices, including both
somatosensory and visual information, converging in parietal
regions, which then sends projections to the PMC and M1
(Gharbawie et al., 2011). These circuits are important for sensory-
guided actions such as reaching and grasping as well as sensory-
guided error corrections (Grol et al., 2007; Archambault et al.,
2015). Naturally, the visual input to these circuits during movement
may be highly task dependent, however, specific extrastriate visual
areas (e.g., V3) have been shown to be activated in monkeys during
both visually guided grasping and in complete darkness (Kilintari
et al., 2011). Extensive neural circuit studies in animals indicate
that the interaction between various sensory and motor systems
is reciprocal and can be predictive-with substantial influence of
motor activity in early sensory cortices (Niell and Stryker, 2010;
Pakan et al., 2016, 2018a,b; Leinweber et al., 2017; Ayaz et al.,
2019; Henschke et al., 2021) and anticipatory responses present
in somatosensory cortex even before sensory input (Umeda et al.,
2019). Although caution must be taken since this activity in early
sensory cortices is highly task-dependent in both animals and
humans (Musall et al., 2019; Roth et al., 2020) and linked with the
effects of arousal and reward (e.g., Vinck et al., 2015; Henschke
et al., 2020; Roth et al., 2020). Beyond these cortico-cortical loops,
the parietal-pre-motor network also has efferent connections to the
cerebellum (Schmahmann and Pandya, 1989; Henschke and Pakan,
2020) and receives afferent input from the cerebellum via the
thalamus (Clower et al., 2001; Giannetti and Molinari, 2002; Sakai,
2013; Pisano et al., 2021). These cortico-subcortical networks are
activated in human fMRI studies during sensory-driven movement
execution (Hardwick et al., 2018) and parietal corticocerebellar
loops have been shown to be vital for the processing of dynamic
motor error signals across species (Stein and Glickstein, 1992;
Desmurget et al., 2001; Restuccia et al., 2007; Händel et al., 2009;
Inoue and Kitazawa, 2018).

Thus, although functional overlap exists between the SMA and
PMC cortical motor circuits, the parietal-pre-motor networks are
thought to be especially important when immediate motor action
is required, whereas lateral/medial prefrontal circuits are more
involved in planning and initiating motor actions. However, in
more complex real-world environments, self-initiated movements
are constantly intermingled with stimulus-driven events. Given
this, and the fact that both of these prefrontal/pre-motor and
parietal cortical circuits have convergent output onto M1, it is
appealing to take a wider systems neuroscience approach and
consider the function of these brain regions together with key
cortico-subcortical structures as a larger distributed brain network
for motor execution (Figure 1). Things become even more complex
when we consider that not all motor planning or stimulus-driven
inputs results in the actual execution of a motor output. We
are often passive observers of our environment, watching others
perform motor actions, and yet this passive observation can lead to
motor learning and subsequent improved behavioral performance
(Edwards et al., 2003; Mattar and Gribble, 2005; Cross et al.,
2009), particularly in combination with motor imagery (Romano-
Smith et al., 2018; Marshall et al., 2020; Chye et al., 2022).
Given the development of extensive brain networks for motor
control, one might hypothesize that it would be anatomically and
computationally efficient to simply utilize these same networks

for learning through simulating motor movement, including
observation and motor imagery.

Movement observation

The initial discovery of “mirror neurons” in the ventral pre-
motor cortex in monkeys, where individual cells responded to
both motor execution and observation of the same action being
performed (di Pellegrino et al., 1992), led to a flurry of research
suggesting that the activity of these cells formed the basis for
a motor representation in the brain that was fundamental to
understanding motor control (Gallese et al., 1996; Rizzolatti et al.,
1996; Rizzolatti and Sinigaglia, 2016). However, decades later, the
precise impact of these intriguing neuronal responses remains
actively debated, with the strongest consensus indicating that
mirror neuron networks are involved in action imitation and low-
level cognitive processing of observed actions, but others arguing
for a wider role in “action understanding” (see Caligiore et al.,
2013; for review see Bonini et al., 2022; Heyes and Catmur, 2022).
Regardless of the wider functional implications, individual neurons
that respond in some capacity to both motor execution and action
observation have since been described not only in ventral pre-
motor cortex but also dorsal pre-motor cortex (Tkach et al., 2007;
Mazurek et al., 2018; Papadourakis and Raos, 2019), preSMA
(Albertini et al., 2021), inferior parietal lobe (Fogassi et al., 2005;
Bonini et al., 2010), anterior intraparietal area (Pani et al., 2014;
Maeda et al., 2015; Lanzilotto et al., 2020), prefrontal cortex (area 9,
Lanzilotto et al., 2017), and even the primary motor cortex (Tkach
et al., 2007; Dushanova and Donoghue, 2010; Mazurek et al., 2018)
in monkeys. While recordings from individual neurons in humans
are understandably scarce, one study reported extracellular activity
from neurons in the SMA that responded to both motor execution
and action observation (Mukamel et al., 2010). Therefore, with
mirror neuron properties found across this broad cortical network
of sensorimotor-related regions, it is likely these neurons form
a complex control system rather than acting alone in any one
particular cortical area (Heyes and Catmur, 2022), similar to the
function of larger motor-execution networks.

Without a specific focus on mirror neurons per se, a much
larger body of supportive evidence comes from fMRI studies in
humans that show similar networks of cortical activation occur
during both motor execution and action observation (Kilner et al.,
2009; Caspers et al., 2010; Molenberghs et al., 2012; Hardwick et al.,
2018; and also in monkeys Raos et al., 2004, 2007), but interestingly
also include the basal ganglia and cerebellum (Gazzola and Keysers,
2009; Molenberghs et al., 2012; Abdelgabar et al., 2019; Casiraghi
et al., 2019; Errante and Fogassi, 2020). Although a large meta-
analysis of neuroimaging studies failed to find consistent activation
of subcortical regions during action observation (Caspers et al.,
2010; Hardwick et al., 2018), this may be due to the bias of many
neuroimaging studies to focus on cortical activation, as studies
focusing on measurements within the cerebellum have consistently
found significant activation in response to action observation in
both humans (Van Overwalle et al., 2014; Abdelgabar et al., 2019;
Casiraghi et al., 2019; Errante and Fogassi, 2020) and recently
in monkeys (Raos and Savaki, 2021). Undoubtedly, various task-
dependent parameters and laboratory conditions also contribute
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to the variability in the patterns of activation seen across studies.
Interestingly, one study probing more “real-world” motor learning
in trained dancers found greater activation of pre-motor, parietal,
and cerebellar regions when dancers viewed moves from their own
motor repertoire, in comparison to those of the opposite gender
that they were familiar with viewing but not physically performing
themselves (Calvo-Merino et al., 2006). This also provides evidence
that the function of this action observation network is tightly linked
to motor learning and motor representations in the brain and
not simply visual inference alone. While the cerebellum is well-
known to play a vital role in practice-dependent motor learning,
it has also been suggested that these cortico-subcortical loops could
specifically support the acquisition of action understanding within
the mirror neuron system during observation (see Caligiore et al.,
2013). Since mirror neuron properties are not innate but emerge
through sensorimotor associative learning, cerebrocerebellar loops
may help to coordinate cortical activity through both predictive
processing (via cerebellar-prefrontal/pre-motor loops; Kilner et al.,
2007; Guo et al., 2017; Gao et al., 2018) and establishing the
temporal relationship between task-relevant events (via cerebellar-
parietal loops; Ramnani et al., 2001; for review see D’Angelo
and Casali, 2013) during both motor execution and observational
learning (Caligiore et al., 2013). The importance of the cerebellum
in learning through action observation is also highlighted by
cerebellar lesion studies in rats, where increased performance in a
spatial navigation task following strictly observational learning was
abolished with cerebellar lesions (Leggio et al., 2000). Therefore,
these cortico-subcortical networks play a vital role in action
observation and subsequent motor learning, which should also
be considered when assessing the effects of neurological lesions
and neurodegeneration in humans. In fact, in Parkinson’s patients,
action observation therapy has led to improvements in motor
symptoms, which are associated with an increased recruitment
of fronto-parietal cortical networks along with a decrease in
aberrant cerebellar hyperactivity (Agosta et al., 2017), supporting
a critical coordinated role for basal ganglia, cerebellar and cortical
communication (Bostan and Strick, 2018; Errante and Fogassi,
2020).

Therefore, there is substantial evidence that the same
distributed brain networks are activated during both motor
execution and action observation. This begs the question of why
the activation of these motor systems during action observation
does not result in overt motor behavior. In this regard, it is
important to consider differences between the subnetworks that are
involved and key changes in the activation balance within these
distributed brain networks (Figure 2). For instance, in the study
by Mukamel et al. (2010), electrophysiological recordings in the
human SMA demonstrated heterogeneous responses on the single-
cell level, with some neurons showing excitation following both
execution and observation but a subset of neurons responding
with excitation to execution and inhibition during observation.
Similar findings have been reported from M1 neuronal recordings
in monkeys (Dushanova and Donoghue, 2010; Vigneswaran et al.,
2013; Mazurek et al., 2018), indicating that the final output of M1 to
spinal circuitry is reduced in magnitude during action observation
and may not be sufficient to produce overt muscle activity. Indeed,
this dissociation of motor movements from M1 activity has been
exploited in the control of brain computer interface (BCI) devices
(Schieber, 2011; Chaudhary et al., 2022), although some have

suggested that posterior parietal regions may be even more effective
placements for BCI control in this regard (Aflalo et al., 2015).
In neuroimaging studies, the balance of activation has also been
reported to be stronger in pre-motor regions during observation
and stronger in S1 and M1 during motor execution (Raos et al.,
2004, 2007; Gazzola and Keysers, 2009), and differences in the
spatial pattern of activity between execution and observation
were also reported in anterior parietal regions (Dinstein et al.,
2008). Finally, the cerebellum shows significant shared regional
activation during executed and observed actions, including lobules
VI, VIIb, VIIIa and to a lesser degree V, crus I, crus II and
VIIIb (Abdelgabar et al., 2019; King et al., 2019; Errante and
Fogassi, 2020; Raos and Savaki, 2021), although these regions do
not follow strict lobule boundaries but are congruent with more
recent frameworks for functional cerebellar organization (King
et al., 2019; Guell and Schmahmann, 2020). However, there is also
a shift in activation to more lateral aspects of the cerebellum during
action observation in comparison to action execution (King et al.,
2019; Raos and Savaki, 2021). This is congruent with a generalized
mediolateral functional gradient within the cerebellum, with a
motor, visuomotor, and cognitive focus extending from medial to
lateral regions, respectively (Guell et al., 2018; D’Mello et al., 2020).
With the precise parasagittal oriented modular organization of the
cerebellum (Apps and Hawkes, 2009), shifts along this mediolateral
functional gradient during movement execution and observation
could enable the rapid transition between cortical execution and
observational states through coordinated communication between
the cerebellum and cerebral cortex (Likova et al., 2021; McAfee
et al., 2022).

Movement imagery

Motor imagery has been proposed to evoke a neural simulation
network that would shape the motor system in anticipation
for motor execution and ultimately provide information on the
feasibility of potential actions and strengthen motor learning
(Jeannerod, 2001; Ladda et al., 2021). As such, it is not surprising
that motor imagery has also been proposed as a cognitive tool that
could facilitate training and rehabilitation (for review see Mulder,
2007; Yoxon and Welsh, 2020). However, this approach alone has
produced varying levels of success (Chye et al., 2022), likely in
part due to a lack of standardization in the use of motor imagery
(although see Moreno-Verdú et al., 2022) and the systematic study
of motor imagery presenting a number of challenges due to its
covert and introspective nature. In this regard, the advancement
of neuroimaging techniques has hastened progress to uncover the
neurophysiological bases of motor imagery in humans, providing
the capability to examine activated brain networks underlying
these covert cognitive processes. Studies using motor imagery
have consistently report activation in brain regions that are also
involved in movement execution, including parietal regions, pre-
motor cortices, SMA and the cerebellum (see Figure 1; Lotze
et al., 1999; Grèzes and Decety, 2000; Munzert et al., 2009; Hétu
et al., 2013; Hardwick et al., 2018). However, within these common
cortical networks, the neural representation of motor imagery vs.
motor execution is also separable using multivariate approaches
(Sharma and Baron, 2013; Zabicki et al., 2017). Notably the level
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FIGURE 2

Information flow across common distributed brain networks during movement execution, observation and imagery. Schematic representations of
the distributed brain networks (left) show the gross anatomical cortico-cortical and corticocerebellar connections for brain regions related to motor
processing. The general comparison of information flow for cortico-cortical as well as cortico-cerebellar pathways is summarized for movement
execution, observation, and imagery. Dashed lines represent altered connectivity across conditions and ± symbols indicate changes in input across
regions as based on a summary of neuroimaging studies and neurophysiological recordings in humans and monkeys as discussed in the text. Note
that here we focus on pre-motor, motor, parietal, and sensory cortical networks as well as corticocerebellar pathways. An important role for lateral
prefrontal cortex has been reviewed previously (see Rozzi and Fogassi, 2017) and the basal ganglia also plays an important role in cognitive-motor
interactions (e.g., Yágüez et al., 1999; see also Leisman et al., 2014). CN, cerebellar nuclei; M1, primary motor cortex; PMC, pre-motor cortex; S1,
primary somatosensory cortex; SMA, supplementary motor area, note SMA also includes preSMA; visual, refers to visual cortical pathways including
striate and extrastriate regions, see text for details.

of activation in sensory cortical regions, S1 and visual cortex, are
substantially decreased during motor imagery in comparison to
both motor execution and action observation (Hardwick et al.,
2018). Additionally, the activation of visual cortical areas (both
striate and extrastriate) can be highly task-dependent in motor
imagery (Knauff et al., 2000; Kosslyn and Thompson, 2003),
depending on if the subject is asked to use kinesthetic vs.
visual imagery (Solodkin et al., 2004; Guillot et al., 2009). In
the cerebellum specifically, motor imagery again shifts cerebellar
activation to more lateral positions in the cerebellar hemispheres,
even in comparison to action observation (Lotze et al., 1999;
Hardwick et al., 2018; King et al., 2019). Overall levels of cerebellar
activation are also lower in comparison to motor execution (Lotze
et al., 1999; Hardwick et al., 2018), which may stem from a lack of
ascending somatosensory input through spinocerebellar pathways.
However, during motor imagery, the levels of cerebellar activation
are also lower in comparison to action observation (which also lacks
ascending somatosensory input), suggesting that the additional
reduction in cortical output from sensory cortices (S1 and visual
areas) may reduce cerebellar activation further via altered activity in
cerebrocerebellar loops (Figure 2), as these sensory cortices are also
highly connected to the cerebellum (Sultan et al., 2012; Henschke
and Pakan, 2020; Xue et al., 2021).

Similar to the case of action observation, the involvement of
the motor cortex itself has led to the most controversy, with the
majority of neuroimaging studies not reporting consistent M1
activation during motor imagery (Hétu et al., 2013; Hardwick
et al., 2018). Methodological factors such as specific task-
dependent criteria, fMRI/PET sensitivity, imagery modality, and
task instructions may all play a role in the discrepancy between
studies (for discussion see Munzert et al., 2009; Hétu et al.,
2013; Hardwick et al., 2018). However, transcranial magnetic
stimulation (TMS) studies have found that motor imagery can
increase the excitability of M1 (Munzert et al., 2009; Loporto
et al., 2011). This may indicate that similar to during action
observation, responses in M1 may also involve more subtle changes
in excitatory/inhibitory balance on the neuronal level that are

not easy to resolve with functional neuroimaging methodology
and associated temporal resolution. Indeed, a study measuring
electrocorticographic cortical activity reported a 25% reduction in
M1 activity during motor imagery compared to actual movement
(Miller et al., 2010), which is consistent with results using dynamic
causal modeling with high temporal resolution fMRI data that
found a strong suppressive influence of SMA on M1 during motor
imagery (Kasess et al., 2008).

While convincing evidence for a role of M1 during action
observation has come from the extensive investigation of mirror
neurons and other direct neuronal recordings in animals, the
investigation of motor imagery presents unique challenges in this
regard. Due to the covert nature of mental imagery, it has been
exceedingly difficult to carry out studies of these phenomena using
animal models. One proposed path includes an adapted definition
of a more perceptual-based “mental imagery” as the ability to
maintain an active representation of sensory or perceptual details
in the absence of actual sensory input (Blaisdell, 2019). In this
way, neuronal activity could be assessed in relation to working
memory tasks, probing associative and causal learning, or through
inferences about unobservable outcomes (Waldmann et al., 2012;
Fast et al., 2016; Blaisdell, 2019). However, it is possible that
the capacity for mental imagery is uniquely human (Dennett,
1995; Shettleworth, 2010), and animals may be more likely to
experience perceptual events without sensory input in the form of
expectation or memory. While the questions of mental imagery
in animals currently appears largely intractable to convincing
empirical validation, a phenomenon in humans referred to as
aphantasia, i.e., the inability to engage in mental imagery (Dance
et al., 2022), provides an interesting opportunity to discover more
about how mental imagery contributes to our motor and perceptual
processing on the neurophysiological level. This field is still in its
infancy, but some early studies suggest that motor simulations may
indeed be impaired in individuals with aphantasia (Dupont et al.,
2022), who also present with measurable alterations in behavioral
and neural signatures during mental imagery (Milton et al., 2021;
Dupont et al., 2022).
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Discussion

The execution of motor movements is carried out by a
distributed parietal-frontal network and key subcortical structures
including the cerebellum. These same networks support functions
related to more abstract motor cognition including action
observation and motor imagery. Here we have provided an
overview of the wealth of neuroimaging data in humans, as well
as key supportive evidence from animal models, that has enabled
a detailed comparison between the common network elements
and the subnetwork specializations across these various forms of
motor-related processing.

A growing awareness of the function of the cerebellum outside
the strict domain of motor coordination has resulted in an
increased focus on this brain structure in recent neuroimaging
studies. While this is a welcome addition to the field, there
are some caveats to consider when evaluating the results of
these neuroimaging studies. Beyond the traditional issues of
interpreting small sample sizes, measuring individual differences
across neuroimaging data, and complex considerations of statistical
analyses (Brown and Behrmann, 2017; Gordon et al., 2017; Specht,
2020), one must also be cautious when drawing conclusions
about cerebellar structure and function from early fMRI studies.
Historically, many studies assessing “whole brain” activation using
neuroimaging techniques are focused on the neocortex and often
exclude the cerebellum entirely from data analysis and reporting.
This is partly due to particular challenges for mapping functional
neuroimaging in the cerebellum that are only recently starting
to be addressed (Diedrichsen et al., 2010; Schlerf et al., 2014).
For instance, the small size and functional heterogeneity of the
cerebellum requires additional consideration for normalization and
alignment methods in comparison to the neocortex (e.g., Makris
et al., 2005). Recent neuroimaging studies dedicated to functional
specializations in the cerebellum have contributed to a wider
appreciation of the diverse roles of the cerebellum and importance
of cerebrocerebellum communication (Buckner et al., 2011; Guell
et al., 2018; Ji et al., 2019; King et al., 2019; Guell and Schmahmann,
2020; Xue et al., 2021).

Further advances in neuroimaging techniques will continue
to help researchers address the fascinating question of how the
brain implements flexible distributed networks for motor control
that are simultaneously utilized and adapted by covert cognitive
and perceptual processes. For instance, through a series of shared

distributed brain networks, a dancer is able to observe their teacher
performing a choreographed routine, mentally rehearse it, and then
seamlessly produce the precise motor control needed for flawless
execution of a complex series of movements. While we may not all
possess the skills of a trained dancer, this seamless transition from
sensory input–to motor cognition–to motor execution is constantly
ongoing in our normal daily lives. Further, understanding this
inherent plasticity within motor systems may help to improve
the available repertoire of tools for neurological rehabilitation
following motor dysfunction.
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