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Algorithms for estimating directed connectivity have become indispensable to further

understand the neurodynamics between functionally coupled brain areas. The evaluation

of directed connectivity on the propagation of brain activity has largely been based on

simulated data or toy models, where various hidden properties of neurophysiological data

may not be fully recapitulated. In this study, directionality was unequivocally manipulated

in the freely moving rat in a unique dataset, where normal oscillatory interactions

between the supramammillary nucleus (SuM) and hippocampus (HPC) were attenuated

by temporary medial septal (MS) inactivation, and replaced by electrical stimulation of the

fornix to evaluate the performance of several directed connectivity assessment methods.

The directed transfer function, partial directed coherence, directed coherence, pair-wise

Geweke-Granger causality, phase slope index, and phase transfer entropy, all found SuM

to HPC theta propagation when the MS is inactivated, and HPC activity was driven by

peaks of simultaneously recorded SuM theta. As expected from theoretical expectations

and simulated data, signal features including coupling strength, signal-to-noise ratio,

and stationarity all weakly affected directed connectivity measures. We conclude that

all the examined directed connectivity estimates correctly identify artificially imposed

uni-directionality of brain oscillations in freely moving animals. Non-auto-regressive

modeling basedmethods appear to be themost robust, and are least affected by inherent

features in data such as signal-to-noise ratio and stationarity.

Keywords: directed connectivity, theta oscillations, hippocampus, septum, supramammillary nucleus, Granger

causality, phase transfer entropy, phase slope index

INTRODUCTION

To understand the brain it is crucial to understand how information is coded, represented and
stored. This feat requires an understanding of how different parts of the brain are actively engaged
and disengaged in functional circuits that allow behavioral output. There are many techniques,
such as electro- and magneto-encephalograms (EEG/MEG), and functional magnetic resonance

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
https://doi.org/10.3389/fnsys.2017.00072
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2017.00072&domain=pdf&date_stamp=2017-09-29
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:nmcn@psy.otago.ac.nz
https://doi.org/10.3389/fnsys.2017.00072
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00072/abstract
http://loop.frontiersin.org/people/7118/overview
http://loop.frontiersin.org/people/468519/overview
http://loop.frontiersin.org/people/149562/overview


Young et al. Directed Connectivity: A Critical Test

imaging (fMRI) used mostly in non-invasive human studies that
allow us to gauge the timing of responses between spatially
segregated areas in health and disease. By examining if (non-
directed connectivity) and how (directed connectivity), brain
activities are coupled, we gain further insight to how brain
functions are organized and executed.

Correlational estimates between signals recorded from the
brain have been a mainstay to infer information transfer, or at
least functional engagement in the temporal domain, between
brain circuits at different levels. Methods such as correlation,
ordinary coherence, and phase synchronization have been used
to infer a non-directed functional relation between signal
sources. However, the direction of information transfer/activity
modulation is crucial if we are to decode how information is
transformed, used and stored at multiple levels of processing in
the brain. The direction of connectivity can be inferred in various
ways. In general, the most widely applied method for biological
signals is based on the idea that if one signal’s past can be
used to minimize prediction errors on another’s present/future,
then the signal is said to “Granger cause” the other (Granger,
1969). Techniques such as partial directed coherence (PDC;
Baccala and Sameshima, 2001), the directed transfer function
(DTF; Kaminski and Blinowska, 1991), directed coherence
(DCOH; Saito and Harashima, 1981), and Geweke-Granger
causality (GGC; Geweke, 1982) are all implemented through
auto-regressive modeling, where a transformation of model
coefficients to the frequency domain, allowing the examination
of Granger causality at different frequencies. Other methods
such as phase transfer entropy (PTE; Lobier et al., 2014) share
conceptual similarities to Granger causality (Barnett et al., 2009;
Seghouane and Amari, 2012), as the implementation depends
on the probability densities related to how much uncertainty
can be accounted for by a signal’s past alone, compared to the
combination of all input signals’ past. Phase slope index (PSI;
Nolte et al., 2008) is a more mechanistic approach, based on the
fact that if two signals are phase-locked, fluctuations in frequency
should be linearly related to the phase lag/difference. Finally, a
priori models using available anatomical and biophysical data
to reduce the variance observed in the data such as structural
equation (Astolfi et al., 2004) and dynamic causal modeling
(David et al., 2006; Kiebel et al., 2008) are powerful approaches
if the biological basis of the circuit studied is well-understood.

There have been many studies in the literature performing
comparisons and benchmarks for various approaches in
examining functional and directed connectivity (Astolfi et al.,
2009; Florin et al., 2011; Silfverhuth et al., 2012; Fasoula
et al., 2013; Wang et al., 2014), but most existing literature
on the subject depend on simulated data that approximate
biological data. Factors that may impact on the estimation
of directed connectivity, such as the signal-to-noise ratio, are
usually manipulated arbitrarily and without changes in other
potential biases such as stationarity or non-linearity. In addition,
benchmarking various algorithms on real data is usually focused
on implementation alone rather than serving as a true test of
performance on real biological systems; that is, the direction
of interacting biological signal sources are rarely unequivocally
known. Here, we use a unique dataset where theta oscillations

in the rodent hippocampus (HPC) are temporarily attenuated
through medial septum (MS) inactivation and replaced with
electrical stimulation triggered by ongoing oscillations in the
supramammillary area (SuM). This dataset has the advantage of
being real brain local field potential (LFP) recordings capturing
the full complexity of a biological signal. Also, our manipulation
externally imposes “causality” of known directionality to test and
compare different directed connectivity estimators (DCE). The
nature of the circuit and our manipulations are outlined below.

HPC theta oscillations have various links to a plethora of
behavioral processes (Buzsaki, 2005; Young, 2011). A large body
of work indicates that the medial septum (MS) is crucial for the
natural occurrence of theta oscillations in the HPC (Petsche and
Stumpf, 1960; Bland, 1986; Buzsaki, 2002). Subcortical inputs to
the MS through the posterior hypothalamic area (particularly
the supramammillary nucleus; SuM) have been found to
contribute critically to HPC theta oscillation control (Kirk and
McNaughton, 1993; McNaughton et al., 1995; Thinschmidt et al.,
1995). Since MS inactivation or lesion abolishes spontaneous
HPC theta oscillations in vivo (Lawson and Bland, 1993), it is
believed that SuM contributes to HPC theta exclusively through
the MS despite its direct HPC innervations to the dentate gyrus
and CA2 subregion (Vertes, 1992; Magloczky et al., 1994; Vertes
and McKenna, 2000; Cui et al., 2013). Disynaptic projections
from the HPC can return to SuM through the MS, the CA3
area via the lateral septum, or through subicular-hypothalamic
backprojections (Shibata, 1987; Hayakawa et al., 1993; Kiss
et al., 2002). However, it has been shown that SuM integrity
is not always necessary for HPC theta to occur (Thinschmidt
et al., 1995) and may merely reduce peak frequency in the
freely moving rat (McNaughton et al., 1995). More recent data
based on spike-field Granger causality have suggested a role
for the SuM in modulating HPC theta at higher frequencies
(Kocsis and Kaminski, 2006), which is related to water maze
learning/performance (McNaughton et al., 2006; Ruan et al.,
2011; Hernandez-Perez et al., 2015).

Based on our current understanding of the SuM-MS-HPC
circuitry, we expect in rats swimming in the water maze that
there will be a predominant HPC to SuM direction of theta
control (Ruan et al., 2011). MS-inactivation should reduce the
HPC outflow and favor a null or SuM to HPC direction of theta
propagation.With irregular, non-periodic stimulation underMS-
inactivation, HPC/SuM directed connectivity is expected to be
comparable to MS-inactivation alone. HPC theta activities are
expected to be driven by a periodic, stationary 7.7Hz stimulus
train delivered to the fornix (James et al., 1977), while MS is
inactivated, and exerts its influence on the SuM relayed through
the LS to favor a HPC to SuM direction of theta propagation.
Finally, when HPC activity is replaced and driven rhythmically
by peaks of ongoing SuM theta activity, we expect an unequivocal
SuM to HPC direction of theta propagation.

The use of our HPC-SuM data is advantageous given: (1)
the dominant interaction is known to occur in a single (theta)
frequency band and; (2) it is a simple bivariate system that
mitigates further complexity (e.g., common input, extensive
multi-directional coupling) in multivariate systems. The goals
of the current study are to: (1) use a unique biological dataset
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with known, unequivocal directionality/Granger causality to
assess differences and similarities in various directed connectivity
measures and; (2) assess the influence of factors known to affect
signal processing in general, particularly directed connectivity,
such as coupling strength, signal-to-noise ratio and stationarity.

METHODS

Subjects
Twenty-three male Sprague-Dawley rats were included in this
study. There is an incomplete overlap between the dataset
used for the current analysis and data published previously
(McNaughton et al., 2006; Ruan et al., 2011, 2017). The animals
were obtained from the Department of Laboratory Animal
Sciences, University of Otago and allowed to acclimatize to
the laboratory for at least 10 days. After ketamine (75mg/kg,
100mg/ml, Parnell Laboratories New Zealand Limited) and
medetomidine hydrochloride (0.5mg/kg, 1mg/ml, Novartis
Animal Health Australia Limited) anesthesia, bipolar twisted
wire (70µm diameter) electrodes and a guide cannula (Plastics
One Inc. Roanoke, VA 24022), were stereotaxically implanted
using aseptic surgical procedures. HPC recording electrode was
aimed at the CA1/dentate layers (AP −3.8mm, ML −2.5mm,
DV −3.5 mm, tip separation 1.0mm) and the SuM recording
electrode (AP −4.8mm, ML −0.9mm, DV −9.4 mm, tip
separation 0.5mm, 6.0◦ from vertical) targeted the parvicellular
supramammillary nucleus (Pan and McNaughton, 2004). A
fornix stimulating electrode (AP −1.0 mm, ML −1.0 mm, DV
−4.0mm, tip separation 0.5mm, 8.0◦ from vertical) and a 26 GA
cannula guide at the medial septal area (AP+0.2mm,M-L−1.04
mm, D −5.91mm, 10.0◦ from vertical) were also implanted.
An uninsulated silver ground wire wound around one of five
anchor screws, along with all other electrodes were inserted
into a McIntyre connector and secured with dental cement.
Atipamezole (2.5mg/kg, 5mg/ml, Novartis Animal Health
Australia Limited) was administered to assist recovery from
anesthesia, followed by postoperative analgesic administration.
A 10 day rest period was imposed before any recording and
behavioral testing began. All protocols described here were
approved by the University of Otago Animal Ethics Committee
(84/00 and 67/03).

Electrical Recording
Recordings from the HPC and the SuM were fed to amplifiers
(Grass P511K, 1–30 Hz band pass filter) through a custom-made
source follower. The data were digitized at 100 Hz and acquired
by a Micro1401 (CED, UK) using the Spike2 software. The LFPs
from HPC and SuM were acquired for the whole behavioral
session, starting prior to anyMS injections or fornix stimulations,
terminating once the effects of the drug and/or stimulation had
worn off as judged qualitatively by the recovery of HPC theta
amplitude.

MS Blockade and Fornix Stimulation
The rats were assigned to five groups: (1) control group (CON, n
= 5) without any drug administration or stimulation; (2) animals
receiving MS 2% tetracaine (0.5µl; Sigma) only (TET, n = 4);

(3) animals that received tetracaine and irregular (non-periodic,
averaged 7.7Hz) fornix stimulation (IRR, n = 4); (4) animals
that received tetracaine and a regular/stationary, 7.7Hz fornix
stimulation (REG, n= 5) and; (5) animals that received tetracaine
and a non-stationary oscillatory stimulus that was paced by the
peak of the concurrently recorded SuM LFP (BP, n = 5). MS
tetracaine was injected through a 33 GA injection cannula via a
microsyringe pump (Razel Scientific Instruments, Inc., Stamford,
CT) at 0.5µl/min. The electrical stimuli were only applied to the
fornix if a clear decrease of HPC LFP power and a loss of theta
rhythmicity were observed.

In all stimulation conditions, a threshold 2–10 V/0.5 ms
pulse was applied to the fornix (James et al., 1977). In the IRR
condition, the stimulus was generated by a random number
generator, which generated stimulus trains that were non-
periodic, but had an averaged frequency of 7.7Hz. In the REG
condition, a stationary 7.7Hz train was delivered continuously.
In the BP condition, SuM LFPs were low-pass filtered with DC
adjustment through a separate low-gain amplifier. This amplified
signal was then fed into a stimulator by triggering it at the positive
peak of each theta cycle. The stimulator was switched on after
the trigger to SuM theta peak was satisfactory. The stimulation
intensity was adjusted until the pulses were phase locked to the
ongoing HPC LFP, and was continuously monitored and adjusted
as necessary.

Behavioral Tasks
Water Maze
A 1-day water maze training protocol was adopted in this study.
A 150 cm wide, 35 cm deep black circular pool was filled with
26◦C (±2◦C) water. A black, 15 × 15 cm square platform was
positioned 1.5 cm below the water surface in the middle of the
southeast quadrant. Each trial consisted of releasing the rat facing
the wall of the pool, allowing 60 s to locate the platform with
a 15 s inter-trial interval, during which the animals stayed on
the platform. The animals were guided to the platform if they
failed to locate it. In the 16 trials administered, the point of
entry to the pool was counterbalanced (NSWE ENSW WENS
SWEN). Since we used a 1-day water maze learning protocol with
a 15 s inter-trial interval, no control of body temperature loss was
implemented. The behavioral data were acquired and collated by
HVS (HVS Image Ltd., UK). A digital trigger was fed from the
HVS hardware to Spike2 to mark the start and end of each trial.

Open Field
Rats were exposed to a square box (73× 73× 51 cm) for 6min.

Operant Conditioning
Access to food was gradually limited to 1 h a day, after
shaping/conditioning, over a 10 day period. Rats were shaped
and trained on a continuous reinforcement schedule (CRF) until
a stable performance (i.e., >100 lever presses for at least four
consecutive days) was reached. Then, the rats were trained on a
fixed-interval (FI) schedule where the first lever press initiates a
60 s interval between rewarded lever presses. All sessions lasted
for 30min. The last session of each schedule type (i.e., CRF or FI)
was used for the current analysis.
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Histological Reconstruction
At the end of the experiment, the rats were deeply anesthetized
with sodium pentobarbital and transcardially perfused with
physiological (0.9%) saline followed by 10% formalin in
physiological saline. The brains were extracted for further
fixation with 10% formalin for 24 h before cryoprotection with
30% sucrose. Upon saturation, brains were sectioned on a
freezing microtome at 90µm. Electrode and cannula locations
were reconstructed to validate targeting of recording sites.

Data Pre-processing
The LPFs from WM sessions were segmented into single trials
based on the digital triggers from the HVS hardware. Due to
previously reported experience-dependent changes in HPC-SuM
interactions in the water maze (Ruan et al., 2011), only the first
five >2 s trials from each animal were included in this analysis
to ensure consistency between datasets. Additional trials were
excluded if the stimulation parameters were not optimized and
required further adjustments (e.g., if simulation intensity was not
consistent throughout the trials considered). After the removal of
the direct component in the recordings, the segmented raw LFPs
were exported to Matlab (Mathworks, Natwick, MA) for further
analysis. The data segments from other conditions (OF, CRF and
FI) were duration-matched to the WM segments to yield equal
number of sessions/samples for comparison across conditions.
Specifically, CRF data from the day rats reached criterion were
used. For FI, the last available session with successful MS-
inactivation and SuM-triggered HPC driving via the fornix was
used. All data were z-scored for further analyses.

Spectral Analysis
Spectrograms and cohereograms were computed by the multi-
taper method using the Chronux toolbox (Bokil et al., 2010).
Three tapers with a band-width product of 5 were used to
calculate the power and coherence spectra. The spectral estimates
were made in 2 s bins with 90% overlap, using a periodogram
method. Coherence was assessed as the normalized cross-spectra
from the HPC and SuM.

Signal-to-noise ratio (SNR) was calculated as the ratio of theta
band (5–12Hz) power spectra density to the rest of the spectrum
(0–50Hz).

Pair-wise Phase Consistency
Pair-wise phase consistency (PPC) was calculated to better
reflect phase coupling alone between the HPC and SuM, as our
manipulations affect both the amplitude and phase of recorded
LFPs. Data were filtered (5–12 Hz) and Hilbert-transformed for
phase extraction. Relative angular distances between phase angles
from HPC and SuM were used to calculate the degree of phase
coupling (Vinck et al., 2010).

Granger Causality
Methodologies described here follow the concept where a
causes b if the past of a can serve as a good predictor of
the present/future of b (Granger, 1969). In these approaches,
z-scored LFPs are fitted with a step-wise least squares auto-
regressive model with model orders determined by Bayesian

information criterion (BIC). Max model order (p) to attempt
fit was set at 20, with the optimal model order for most trials
being 8 ± 4. As with spectral analyses described above, 2 s, 90%
overlapping windows of data were submitted for further analysis.
Multivariate auto-regressive (MVAR) model coefficients were
then calculated with optimal model orders determined for each
trial (i.e., all windows used the same model order derived from
sessionmodel order estimation). TheMVAR coefficients (A) were
then transformed into the frequency domain (f) before further
processing (eq. 1). Formulations and calculations are based on
previous descriptions (Gourevitch et al., 2006; Cui et al., 2008;
Young and Eggermont, 2009).

A
(

f
)

=

p
∑

k= 0

Ake
(i2π fk) (1)

Partial Directed Coherence
For PDC (Baccala and Sameshima, 2001), the frequency-
transformed MVAR coefficients are subtracted from the identity
matrix (Aab(f)) and are normalized against the “out” flow (i.e.,
Hermitian transposed coefficients in dimension a × b, denoted
as Q in Equation 2).

PDCab

(

f
)

=
Aab(f )

√

∑Q
k= 1

∣

∣Akb

(

f
)
∣

∣

2
(2)

Directed Transfer Function
Given our application, the normalized, direct form of DTF is
essentially mathematically equivalent to PDC, with the main
difference being matrix inversion and normalization. In a
bivariate system, the estimate of in/out “flow” of information is
equivalent. Also, the ability for DTF to distinguish direct and
indirect influences is irrelevant in a bivariate system. Therefore,
we computed “raw” DTF (Kaminski and Blinowska, 1991),
where a matrix inversion is applied to the frequency-transformed
coefficients and no normalization was implemented (Equation 3).

DTFab
(

f
)

= |Aab

(

f
)−1

| (3)

Directed Coherence
DCOH (Saito and Harashima, 1981) implemented here is a
variation of the DTF (i.e., with matrix inversion, H(f)=A(f)−1)
above, but with a randomly generated noised term (c) added to
the MVAR model coefficients prior to frequency transformation,
and, in our case, is normalized by the sum of cross-spectra from
all possible combinations of HPC, SuM and the noise term.
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Geweke-Granger Causality
Formulated according to the original conception of Granger
causality (Geweke, 1982), the natural log of spectral power (Saa)
from HPC is normalized against the intrinsic power (defined as
the difference between channel HPC power (Saa) and the product
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of noise covariance (Cbb −C2
ab/Caa) and transfermatrices derived

from HPC and SuM; (|Haf |
2)) is taken as the estimate of SuM to

HPC causal influence (Cui et al., 2008).

GGCab

(

f
)

= ln









Saa(f )

Saa
(

f
)

−

(

Cbb −
C2
ab

Caa

)

∣

∣Haf

(

f
)∣

∣

2









(5)

Non-MVAR Directional Estimates
Phase Transfer Entropy
Phase transfer entropy is essentially a natural extension of
the use of transfer entropy for non-linear causal inference
(Lobier et al., 2014). Band-passed phase angles (θ) obtained
from Hilbert transform are binned to compute conditional
probabilities for phases relating to lagged (t′) and no-
lag (t) phase states. An estimate is based on how much
information (H) can be predicted by one input over the other,
taking into account phase distributions at different time lags
(Equation 6).

PTEab = H
(

θb (t) , θb
(

t′
))

+ H
(

θb
(

t′
)

, θa
(

t′
))

− H
(

θb
(

t′
))

− H
(

θb (t) , θb
(

t′
)

, θa
(

t′
))

(6)

Specifically, we filtered input data at 0.5Hz steps with 1Hz
bandwidth across the whole spectrum (i.e., 0.5–49.5 Hz) in
forward and reverse tominimize phase distortions and computed
PTE in defined narrowband inputs across time. As above, a 2 s,
90% overlapping window was used. We adopted the Freedman-
Diaconis rule (Freedman and Diaconis, 1981) for the estimation
of bin sizes for phase angles. Although we present PTE as a non-
linear, phase-based measure of directed connectivity, it is clear
that it is theoretically similar to Granger causality (Seghouane
and Amari, 2012), as the determination of causal influence is
dependent on time lags and changes to metric when taking into
account the past of a different signal.

Phase-Slope Index
As its name suggests, this measure of directed connectivity
involves the calculation of phase slopes, or specifically, the change
of phase differences as a function of frequency (Equation 7).

PSIab = ℑ





∑

f∈F

C∗
ab

(

f
)

Cab

(

f + δf
)



 (7)

This estimation is implemented by taking the imaginary part
(ℑ) of spectral coherence (C) as estimates of phase differences
within a frequency bandwidth (F), which was 1 Hz as in
PTE, in 0.5 Hz steps across the whole spectrum. Given our
(2 s) windowed application of PSI, we used the raw estimates
instead of normalized version of PSI for further analysis,
since normalization uses the standard deviation of phase slope
differences (Nolte et al., 2008) and our data segments are
short (2 s).

Statistical Analysis
Surrogate Data
Given the goal of this study was to compare different methods as
well as different experimental conditions, we decided establishing
significance levels using a single approach for the entire dataset
was appropriate. Instead of using phase randomization or time-
reversal techniques, we opted to adopt a modified version of
trial-shuffling to maximise “biological-ness” of our surrogate
sets. Specifically, we scrambled HPC and SuM pairings from all
available segments of 2 s data across all conditions to generate
20,000 unique, non-repeating pairs for surrogate data analysis.
In our shuffling scheme, only the pairing is shuffled but not
channel identity (i.e., HPC and SuM contained data from their
respective labels). The choice of 20,000 segments is to match the
number of segments in the experimental condition with the most
data (17,653 segments). Finally, the DCE from the shuffled pairs
were used to generate indices, as done for experimental data, by
subtracting SuM to HPC influence from HPC to SuM influence.
A 95% confidence interval was calculated from the distribution of
these indices and served as thresholds for determining significant
causal influences. Surrogate data sets were generated separately
for comparing different experimental manipulations between
groups, and for comparing different behavioral contexts for data
collected from the same rats.

Analysis of Variance
One-way ANOVAs were applied to determine statistical
significance for spectral and non-directed connectivity
differences between experimental groups (CON, TET, IRR,
REG, and BP). Repeated-measures ANOVAs were conducted to
examine the role of the behavioral context (operant responding:
CRF and FI; ambulation; OF and WM) and the effect of
stimulation (no stimulation and SuM theta LFP-triggered fornix
stimulation under MS-inactivation). Post-hoc comparisons
were corrected by using the Bonferroni method. Bonferroni
corrected p-values and raw p-values that remain significant after
Bonferroni correction are reported accordingly.

Correlation
Pearson’s correlation coefficient and associated p-values are
used to determine the correspondence of frequency and
time domain representations between the different directed
connectivity estimates. In addition, correlations and their
statistical significance between connectivity measures and signal
properties such as stationarity and SNR were calculated to
estimate how these properties may bias connectivity measures
overall, and/or the magnitude of estimates for either direction of
causal influence. Steiger’s test (Steiger, 1980) was used to assess
whether dependent correlations, between signal properties (e.g.,
coupling strength) and directed connectivity (e.g., PDC), differ
between HPC to SuM and SuM to HPC directions.

Source of Connectivity Estimation Bias
Signal-to-noise ratio (SNR), stationarity, volume conduction and
common input are known to affect the accurate estimation of
directed connectivity (Bastos and Schoffelen, 2015). Given that
our recordings are bipolar, we expect volume conduction to be
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minimal. The issue of common input in the context of missing
intervening nodes in our circuit is not direct addressable since we
only recorded from the HPC and SuM. In this study, we explored
how SNR and stationarity relate to DCEs.

SNR
The effects of SNR are explored in two contexts: (1) total SNR
as the sum of HPC and SuM spectral power at theta range (5–
12 Hz) over the whole power spectrum and; (2) SNR difference
ratio as the difference between HPC and SuM theta SNR over the
sum of HPC and SuM theta SNR. The former is used to estimate
the dependence of DCEs on overall SNR, while the latter is used
to gauge the effect of the unbalanced difference in theta power
between the HPC and SuM (i.e., weak nodes).

Stationarity
As LFPs are routinely detrended prior to directed connectivity
analyses (as we have done in our analyses), and since
oscillatory LFPs are essentially mean-stationary with a stable
direct component (Kipinski et al., 2011), we examined the
role of variance-stationarity in its potential biasing of DCEs.
Specifically, we calculated the heteroscedasticity of LFP segments
using the White test (White, 1980). We used the Lagrange
multiplier (LM) as the metric to represent variance-stationarity.
A logarithmic transform was performed on LMs to approximate
their distribution to a normal one. In addition, given our main
interest is in oscillatory LFPs, we also assessed the periodicity of
our LFP segments by computing the auto-correlation function,
and the decay constant from fitting the peaks of the auto-
correlation function across time lags (tau). Specifically, a five-
point moving average of the auto-correlation function was log-
transformed and fitted with linear regression to derive tau (slope
coefficient) as an indicator of the exponential decay rate of
the auto-correlation function. Tau was also log-transformed to
approximate normality. As with SNR measures, since DCEs
describe the relationship between the HPC and SuM, we summed
the LM and tau metrics to provide a combined measure of
variance and periodicity–stationarity, respectively.

RESULTS

Figure 1 outlines the experimental conditions and the spectral
profiles from HPC and SuM recordings. Compared to the CON
condition (Figure 1A), MS-inactivation severely attenuated
HPC theta power (Figure 1B, HPC PSD) while leaving
SuM theta power largely unaffected (Figure 1B, SuM PSD),
resulting in low and sporadic theta coherence between the
two structures (Figure 1B, HPCxSuM coherence). Irregular
stimulation (Figure 1C) essentially reproduced the same spectral
profile seen in theMS-inactivation condition (Figure 1B). Fornix
stimulation with a stationary 7.7Hz stimulus train resulted in
highly stable 7.7Hz theta power and its first harmonic in the
HPC (Figure 1D, HPC PSD), with no observable effects in the
SuM in this example (Figure 1D, SuM PSD), and no observable
coherence above background at the theta range (Figure 1D,
HPCxSuM coherence). In the BP condition, clear theta LFP and

its first harmonic can be seen in the HPC and SuM, with activities
at these frequencies being highly coherent (Figure 1E).

Non-directed Connectivity
As expected from our manipulations and reported previously
(McNaughton et al., 2006), strong theta oscillations occurred
during CON, BP, and REG conditions and were attenuated
during TET and IRR conditions in the HPC (Figure 2A).
Qualitatively, the peak of the REG condition is centered at
the stimulation frequency of 7.7Hz, higher than the CON and
BP conditions, which have comparable center frequencies at
7Hz. Theta power was comparable between the CON and REG
conditions (p = 0.59, Bonferroni corrected), whereas all other
conditions had lower theta power compared to CON (p < 0.002,
Bonferroni corrected).

MS-inactivation and fornix stimulation had a significant
[F(4, 98) = 7.88, p < 0.001] but different impact on the SuM
compared to HPC (Figure 2B). Instead, theta power appeared
the highest in the BP condition, followed by CON, TET and
IRR conditions, with no statistically significant difference in theta
power comparing these conditions. The center frequency within
5–12 Hz is also qualitatively invariant across conditions at∼7Hz.
Interestingly, SuM theta power remained the lowest during
the REG condition compared to CON (p < 0.001, Bonferroni
corrected). We note delta (2–4 Hz) oscillations are prominent in
the SuM under TET, IRR, and REG conditions.

Theta coherence between the HPC and SuM were the highest
in CON and BP conditions and are low for TET, IRR and REG
conditions [F(4, 98) = 33.30, p < 0.001; Figure 2C]. Particularly,
theta coherence is significantly reduced in all conditions where
MS was inactivated (p < 0.001, Bonferroni corrected), except
for the BP condition where theta coherence was found to be
virtually identical to CON (Figures 2C,D; p > 0.999, Bonferroni
corrected). As indicated in Figure 1E, there is also a high
level of coherence at the first theta harmonic range in the BP
condition (Figure 2C, orange line at∼13 Hz). PPC measures are
in good agreement with coherence measures (Figure 2E), with
our manipulation producing changes in phase coupling [F(4, 98)
= 17.46, p < 0.001]. Again, phase coupling at theta range in
TET, IRR and REG conditions were all attenuated (p < 0.001,
Bonferroni corrected) compared to CON, while remaining high
for the BP group (p > 0.999, Bonferroni corrected).

Directed Connectivity
To visually present the frequency domain representation of each
DCEs, we computed DCEs from the full spectrum (0–50 Hz)
for each measure, took the z-scored difference between HPC to
SuM and the reciprocal estimates to visualize their differences
in the frequency domain (raw data were used for further
analysis). Using the CON condition as an example, where bi-
directional influences are expected, a positive peak in and around
our defined theta range (5–12Hz) indicates a predominant
HPC to SuM direction of communication. However, there
appears to be little correspondence betweenmeasures, with PDC,
GGC, and DCOH having smoother spectra frequency domain
representation (Figure 3A). The fluctuations of all the DCEs in
the time domain (i.e., averaged 5–12Hz values for each estimate
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FIGURE 1 | Summary of experimental manipulations and their time-frequency representations in examples of water maze swimming data. (A) In CON, with no

external manipulations. HPC, SuM spectrograms and HPCxSuM cohereogram show high agreement in the power and frequency fluctuation through the session. (B)

In the TET condition, there is a general loss of HPC theta power, while SuM theta PSD remain relatively intact. A drastic reduction of HPCxSuM theta coherence is

observed. (C) In IRR, the pattern of little theta PSD, intact SuM theta PSD and a reduction of HPCxSuM theta coherence similar to TET was observed. (D) REG

condition drove HPC theta activities and its first harmonic. SuM theta appear to be unaffected by the manipulation, while ordinary coherence between HPC and SuM

remain low. (E) In BP, clear HPC and SuM theta and their first harmonic can be seen in the spectrograms, with HPCxSuM cohereogram mirroring high magnitude PSD

at theta and its harmonic. CON, control; TET, tetracaine; IRR, irregular; REG, regular at 7.7Hz; BP, by-pass; HPC, hippocampus; SuM, supramammillary nucleus;

PSD, power spectral density.

FIGURE 2 | Power spectral density, coherence and PPC comparisons across different experimental conditions. (A) Group HPC PSD mirrors time-frequency

representation presented in Figure 1—theta power is comparable between CON, REG, and BP conditions and higher than TET and IRR conditions, with REG theta

frequency shifting to imposed 7.7Hz. (B) Group SuM PSD showed minimal changes in PSD across the conditions, with the exception of REG condition, where theta

power was greatly attenuated and slower oscillations predominate. (C) Theta coherence magnitude is similar between BP and CON, but low for TET, IRR and REG,

with the latter having the lowest coherence. (D) Averaged theta band (5–12 Hz) coherence as in (C). (E) Averaged theta (5–12 Hz) PPC differences across conditions

are consistent with ordinary coherences but have a larger dynamic range. Asterisks indicate statistical significant, post-hoc differences compared to the CON

condition, p < 0.001. CON, control; TET, tetracaine; IRR, irregular; REG, regular at 7.7Hz; BP, by-pass; HPC, hippocampus; SuM, supramammillary nucleus; PSD,

power spectral density; PPC, pairwise-phase consistency.

across time) appear to have better correlation with each other at
a longer timescale than short (Figure 3B). In contrast, all DCEs
in the BP condition are in better general agreement compared
to CON, with less variability in the (negative) peak position (at
∼7Hz) to indicate a predominantly SuM to HPC direction of
directed influence (Figure 3C). Likewise, fluctuations in DCEs in
the time domain under BP are also better correlated with each
other compared to CON, as expected by the closed-loop nature
of BP condition (Figure 3D).

To further quantify and explore the differences in DCE
frequency and time domain representations, we calculated

the correlation coefficients and associated p-values between
all DCEs in the frequency and time domains (Figure 4).
Each matrix in Figure 4 is presented so the upper half of
the triangular matrix represents the correlation values in the
time domain, and the lower half of the triangular matrix
represents the correlation values in the frequency domain.
All time-domain correlations were statistically significant after
Bonferroni corrections (i.e., uncorrected p < 0.0001 for all
correlations). In the CON condition (Figure 4A), there is
less agreement between all the estimates in general compared
to other conditions, although PDC, DCOH, and GGC share
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FIGURE 3 | Examples of similarities in frequency- and time-representations across different directed connectivity estimates shown as z-scored difference scores. (A)

In the CON condition, all estimators returned a peak within our frequency band of interest (5–12 Hz), with variability in peak frequency and the magnitude at each

frequency across the methods of estimation. (B) In the time domain, there is general agreement at slower timescales but relatively higher variability at fast timescales.

(C) Under BP condition, frequency representations across all estimators are highly congruent, with peak frequency and the widths of the “theta peak” showing much

better agreement compared to CON condition. (D) Time-domain agreement under the BP condition appears to be qualitatively better than the CON condition. CON,

control; BP, by-pass; PDC, partial directed coherence; DTF, directed transfer function; DCOH, directed coherence; GGC, Geweke-Granger causality; PTE, phase

transfer function; PSI, phase slope index.

FIGURE 4 | Correlation matrices for frequency- and time-representation similarities across different experimental conditions and different DCEs. For each matrix, the

upper half represents correlation coefficients in the time domain (which are all statistically significant at p < 0.001). The lower half of the matrix represents correlation

coefficients in the frequency domain, and statistically significant correlations after Bonferroni correction are marked with white asterisks (p < 0.05, Bonferroni

corrected). (A) In CON, time-domain correlations are better among the MVAR-based methods, and there is no PSI correlation to other estimators. DTF is poorly

correlated with other in the frequency domain. (B) In TET, there is increase time- and frequency-domain correspondence. PSI shares negative correlations with all

other estimators. (C) In IRR, similar pattern of time- and frequency-domain correlations, with PSI showing little correlation with other estimators. (D) In REG, DTF

frequency-domain representation anti-correlates with all other estimators. PSI frequency-domain correspondence is highly variable in REG. (E) In BP, highest

frequency-domain correlations are seen, while PSI remains to be uncoupled in the time domain. CON, control; TET, tetracaine; IRR, irregular; REG, regular at 7.7Hz;

BP, by-pass; DCE, directed connectivity estimate; MVAR, multivariate auto-regressive modeling; DTF, directed transfer function; PSI, phase slope index.

the highest correlations that were found to be statistically
significant (uncorrected p < 0.001). Higher correlations are
found in the time domain among the MVAR-based methods
but not with non-MVAR methods. PSI shares little temporal
correlation with other estimators. With MS-inactivation, there
is an increased agreement among PDC, DCOH and GGC,

as well as PTE (Figure 4B). However, PSI estimates show
statistically non-significant negative correlations with all other
measures in this condition. The general correspondence in the
time domain remains largely the same as in CON. In the
IRR condition (Figure 4C), the general observation made for
TET condition holds, with PTE estimates now showing higher
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correlations to MVAR-based methods. A lack of correlation
of PSI representation in the frequency and time domains
compared to other estimators persist. Interestingly, for the REG
condition (Figure 4D), DTF frequency representation became
anti-correlated with all other measures, yielding statistically
significant negative correlations (uncorrected, p < 0.001) except
for PSI. PSI remains largely uncorrelated with other measures in
the frequency and time domains. Lastly, in BP where SuM LFPs
were used to drive HPC LFPs, there is close agreement among the
MVAR-based methods, with PTE and PSI also sharing positive
correlations withMVAR-basedmethods (Figure 4E). In sum, our
BP manipulation, where SuM theta oscillations were imposed
on the HPC through fornix stimulation, resulted in statistically
significant and high correlation coefficients across all directed
MVAR-based estimators.

After establishing the similarities and differences between
different DCEs across our experimental conditions, we examined
the direction of estimated causality from each DCE across the
conditions. For PDC and DTF estimates (Figures 5A,B), the
direction, relative magnitude and statistically significant results
are virtually identical, with only estimates with SuM to HPC
causal influence from TET, IRR, and BP being statistically
significant. Both CON and REG returned statistically non-
significant HPC to SuM flow. As for DCOH, SuM to HPC
causal influence was statistically significant in TET, REG, and
BP conditions (Figure 5C). Causal influence from the SuM to
HPC was uniformly statistically significant in the SuM to HPC
direction across all conditions as assessed by GGC (Figure 5D).

For PTE, TET, IRR, and BP conditions were all determined to
have a statistically significant SuM to HPC flow, while REG had
statistically significant flow in the opposite direction (Figure 5E).
In disagreement with all other directed connectivity estimators,
PSI returned a statistically significant HPC to SuM causal flow in
IRR (Figure 5F), but detected significant SuM to HPC direction
of causal influences that were detected in REG and BP conditions.

Although all DCEs were able to correctly determine the
putative direction of theta modulation between the HPC and
the SuM in the BP condition, none of the techniques were
in complete agreement, or fully recapitulated the hypothesized
directed connectivity based on our current understanding of
the SuM-MS-HPC circuit outlined in our section Introduction.
Our between-subjects design to compare the effect of MS-
inactivation and fornix stimulation across the conditions may
have been influenced by variability at the individual level
between different groups, in addition to our manipulations. To
ameliorate potential between-subjects bias, we compared the
ability for each technique to differentiate no manipulation in
the open field and in the operant chamber on a continuous
reinforcement schedule (OF andCRF, respectively), to the closed-
loop manipulation conditions in the water maze and fixed-
interval schedule (WM and FI) in the same rats (n = 4).
Essentially, the OF and CRF conditions served as “control”
conditions where no manipulations took place, whileWM and FI
were treated as “experimental” conditions with MS-inactivation
and fornix stimulation triggered by ongoing SuM theta LFPs.
We also treated “operant responding” (CRF and FI) as a

FIGURE 5 | Determination of causal influences by directed connectivity estimators across experimental conditions. (A) PDC indicates under TET, IRR, and BP

conditions, there is a statistically significant predominant SuM to HPC direction of causal influence. (B) DTF retuned the same pattern as PDC. (C) For DCOH, TET,

REG, and BP all point to a statistically significant predominant SuM to HPC direction of causal influence. (D) All conditions have a statistically significant predominant

SuM to HPC direction of causal influence assessed by GGC. (E) PTE revealed a predominant HPC to SuM causal influence in the REG condition, while TET, IRR, and

BP causal influences are predominantly in the opposite direction. (F) PSI detected a marginal significant HPC to SuM causal influence in the IRR condition and an

equally marginal influence in the opposite direction for REG. A predominant SuM to HPC causal influence was detected under PSI. Asterisks indicate mean values

exceeding the 95% confidence interval drawn from a null distribution from trial-shuffled data. CON, control; TET, tetracaine; IRR, irregular; REG, regular at 7.7Hz; BP,

by-pass; HPC, hippocampus; SuM, supramammillary nucleus; PDC, partial directed coherence; DTF, directed transfer function; DCOH, directed coherence; GGC,

Geweke-Granger causality; PTE, phase transfer function; PSI, phase slope index.
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FIGURE 6 | Examining consistency of directed connectivity estimates in the

same rats placed in different behavioral and stimulation contexts. (A) In PDC,

SuM to HPC direction of causal influences was detected in all behavioral

contexts, but only significantly for CRF, FI, and WM. (B) DTF showed a similar

pattern to PDC, but the averaged difference score in CRF did not reach

significance. (C) DCOH detected a significant predominant HPC to SuM

causal influence in OF and CRF but a significant predominant SuM to HPC

causal influence in FI and WM. (D) GGC results mirror those computed by

DCOH. (E) PTE also detected HPC to SuM direction of causal influence as

DCOH and GGC, but these were not statistically significant. SuM to HPC

causal influences for FI and WM are statistically significant. (F) PSI estimates

returned the same pattern as DCOH and GGC, with a significant predominant

HPC to SuM causal influence in OF and CRF, and a significant predominant

SuM to HPC causal influence in FI and WM. Asterisks indicate mean values

exceeding the 95% confidence interval drawn from a null distribution from

trial-shuffled data. OF, open field; CRF, continuous reinforcement; FI, fixed

interval; WM, water maze; PDC, partial directed coherence; DTF, directed

transfer function; DCOH, directed coherence; GGC, Geweke-Granger

causality; PTE, phase transfer function; PSI, phase slope index; HPC,

hippocampus; SuM, supramammillary nucleus.

separate behavioral context from “ambulation” (OF and WM),
As summarized in Figure 6, all methods are in agreement for the
two conditions with our manipulation (FI and WM) indicated
SuM to HPC direction of theta propagation [F(1, 13,672) =

323.27, p < 0.001]. However, there was no interaction between
stimulation/no stimulation, and behavioral context [i.e., CRF/FI
vs. OF/WM; F(1, 13,672) = 0.636, p = 0.653]. The differences
between the different approaches can be distinguished into two
groups: (1) PDC (Figure 6A) and DTF (Figure 6B), where a
predominant SuM to HPC causality is seen for all conditions
and; (2) DCOH (Figure 6C), GGC (Figure 6D), PTE (Figure 6E)
and PSI (Figure 6F) where a HPC to SuM direction of causal

influence is seen for OF and CRF conditions. Apart from
difference in sign and magnitude of directed connectivity
estimates, there are also differences in which condition yielded
statistically significant results based on 95% confidence intervals
generated by surrogate data. Specifically, under stimulation
(imposing SuM theta oscillations onto HPC) conditions, all
DCEs were statistically significant. Statistically significant HPC
to SuM causal flow is detected by DCOH, GGC, and PSI in OF
and CRF. PDC detects statistically significant SuM to HPC causal
flow under CRF.

Relationships between Functional and
Directed Connectivity
In theory, strong directed connectivity should be dependent on
strong non-directed connectivity, given how coherence (real or
imaginary) is an essential part of their computation. Here we
compare how non-directed connection strength (i.e., coupling
strength), as indicated by ordinary coherence and PPC, may
affect directed connectivity measures.

To assess the relationships between non-directed and directed
connectivity, we correlated theta (5–12Hz) coherence and PPC
to directed connectivity at the same frequencies (Figure 7).
In general, the relationship between coherence and PPC with
directed connectivity measures is higher for the SuM to HPC
direction than the reverse for all estimates except for PSI (see
Table 1 for a summary of statistics). Given PSI directional
estimates are essentially symmetrical for SuM to HPC and the
reverse; no differences exist for PSI correlates to coherence and
PPC. In sum, DCOH (r = −0.1591, p < 0.001 for coherence,
r = −0.1056, p < 0.001 for PPC) and PSI (r = −0.0762, p <

0.001 for coherence, r = −0.0254, p < 0.001 for PPC) are two
directed connectivity measures that show the lowest correlation
with coupling strength, as measured by coherence and PPC
(Figures 7C,F). PTE is relatively more coupled to coherence (r
= −0.3228, p < 0.001) than PPC (r = −0.2164, p < 0.001).
PDC (r = −0.4794, p < 0.001 for coherence, r = −0.3911, p <

0.001 for PPC), GGC (r =−0.3792, p < 0.001 for coherence, r =
−0.2805, p< 0.001 for PPC) andDTF (r=−0.3300, p< 0.001 for
coherence, r = −0.3170, p < 0.001 for PPC) are DCEs that show
the highest significant correlations with coherence and PPC.

Signal-to-Noise Ratio, Stationarity and
Directed Connectivity
Signal-to-noise ratio is an important aspect of signal processing
in general, be it for spectral estimation, functional or DCEs. Here,
we performed two tests based on the SNR of HPC and SuM theta
power. First, we examined the relationship between combined
SNR and DCEs. Total SNR appears to be better correlated with
imposed SuM to HPC directionality (Figures 8A,B) in PDC (Z=

3.81, p< 0.001), DTF (Z= 3.19, p< 0.002) and GGC (Z= 3.60, p
< 0.001), but do not differ for DCOH (Z = 1.68, p= 0.093), PTE
(Z = 0.82, p= 0.421) and PSI (Z = 0, p= 1). Following the same
trend, the lowest correlations between the directed connectivity
difference scores (Figure 8C) are from DCOH (r = −0.0038, p
< 0.001) and PSI (r = −0.0005, p < 0.001), suggesting these
two methods are least affected by the total SNR of input data
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FIGURE 7 | Correlations between non-directed and directed connectivity

estimates. (A) Correlations between HPC to SuM estimates for each directed

connectivity estimator and coherence (5–12 Hz). Most show positive

correlations except for PTE and PSI. (B) Correlations between SuM to HPC

estimates for each directed connectivity estimator and coherence (5–12Hz).

All show positive correlations. (C) Correlations between HPC-SuM difference

score estimates for each directed connectivity estimator and coherence (5–12

Hz). DCOH and PSI appear to be least correlated with theta coherence. (D)

Correlations between HPC to SuM estimates for each directed connectivity

estimator and PPC (5–12Hz) show similar pattern to those observed for

coherence. (E) Correlations between SuM to HPC estimates for each directed

connectivity estimator and PPC (5–12 Hz). All show positive correlations. (F)

Correlations between HPC-SuM difference score estimates for each directed

connectivity estimator and PPC (5–12 Hz). DCOH, PTE and PSI appear to be

least correlated with PPC. DCOH, directed coherence; PTE, phase transfer

function; PSI, phase slope index; HPC, hippocampus; SuM, supramammillary

nucleus.

(Figure 8C). Conversely, DTF (r = −0.0306, p < 0.001) had the
highest correlation, followed by PTE (r = −0.0271, p < 0.001),
PDC (r = −0.0229, p < 0.001) and GGC (r = −0.0220, p <

0.001). In general, we report a weak relationship between total
SNR and directed connectivity measures, where DTF is worst
affected.

Next, we examined the relationship between the SNR
difference ratio (as a measure of relative SNR between HPC and
SuM) and directed connectivity (Figures 8D–F). SNR ratio did
not correlate preferentially to directed connectivity estimates in
either direction except for PTE (Z = 5.07, p < 0.001), where
a higher correlation to SNR difference ratio was detected with
HPC to SuM estimates compared to the reverse direction with no
sign inversion (i.e., both correlations are positive). SNR difference
ratio correlations are higher for SuM to HPC estimates compared
to HPC to SuM estimates in PDC (Z = 2.28, p = 0.02), DTF
(Z = 1.39, p = 0.16) and GGC (Z = 0.46, p = 0.64). Similar
to total SNR, DCOH (Z = 0.15, p = 0.88) and PSI (Z = 0,
p = 1) correlations to SNR difference ratio are not dependent
on the direction of coupling. PDC (r = 0.0730, p < 0.001), DTF

TABLE 1 | Steiger’s statistics and associated p-values for difference of dependent

correlations.

Directed Undirected Z p-value

PDC COH 54.236 <0.001

PPC 41.297 <0.001

DTF COH 13.457 <0.001

PPC 16.412 <0.001

DCOH COH 19.223 <0.001

PPC 12.152 <0.001

GGC COH 30.238 <0.001

PPC 20.461 <0.001

PTE COH 19.606 <0.001

PPC 18.982 <0.001

PSI COH 0 1

PPC 0 1

(r = 0.0278, p < 0.001) and PTE (r = 0.0212, p < 0.001) show
highest correlations with SNR ratio, suggesting an unequal input
SNR (i.e., presence of “weak” nodes) affects these estimates more
than DCOH (r = −0.0007, p < 0.001), GGC (r = 0.0052, p <

0.001) and PSI (r = −0.0001, p = 0.80), which show near-zero
correlations with SNR ratio (Figure 8F).

Signal stationarity is essentially assumed in brain signal
processing, given most algorithms depend on stationarity to
yield correct outputs. It is widely recognized that brain signals
are not stationary, but opinions differ as to if, and for how
long an epoch, EEG/LFP signals may be considered stationary
(McEwen and Anderson, 1975; Kawabata, 1976; Cohen and
Sances, 1977; Kaplan et al., 2005; Kipinski et al., 2011). As
discussed, LFPs are essentially mean-stationary but not variance-
stationary; therefore, we tested the relationship between the
degree of heteroscedasticity and the direction/magnitude of
directed connectivity estimates (Figures 9A–C). All MVAR-
based methods yielded negative correlations between either HPC
to SuM or SuM to HPC directed connectivity estimates and
log-transformed LM, essentially indicating lower magnitude of
directed connectivity estimates are associated with more variance
non-stationarity (Figures 9A,B). Only with PDC (Z = 6.63,
p < 0.001) and GGC (Z = 4.83, p < 0.001) SuM to HPC
correlations were higher than HPC to SuM, while difference in
correlation was marginal in DCOH (Z= 2.29, p= 0.02) and non-
significant for DTF (Z = 1.63, p = 0.10). Interestingly, although
direction-dependent correlations were different for PTE (Z =

3.76, p < 0.001), in both cases the correlation was positive,
suggesting higher variance non-stationarity is associated with
higher magnitude PTE scores. PDC (r = 0.0451, p < 0.001)
and GGC (r = 0.0299, p < 0.001) difference scores also showed
highest correlation with heteroscedasticity, which indicate higher
magnitude directed connectivity estimates are related to lower
variance non-stationarity (Figure 9C). DTF (r = 0.0163, p <

0.001) and PTE (r = 0.0160, p < 0.001) difference scores shared
similar but lower correlation with heteroscedasticity, followed by
DCOH (r = 0.0058, p < 0.001). PSI (r = 0.0001, p = 0.13) had
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FIGURE 8 | Correlations between SNR and directed connectivity estimates.

(A) Correlations between HPC to SuM estimates for each directed connectivity

estimator and total SNR. Most show positive correlations except for PTE and

PSI. (B) Correlations between SuM to HPC estimates for each directed

connectivity estimator and total SNR. All show positive correlations. (C)

Correlations between HPC-SuM difference score estimates for each directed

connectivity estimator and total SNR. DTF appears to be most affected by

total SNR. (D) Correlations between HPC to SuM estimates for each directed

connectivity estimator and SNR difference ratio. DCOH and PSI are least

correlated to SNR difference ratio. (E) Correlations between SuM to HPC

estimates for each directed connectivity estimator and SNR difference ratio. All

but PTE switched sign of the correlation coefficients. (F) Correlations between

HPC-SuM difference score estimates for each directed connectivity estimator

and SNR difference ratio. PDC and DTF appear to be most affected by total

SNR. PDC, partial directed coherence; DTF, directed transfer function; DCOH,

directed coherence; PTE, phase transfer function; PSI, phase slope index;

HPC, hippocampus; SuM, supramammillary nucleus.

the lowest correlation with heteroscedasticity and the correlation
was statistically non-significant (Figure 9C).

Lastly, given our signal of interest is theta oscillations between
5 and 12 Hz, we also examined how signal stationarity, in the
context of periodicity, relates to directed connectivity measures
(Figures 9D–F). Our data indicate there is no difference between
HPC to SuM and SuM to HPC correlations to periodicity
(all HPC to SuM vs. periodicity and SuM to HPC vs.
periodicity comparisons, p > 0.32). All MVAR-based methods
demonstrated positive correlations with periodicity, suggesting
higher magnitude of directed connectivity estimates in either
direction is related to more periodic inputs. However, PTE
displayed the opposite trend, where PTE estimates in either
direction were negatively correlated to periodicity. There is also
essentially no relationship between the periodicity and directed
connectivity difference scores, with Pearson’s r approximating
zero for MVAR-based methods (PDC, r = −0.002, p < 0.001;
DTF, r = −0.0066 p < 0.001; DCOH, r = −0.0003 p = 0.03;
and GGC r = −0.0010 p < 0.001) and/or lack any statistical

FIGURE 9 | Correlations between stationarity and directed connectivity

estimates. (A) Correlations between HPC and SuM estimates for each

directed connectivity estimator and log-transformed Lagrange multiplier (LM).

Negative correlations indicate a positive relationship between the magnitude of

directed connectivity estimates and the heteroskedasticity of input data.

MVAR-based methods weakly correlate to log-transformed LM, while PTE and

PSI are positive correlated. (B) Correlations between SuM to HPC estimates

for each directed connectivity estimator and log-transformed LM. All

MVAR-based methods returned estimates highly correlated to

heteroskedasticity. (C) Correlations between HPC-SuM difference score

estimates for each directed connectivity estimator and log-transformed LM.

PDC and GGC show higher correlation coefficients to log-transformed LM. (D)

Correlations between HPC to SuM estimates for each directed connectivity

estimator and tau, a measure of periodicity derived from decay constant of the

auto-correlation function from input data. MVAR-based methods are positively

correlated while PTE and PSI are weakly negatively correlated. (E) Correlations

between SuM to HPC estimates for each directed connectivity estimator and

periodicity. A pattern similar to (D) was observed, except for the switching of

sign in PSI. (F) Correlations between HPC-SuM difference score estimates for

each directed connectivity estimator and periodicity. All difference score

estimates weakly and negatively correlate to periodicity, except for PTE, where

the weak correlation is positive. LM, Lagrange multiplier; PDC, partial directed

coherence; GGC, Geweke-Granger causality; PTE, phase transfer function;

PSI, phase slope index; HPC, hippocampus; SuM, supramammillary nucleus.

significance in others (PTE, r = 0.0001, p = 0.06 and PSI, r =
0.0002, p< 0.001; Figure 9F). Collectively, periodicity appears to
have minimal influence over DCEs.

DISCUSSION

In this study, we used a unique dataset where directional
influence was artificially imposed via electrical stimulation in
freely behaving rats. This dataset allowed us to use biological
data to assess the performance of various functional and directed
connectivity measures, instead of using simulated data that may
closely approximate, but never fully recapitulate, the various
combinations of properties in real biological data. We report all
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directed connectivity estimators were able to identify the correct
directional influence in the condition where theta oscillation
in the HPC is replaced by the ongoing SuM theta oscillations
(BP condition). The correct identification of imposed causality
is reproducible across two different behavioral contexts and can
be clearly distinguished from no manipulation. We show that
MVAR-based methods are more correlated to coupling strength,
but are more susceptible to the influence of SNR and stationarity,
whereas PTE and PSI are mostly resistant.

Methodological Considerations
Our main goal was to make use of a unique dataset where
directed connectivity is imposed in a biological system with
biological “noise,” in order to assess the performance of directed
connectivity measures, and how inherent biological signal
properties may bias these estimates. In other words, we reversed
the conventional process of assessing the properties of DCEs. An
obvious consequence to this is that we have no real, deterministic
“ground-truth” as a starting point; the directional relationship
in our data (BP condition) is assumed, given we externally
eliminated HPC theta oscillations and imposed a new one in
a quasi-closed loop reinstatement of HPC theta oscillations
triggered by SuM theta oscillations. The effectiveness of our
manipulations to produce a causal, uni-directional drive from
the SuM to HPC is evidenced by similarities between spectral
and non-directed connectivity estimates in the BP condition
compared to CON.

As mentioned above, we assume that our BP condition
provides deterministic drive to the HPC from closed-looped
triggering off SuM LFP. Therefore, we assume the non-maximal
directed connectivity values are affected by “noise” or, in essence,
biological processes that contribute to the stochastic nature
of LFPs. Therefore, we did not assess the effects of SNR
and stationarity on DCEs in a traditional sense where these
qualities are simulated and tested independently in discrete steps
to demonstrate their relative impact. Instead, our assessment
involves establishing effects of varying coupling strength, SNR
and stationarity in a mixed, continuous scale, bounded by
biologically defined limits. Our correlation analyses involving
coupling strength, SNR and stationarity are therefore not a direct
test of how much these quantities independently bias DCEs. In
other words, we assume any signs of interdependence between
directed connectivity measures and coupling strength, SNR or
stationarity to indicate a sensitivity of the former to the latter.
The sensitivities to coupling strength, SNR and stationarity may
be inter-dependent, as well as depending on hidden variables not
examined in the current study.

It should also be noted that the relevance of our findings
is limited by the nature of our data. For instance, we used
bipolar, intra-cranial electrodes in our recordings. This setup
allows us to practically ignore the contribution from volume
conduction and contamination from a common source, and
consequently assume the effects of linear mixed noise and
correlated noise are minimal. The main focus on our data was
the BP condition, where data were acquired from swimming
rats. In this behavioral state, the HPC and SuM are known to
normally exhibit high-amplitude, continuous theta oscillations

(see spectrograms in Figure 1). Therefore, our BP condition is
essentially comprised of, qualitatively speaking, highly regular
and stationary sinusoidal signals. This caveat can be appreciated
in our comparisons between BP/FI and BP/WM data collected
from the same rats (Figure 6), where BP/FI presumably included
a richer behavioral repertoire than swimming alone (in BP/WM),
hence more variability in the occurrence, as well as power of
recorded theta oscillations. Nevertheless, the goal of this study
is to advance the understanding of how real biological signals,
instead of simulated data, behave when examined by various
signal processing algorithms. We highlight here the importance
of considering experimental and recording conditions when
choosing which analyses to apply.

Finally, our paired HPC-SuM recordings yielded a
conceptually and computationally less complex bivariate
system (as opposed to a multivariate system) to explore their
interactions. Given the lack of true multivariate implementation
of PTE and PSI, our bivariate data was particularly suitable for
a direct comparison between directed connectivity estimators
examined here. However, we note that human EEG/fMRI
datasets are rarely bivariate, and studies in non-human animals
are increasingly more complex with multi-site recordings.
Generally, a multivariate approach with multivariate data
is superior, under the assumption that all signal sources of
interest are functionally connected; an approach that can explain
more variance in the system can lead to better insight and
interpretation of complex data. Given our experimental setup,
our work is only directly applicable to a bivariate system. Direct
generalization to multivariate systems is unwarranted and needs
further exploration.

Relationship between Data, Directed
Connectivity Estimators, and Their
Performances
The key finding from our analyses is that all the DCEs correctly
identified the imposed directionality in the BP condition.
However, it is also clear that the estimations for all other
conditions were not consistent, and some defy our current
understanding of the circuit. The relevance of current findings to
the underlying neural circuitry will be discussed in a later section.
In this section, we will briefly discuss the relationship between
our data and directed connectivity estimates.

In general, directed connectivity estimators in the same
“family” expectedly yielded similar results in the frequency and
time domains. Particularly, the MVAR-based methods are largely
in high correspondence, with the exception of DTF in CON
and REG conditions. It is not immediately clear why DTF
produced relatively substantial different estimate different scores
in the frequency domain. In the CON condition, the dominant
frequency of DTF estimates is shifted to a higher frequency
compared to all other estimates (see Figure 3A), which may be
the source of the lack of frequency-domain correspondence. In
the REG condition, the imposed 7.7Hz stimuli essentially act as
a potential common source, or a source that indirectly drives
SuM activity via the HPC (Swanson and Cowan, 1979). Given the
proposition that DTF has better frequency resolution (Blinowska,
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2008), it is possible these properties of DTF resulted in markedly
different frequency representations in CON and REG conditions.
Visual inspection of the frequency spectra from DTF outputs
supports this interpretation, where sharper peaks can be observed
within the theta band compared to all other methods (data not
shown). Nonetheless, there is high correspondence of averaged
theta directed connectivity across all MVAR-based methods in
the time domain, suggesting that averaged theta DTF estimates
was still largely consistent with all other MVAR-based estimates.

It has been shown that in the presence of (simultaneous)
bi-directional interaction, PSI is not able to accurately assess
the direction of causal influence (Vinck et al., 2015). We
have not extensively tested the existence and magnitude of bi-
directionality in our bivariate HPC-SuM system in our various
experimental conditions. However, we do note that the only
condition in our experimental settings that is unidirectional
would be the BP condition, where the signal of interest
(theta oscillations) is externally imposed. Conservatively, we can
conclude that PSI correctly identifies the unidirectional causal
influence from the SuM to HPC as per our manipulations. It is
unclear if PSI in other conditions offers an accurate estimate due
to its dependency on interactions being uni-directional.

PTE is the only non-linear approach examined here. Given
the conceptual similarity between TE and Granger causality
in general, it has been proposed both approaches essentially
estimate the same underlying property under some conditions
(Barnett et al., 2009; Seghouane and Amari, 2012). We expected
GGC being Granger causality in the frequency domain would
yield similar estimates compared to PTE, whichwas implemented
essentially as TE in the frequency domain. However, this was not
the case as PTE shared more similarities with PDC and DTF in
the frequency domain compared to GGC, and didn’t show more
correspondence to GGC in the time domain. There are only a
few studies employing PTE (Lobier et al., 2014; Dauwan et al.,
2016; Hillebrand et al., 2016; Engels et al., 2017), and to the best
of our knowledge, no direct performance comparisons have been
made between PTE and other directional measures. The original
that introduced the technique concluded that PTE can detect
bidirectional interactions. However, it was based on simulated
data where the interaction occurred at different frequencies for
different directions (Lobier et al., 2014). It is not clear how PTE
may perform when there are bidirectional interactions at the
same frequency range in a bivariate system, and if the estimates
may be biased by indirect influences from additional sources
unaccounted for—both properties are present in our data based
on our current understanding of the HPC-SuM circuit.

Coupling Strength, Noise and Stationarity
As expected, coupling strength as measured by coherence
and PPC were variables that showed high correlation with
directed connectivity estimates. Particularly, coherence showed
marginally higher correlations compared to PPC. This was
expected as the MVAR estimators utilize coherence as part
of their calculations, and that both amplitude and phase
coupling are taken into account. In contrast, PTE and PSI are
nominally amplitude-independent, given only phase information
is considered in PTE and only the imaginary part of the coherence

is used in PSI. Interestingly, although PTE is considered to
be a non-linear measure and uses only phase information for
its calculation, we found the magnitude of PTE is correlated
with ordinary coherence more than PPC. Conceptually, higher
PPC indicates less information content as HPC and SuM phase
differences are “stationary” and presumably less variable. It
has been noted previously that the amplitude of the signal
does in fact affect the estimation of linear phase-coupling
(Muthukumaraswamy and Singh, 2011). These factors may have
contributed to how the magnitude of PTE is preferentially
correlated to coherence over PPC. It is sufficient for the purpose
of this study to show that PTE estimates from the direction of
causal flow (i.e., SuM to HPC) positively correlate with coupling
strength, and the causal flow from the opposite direction (i.e.,
HPC to SuM) can be negatively correlated to coupling strength as
reported previously (i.e., Figure 7A in Lobier et al., 2014). Finally,
we show that although PSI is correlated to coupling strength,
these correlations were much less than r = 0.1. There is no
directly comparable simulation in the literature examining the
effect of coupling strength with PSI. Based on our data and the
lack of mathematical dependencies between PSI, coherence and
PPC calculations, we conclude PSI is weakly, if at all, correlated
to coupling strength.

None of our measures of SNR and stationarity were found
to considerably impact the magnitude of imposed directionality
(all Pearson’s r assessed were below 0.1). However, we did find
weak dependencies that were consistent across all estimators,
except for PSI, within theoretical expectations. For SNR, the
expectation would be that higher SNR lead to better estimation,
and indeed most of the estimators, except for PSI, yielded higher
magnitude of SuM to HPC direction of theta modulation with
higher overall SNR. It is also known that differences in SNR levels
across assessed signals may result in incorrect inference of true
causality (Bastos and Schoffelen, 2015), given that the signal with
lower SNR would have poorer predictive capabilities. Most of
the estimators also showed dependencies on the difference ratio
of SNRs, suggesting unequal SNR (or, the presence of a weaker
node) affects the magnitude of directed connectivity estimation,
favoring the signal with higher SNR. The relative immunity of
PSI to examined signal properties was expected as the means for
directionality detection via PSI does not depend on the ability for
each signal to contribute to the other’s prediction through various
decompositions in time, frequency or phase, but is pragmatically
dependent on phase lags and their signs (Nolte et al., 2008).

Stationarity is not a property that has been actively explored
in its contributing role to bias directed connectivity estimates;
certainly, a central assumption in (biological) signal processing
is that the signal is stationary for a given algorithm to return
meaningful results. For MVAR-based methods, the common
practice is to detrend the input data to make the input mean
stationary before model order and parameters are computed. As
for variance stationarity, it is not entirely clear how they may
affect directed connectivity estimates. It is unclear in our data,
or biological data in general, if the effects of heteroscedasticity
can be independent from SNR. Given that heteroscedasticity
essentially represent the waxing and waning of LFPs in our
context, if we assume that the background “noise” is constant,
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the time-dependent variations in LFP essentially mirror time-
dependent variations in SNR. In this scheme heteroscedasticity
essentially interacts with background noise to affect the phase
estimation in a non-linear fashion in real data (e.g., Nolte et al.,
2004). This may be why PTE, which should be insensitive to
heteroscedasticity, display a weak relationship with it as it does
with SNR measures.

How heteroscedasticity actually influences directed
connectivity is beyond the scope of the current study. In theory,
the MVAR process should account for most of heteroscedasticity
through the error term. However, variance non-stationarity may
affect the accuracy of the model order estimation, particularly
in the application of windowed analyses. Our use of step-wise
auto-regressive modeling and a constant model order for a
given behavioral epoch may have contributed to sub-optimal
model order across data segments. As for PTE, the input data
are band-passed, Hilbert-transformed time-series. We assume
heteroscedasticity affects the SNR, hence the accuracy of phase
estimation through Hilbert transform to contribute to PTE
sensitivity to variance non-stationarity. Systematic investigation
is needed to fully explore the range where heteroscedasticity may
significantly bias practical directed connectivity estimates.

We also examined the relationship between directed
connectivity estimates and periodicity. We find little evidence
that periodicity of the signal affects the determination of directed
connectivity, given the low correlation between the two. There is
also no difference between how well periodicity correlates with
directed connectivity estimates in either direction, suggesting
no bias toward the dominant coupling direction. However, as
mentioned, our data of main interest were collected from HPC
and SuM LFP recorded in the water maze, where persistent high-
amplitude theta oscillations accompany vigorous swimming.
The dynamic range of periodicity of our data, as measured
by the decay constant associated with the auto-correlation
function, may not be sufficient to provide an adequate test for
the association between periodicity and directed connectivity.

Implications for SuM-MS-HPC Physiology
With non-directed connectivity analyses, we found equivalent
HPC and SuM theta power and coherence/PPC in CON
and BP conditions, whereas coherence/PPC remained low for
other conditions. Previous work has suggested a stationary,
7.7Hz stimulus train can partially rescue water maze learning
(McNaughton et al., 2006). The present data suggest that
this partial rescue is likely to be independent of HPCxSuM
theta coherence, given coherence/PPC in the REG condition
is statistically indistinguishable from TET and IRR and much
lower than CON and BP. Additionally, SuM theta PSD was
also found to be uncoupled to water maze learning (i.e., lowest
in REG and equivalent to CON in TET and IRR), suggesting
water maze learning may also be relatively independent of
SuM theta oscillations, despite reported experience-dependent
changes (Ruan et al., 2011; Hernandez-Perez et al., 2015). While
SuM inactivation moderately impairs water maze learning in
single-day (Pan and McNaughton, 1997) or multi-day (Shahidi
et al., 2004) versions of the task, lesion of SuM does not appear
to affect water maze learning in the multi-day version of the task

(Pan and McNaughton, 2002; Aranda et al., 2006). Interestingly,
serotonergic depletion in the SuM also leads to water maze
learning deficits in the multi-day version of the task (Hernandez-
Perez et al., 2015). Taken together, it appears SuM involvement
in water maze learning is minor, and is relatively independent of
local theta activities.

Our hypotheses regarding how the SuM-MS-HPC circuit
would respond to our perturbations were not fully supported.
The unanimous agreement of SuM to HPC direction of theta
modulation in the BP condition was the most crucial finding in
our attempt to test the DCEs with real biological data, and is
consistent with our expectations from given manipulations. The
second most consistently identified direction of causal influence
is SuM to HPC under the TET condition. While it is possible
that MVAR-based methods were affected significantly by unequal
SNR, favoring a SuM to HPC direction of theta modulation due
to the lack of SNR in the HPC (Bastos and Schoffelen, 2015;
Vinck et al., 2015), it is also biologically plausible to assume that
since MS-inactivation did not completely eliminate HPC theta or
HPC-SuM theta coherence, the remaining HPC theta oscillations
may in fact be driven by the SuM.

The direction of theta modulation was not expected to be
different between TET and IRR conditions, given the latter
was not designed to evoke activities at theta frequencies. The
hypothesis was mostly supported, as all but PSI indicated a
SuM to HPC direction of theta modulation. In addition, the
magnitude of the SuM to HPC drive was marginally lower than
those observed for TET (except for PTE). This is consistent with
the observation that there was lower HPC theta power and lower
HPC-SuM theta coherence in the IRR condition, either due to
group differences or disruption of ongoingHPC theta oscillations
through irregular stimulation of the fornix.

Given direct experimental evidence and previous reports
on Granger causality interactions between the SuM and HPC
(Kocsis and Kaminski, 2006; Ruan et al., 2011), it was expected
that regular stimulation of the fornix at 7.7Hz would not
only elicit stimulus-bound theta activities in the HPC, but also
modulate SuM theta LFPs. Instead, we observed the lowest
theta power in the SuM in the REG condition, while the HPC
oscillated at driven 7.7Hz at power comparable to CON and
BP conditions. Theta coherence was also the lowest for REG
compared to all other conditions. Again, we cannot rule out
group differences contributing to some of the differences between
directed connectivity estimates. Regardless, our data do suggest
that HPC to SuM modulation may not be theta-rhythmic as
we and others originally assumed (Kocsis and Kaminski, 2006;
Ruan et al., 2011); otherwise spectral power at 7.7Hz should have
been observed in the SuM, and HPCxSuM theta coherence at
that frequency should also have been detected. Alternatively, our
administration of tetracaine may have affected the neighboring
lateral septum, blocking the presumed feedback pathway from
HPC to SuM (Swanson and Cowan, 1979). However, the presence
of a theta harmonic in the SuM, and its elevated coherence with
the HPC in the BP condition does indicate rhythmic feedback
from the HPC may reach the SuM in our experimental setting.
It is not possible to conclusively determine if putative HPC
feedback to the SuM is theta rhythmic or not with our current
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data. Nevertheless, directed connectivity estimates were the most
divergent, with PTE returning statistically significant estimation
of HPC to SuM direction of theta modulation, but statistically
significant modulation in the opposite direction was observed for
DOCH, GGC and PSI estimates. Since there was no detectable
7.7Hz power in the SuM PSD, and that SuM theta PSD was
low, we assume that the DCOH, GGC and PSI estimations
are inaccurate. It is more parsimonious to conclude that there
are no HPC-SuM interactions at theta frequencies in the REG
condition, given: (1) unlikelihood of a HPC to SuM direction
of modulation in the absence of strong SuM theta power and
HPCxSuM theta coherence and; (2) the lack of consistency across
different DCEs. However, it should be re-iterated that the HPC
imposes a downstream frequency-limiting effect on SuM theta
rhythmic bursting activity in anaesthetized rats (Kirk et al., 1996;
Kirk, 1997; Kocsis and Kaminski, 2006) and LFP in freely moving
rats (Ruan et al., 2017). An imposed, relatively higher frequency
(7.7Hz) HPC theta may non-rhythmically suppress SuM theta
PSD. It is unclear if an increase of slower theta (<5Hz)/delta
activities seen in SuM spectrum in the REG condition is also a
consequence of our 7.7Hz stimulation.

In the CON condition, where no manipulations exist,
PDC, DTF, DCOH, PTE, and PSI did not detect a bias in
the direction of theta modulation. Only GGC favored the
SuM to HPC direction and PSI supported modulation in the
opposite direction. Our previous data suggested that there
may be a gradual modification of the direction of HPC
and SuM theta coupling during the course of WM learning,
demonstrating HPC and SuM interaction is dynamic and can
be modified by experience (Ruan et al., 2011). The most
parsimonious interpretation of conflicting directed connectivity
difference scores appears to be that neither HPC nor SuM
appear to preferentially drive the other. Given the non-directed
connectivity (coherence and PPC) is high in the CON condition,
we interpret the lack of preferential driving to be balanced bi-
directional interactions, rather than a total lack of functional
coupling between HPC and SuM at theta frequencies as in REG.

CONCLUDING REMARKS

Here, we used real biological data with experimentally driven
causality to assess the performance of various directed
connectivity estimators. Our unique approach indicates
that all DCEs are able to clearly identify imposed uni-directional
interactions across different behavioral contexts in a bivariate
system. Further, our correlation analyses corroborate with
simulation studies where levels of coupling strength, SNR and
variance stationarity all make modest potential contributions
to bias estimates from MVAR-based methods, whereas non-
MVAR methods are relatively unaffected. Comparisons made
in the current study provide the crucial missing link between
theory and practice, where the use of simulated data do not
fully recapitulate the complexity of real biological data. Our
analyses also support recommendations made elsewhere,
that methods developed to tackle the problem of directed
connectivity all have weakness and strengths; using a selection

of different methods should be considered if the nature of
the system and the inherent properties of input signals are
not unequivocally understood (Wang et al., 2014; Bastos and
Schoffelen, 2015).
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