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Introduction: Sleep-wake cycle disruption caused by shift work may lead to

cardiovascular stress, which is observed as an alteration in the behavior of

heart rate variability (HRV). In particular, HRV exhibits complex patterns over

di�erent time scales that help to understand the regulatory mechanisms of

the autonomic nervous system, and changes in the fractality of HRV may

be associated with pathological conditions, including cardiovascular disease,

diabetes, or even psychological stress. The main purpose of this study is to

evaluate the multifractal-multiscale structure of HRV during sleep in healthy shift

and non-shift workers to identify conditions of cardiovascular stress that may be

associated with shift work.

Methods: The whole-sleep HRV signal was analyzed from female participants:

eleven healthy shift workers and seven non-shift workers. The HRV signal was

decomposed into intrinsic mode functions (IMFs) using the empirical mode

decomposition method, and then the IMFs were analyzed using the multiscale-

multifractal detrended fluctuation analysis (MMF-DFA) method. The MMF-DFA

was applied to estimate the self-similarity coe�cients, α(q, τ ), considering

moment orders (q) between –5 and +5 and scales (τ ) between 8 and 2,048 s.

Additionally, to describe themultifractality at each τ in a simpleway, amultifractal

index, MFI(τ ), was computed.

Results: Compared to non-shift workers, shift workers presented an increase in

the scaling exponent, α(q, τ ), at short scales (τ < 64 s) with q < 0 in the high-

frequency component (IMF1, 0.15–0.4 Hz) and low-frequency components

(IMF2–IMF3, 0.04–0.15 Hz), and with q > 0 in the very low frequencies (IMF4,

< 0.04 Hz). In addition, at large scales (τ > 1,024 s), a decrease in α(q, τ ) was

observed in IMF3, suggesting an alteration in the multifractal dynamic. MFI(τ )

showed an increase at small scales and a decrease at large scales in IMFs of shift

workers.

Conclusion: This study helps to recognize the multifractality of HRV during

sleep, beyond simply looking at indices based on means and variances. This

analysis helps to identify that shift workers show alterations in fractal properties,
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mainly on short scales. These findings suggest a disturbance in the autonomic

nervous system induced by the cardiovascular stress of shift work.

KEYWORDS

cardiovascular stress, detrended fluctuation analysis, heart rate variability, shift work,

sleep

1 Introduction

Shift work is common in various sectors, including industry

and clinical areas, due to increased demand for services and

products. Shift work involves working in various shifts or outside of

morning schedules (Puttonen et al., 2010). However, long working

hours and rotating shifts can induce occupational and physiological

stress, potentially elevating the long-term risk of cardiovascular

disease (Puttonen et al., 2010; Kivimäki and Steptoe, 2018).

Shift workers experience a circadian misalignment because

sleep schedules are modified due to night shifts. The disruption

of circadian rhythms and sleep disorders caused by shift work

generate cardiovascular stress that negatively impacts health. Shift

work has been associated with a higher risk of cardiovascular

diseases and ischemic strokes (James et al., 2017). Additionally,

compared to non-shift workers, there is an increased risk of

coronary heart disease due to the chronic stress associated with shift

work (Tenkanen et al., 1997).

Several studies have evaluated the impact of shift work on the

cardiovascular system. Assessment of the cardiovascular system is

usually performed by evaluating the characteristics of the inter-

beat interval (IBI) calculated from the electrocardiogram (ECG),

better known as heart rate variability (HRV) analysis. Specific time

and frequency indices obtained from the IBI signal, such as high-

frequency (HF) and low-frequency (LF), are directly related to

the sympathetic and parasympathetic branches of the autonomic

nervous system (ANS). Therefore, it is possible to evaluate the

behavior of the cardiovascular system non-invasively.

The alterations in the cardiovascular system for shift working

have been studied by considering different regimes such as

permanent or rotating shift work (Chung et al., 2011; Hulsegge

et al., 2018), data acquisition during wakefulness (Kunikullaya et al.,

2010; Hsu et al., 2021), sleep (Chung et al., 2011; Hulsegge et al.,

2018), pre- and post-shift (Shen et al., 2016), 24h acquisitions

(Lee et al., 2015), or during cardiovascular stress test as postural

change (Monteze et al., 2015). These studies have reported that

shift workers during wakefulness present an increase in low

to high frequency ratio (LF/HF) and low-frequency power as

absolute and normalized values (Hsu et al., 2021). Instead, during

sleep, shift workers showed an increase in sympathetic activity

(Neufeld et al., 2017) and a decrease in very-low-frequency (VLF)

(Hulsegge et al., 2018). In addition, Munakata et al. (2001) reported

higher HF during night work with respect to day work. van

Amelsvoort et al. (2001a) described an increase in the frequency

of extrasystoles in shift workers without other HRV differences.

Other studies suggest that long-standing shift work is associated

with decreased parasympathetic modulation and increased blood

pressure, promoting a gradual worsening of cardiovascular health

status (Souza et al., 2015). Conversely, other authors have reported

no significant differences in temporal and spectral IBI indices

between non-shift workers and shift workers (Kunikullaya et al.,

2010; Chung et al., 2012). Therefore, it will be useful to further

extend the HRV analysis to better understand the changes caused

by shift work.

As discussed above, studies have been focused on the time and

frequency domain of IBI, as it is a well-established tool and provides

a quantitative assessment of sympathetic and parasympathetic

nervous system activation. However, the property of self-similarity

is an intrinsic feature of the IBI signal and so far has not been used

to characterize IBI behavior in shift workers during sleep. The self-

similarity property means that a small part of a time series exhibits

statistical properties related to a larger part of the time series

(Hardstone et al., 2012), and it could be measured by the degree

of persistence in which the values of a time series are correlated

(Kantelhardt, 2012).

There are different methods for assessing the self-similarity in

biological signals, for example, autocorrelation function analysis,

spectral analysis, fluctuation analysis, and Hurst’s rescaled-range

analysis (Castiglioni et al., 2017). However, the beat-by-beat

dynamics of several cardiovascular signals during sleep present

non-stationary and non-linear behavior, which are observed in the

different sleep stages. To cope with these problems, an extension

of the Fluctuation Analysis, called Detrended Fluctuation Analysis

(DFA), has been proposed (Peng et al., 1994) and successfully

applied to a wide range of physiological time series. Initially, two

ranges of scales were considered to evaluate the self-similarity of

HRV (Peng et al., 1995). However, changes in self-similarity of heart

rate were observed as the scale increased (Castiglioni et al., 2009),

and DFA has been adapted to evaluate the multiscale-multifractal

characteristics of the HRV (Castiglioni and Faini, 2019).

The high and low-frequency components of HRV show

remarkable variations during the different cyclical sleep stages. The

joint interaction of these components leads to fractal dynamics in

cardiac activity, frequently characterizing as self-similarity with 1/f

behavior. However, to our knowledge, the multiscale multifractal

structure of the high and low-frequency components separately has

not been evaluated, which may reveal significant information about

HRV during sleep. Moreover, since the high frequency component

predominates during sleep, its separate evaluation could put into

evidence important aspects of HRV dynamics. Furthermore, this

analysis has the potential to improve the understanding and

characterization of changes in cardiac stress induced by shift work

from a multifractal perspective.

Assessing the impact of shift work stress through HRV

is crucial due to its association with an increased risk of

cardiovascular disease (Puttonen et al., 2010). Using a multiscale-

multifractal approach to evaluate HRV components enables the

characterization of changes in HRV properties due to shift work
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and the identification of the components that undergo the greatest

alterations. In addition, understanding changes in HRV related

to cardiovascular stress in shift workers could have important

implications for the early detection of potential cardiovascular

health problems. This could lead to preventive interventions to

improve the long-term health and well-being of these workers.

The present study aims to compare the condition of the

cardiovascular system of shift workers and non-shift workers

women by IBI signal analysis, to better understand the effect of

physiological stress produced by shift work. Given that the IBI

signal can be decomposed into fast and slow waves, we also propose

to analyze the multiscale-multifractal dynamics of these different

components. The self-similarity of IBI spectral components was

analyzed using MMF-DFA.

2 Materials and methods

The IBI signal during sleep was analyzed using a multiscale-

multifractal approach in women with shift and non-shift work

schedules. In addition, it was proposed to analyze the fractal

proprieties of the high and low-frequency components of the IBI

signal. HRV analysis was carried out using Matlab R© R2018a (The

MathWorks, Inc., Natick, Massachusetts, United States).

2.1 Database

Group 1. Sleep recordings of 11 healthy female shift workers

(age 20–54 years) were acquired in the sleep laboratory of the

Finnish Institute of Occupational Health. The participants did

not present any neurological disorders and were free of drugs

affecting the central nervous system. The study was approved

by the local Ethics Committee, and the participants gave their

written informed consent to participate. Daytime and nighttime

sleep were acquired; however, only nighttime sleep recordings

were analyzed in this work. All participants underwent full

polysomnography and pressure bed sensor (PBS) recordings were

performed simultaneously. The PBS was designed with eight

sensors to measure the pressure change under the torso of the

sleeping participant. The sensors were placed in two columns

and four rows, covering an area of 64 cm × 64 cm. The

sampling rate of the sensors was 50 Hz for each measurement

channel. Ballistocardiography (BCG), respiration, and movement

signals were extracted from the PBS signal by filtering procedures

(Guerrero et al., 2015). The signal processing was based on the

IBI signal obtained from BCG overnight, and from this signal, the

HRV analysis was performed. The comparison of the IBI signals

extracted from BCG or ECG has shown that both signals give

similar results in HRV analysis (Kortelainen et al., 2010).

Group 2. ECG signals from seven healthy women (age 25–35

years) were analyzed from the CAP Sleep database (Goldberger

et al., 2000, 2012). The full polysomnographic recordings of the

CAP Sleep Database were registered at the Sleep Disorders Center

of the Ospedale Maggiore of Parma, Italy. Sampling frequencies of

ECG signals varied between 100 and 512 Hz, and the RR intervals

were detected according to Pan and Tompkins (1985). The women

participants did not present any neurological disorders and were

free of drugs affecting the central nervous system. This group will

be called non-shift workers.

In the following sections, IBI is used to refer to IBI and RR

interval time series. The IBI signal was manually reviewed and pre-

processed with an adaptive filter to remove artifacts and ectopic

beats in both groups (Wessel et al., 2000).

2.2 Decomposition of the IBI signal

The complete ensemble empirical mode decomposition with

adaptive noise (CEEMDAN) is based on the empirical mode

decomposition (EMD) method. The EMDmethod decomposes the

signal x into K intrinsic mode functions (IMFs, di) that, together

with a residue (rk) reconstruct the signal as x =
∑K

i=0 di + rk
(Huang et al., 1998). An IMF must satisfy the conditions that

the number of extrema and the number of zero-crossings must

be equal or differ by one at most, and the local mean, defined

as the mean of the upper and lower envelopes, must be zero

(Huang et al., 1998). Let Ek(·) be the operator that produces

the kth mode and let ω(i) be a realization of zero mean unit

variance white noise. According to Torres et al. (2011) and

Colominas et al. (2014), the CEEMDAN method consists of the

following steps:

1. Decompose by EMD each x(i) = x + β0ω
(i), i = 1, . . . , I, until

its first mode and calculate d̃1 =
1
I

∑I
i=1 d

(i)
1 .

2. For k = 1, obtain the first residue as r1 = x− d̃1.

3. Obtain the first mode of r1 + β1E1(ω
(i)), i = 1, . . . , I, by EMD

and define the secondmode as d̃2 =
1
I

∑I
i=1 E1(r1+β1E1(ω

(i))).

4. For k = 2, . . . ,K calculate the kth residue as rk = r(k−1) − d̃k.

5. Obtain the first mode of rk + βkEk(ω
(i)), i = 1, . . . , I, by

EMD until define the (k + 1)th CEEMDAN mode as d̃k+1 =
1
I

∑I
i=1 E1(rk + βkEk(ω

(i))).

6. Go to step 4 for the next k.

Repeat steps 4–6 until the EMD can not decompose the residue

obtained. The final residue satisfies rk = x−
∑K

k=1 d̃k. Therefore, x

can be expressed as x =
∑K

k=1 d̃k + rk.

For each participant, a segment of 9,000 heartbeats, ∼2 h

connected to the first sleep NREM-REM cycle, was extracted.

Subsequently, the IBI signal was computed and decomposed

into IMFs by CEEMDAN. An ensemble size of I = 100 was

used and a value of 0.1 effectively reduced the residual noise

in the reconstructed signal. Figure 1 presents an example of

the signal decomposition of the RR interval signal of a non-

shift worker (left panel) and a shift worker (right panel). Both

participants showed an IMF1 that contained fast oscillations,

while the following IMFs exhibited a decrease in oscillations.

Consequently, IMF4 displayed slower oscillations. Therefore,

frequency spectral analysis revealed distinct characteristics for each

IMF, as illustrated in Figure 1. In both cases, IMF1 exhibited

frequencies mainly falling between 0.15–0.4 Hz, IMF2 displayed

frequencies approximately within the range of 0.04–0.2 Hz, IMF3

conveyed information mostly in the range of 0.04–0.15 Hz,

and IMF4 featured frequencies primarily below 0.04 Hz. The

IMF1–IMF4 was analyzed using the MMF-DFA described in the

following section.
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FIGURE 1

Example of decomposition of a 500-sample long RR interval using CEEMDAN and its frequency decomposition from a shift and non-shift workers.

2.3 Multiscale-multifractal analysis

The MMF-DFA was calculated using the fast DFA algorithm

proposed in Castiglioni and Faini (2019). A time series, Xi of N

samples (i = 1, ...,N) is normalized as xi = (Xi−µ)/σ , whereµ and

σ are the mean and standard deviation of the series, respectively.

Subsequently, the cumulative sum, y, is calculated. Then, y is

divided into M maximally overlapped blocks of n samples. The

trend of each block is removed with a polynomial least squares

regression of order p, and the variance σ 2
n of each detrended block

k is calculated. Finally, the variability function Fq(n) is obtained as

Fq(n) =
{

1
M

∑M
k=1(σ

2
n (k))

q/2
}1/q

for q 6= 0

Fq(n) = exp
{

1
2M

∑M
k=1 ln(σ

2
n (k))

}
for q = 0

(1)

Equation (1) was evaluated for q between –5 and 5 and n

between 6 and 2,048 to ensure at least 4 blocks in the computing of

Fq(n). For q > 0, large fluctuations in the signal are analyzed, while,

for q < 0, small fluctuations are analyzed. It has been reported

that overestimation errors may affect shortest scales and negative

q. To correct these errors, variances below an EPS threshold equal

to 0.01 were not considered. The scales n were selected with

a distribution evenly spaced on a logarithmic scale. Moreover,

multiscale-multifractal coefficients, α(q, n), were evaluated as a

function of scale n by calculating the derivative of log(Fq(n)) vs.

log(n) (Castiglioni and Faini, 2019).

Polynomials of orders 1 and 2 were used for detrending because

it has been observed that there is overfitting with the second-

order polynomial at scales smaller than 12 samples; however, it

efficiently eliminates the long-term trend (Castiglioni and Faini,

2019). The Fq(n) is presented in time scale by converting the n scale

(samples) to τ scales (seconds) using the transformation τ = n×µ

(Castiglioni and Faini, 2019). The MMF-DFA was computed for

IMF1, IMF2, IMF3 and IMF4.

In addition, for each temporal scale τ , multifractality was

quantified based on the standard deviation of α(q, τ ) over the range

of q, denoted as MFI(τ ). The presence of multifractality implies
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TABLE 1 Mean ± standard deviation of heart rate and total power of each

IMF.

Non-shift
workers

Shift
workers

P-value

Heart rate (beats/min) 67.36± 5.28 58.76± 6.59 0.007∗

IMF1 total power (a.u.) 0.14± 0.08 0.25± 0.10 0.26

IMF2 total power (a.u.) 0.08± 0.03 0.11± 0.06 0.32

IMF3 total power (a.u.) 0.15± 0.05 0.12± 0.04 0.16

IMF4 total power (a.u.) 0.14± 0.03 0.14± 0.05 0.89

∗ p < 0.05 non-shift workers vs. shift workers.

that α(q, τ ) depends on q. Therefore, if there is variability in α(q, τ )

values across the range of q, MFI(τ ) differs from zero, indicating

multifractality at τ . Conversely, if α(q, τ ) has the same or similar

values, MFI(τ ) takes values close to zero, indicating monofractal

behavior at τ . Another index has been proposed that uses the range

of q as a normalization factor (Castiglioni et al., 2018).

2.4 Statistical analysis

For each participant, the multiscale-multifractal self-similarity

of a 9,000 heartbeat segment of the IBI signal during the first hours

of sleep was examined. The Lilliefors test (Yap and Sim, 2011) is

a statistical tool used to determine whether a sample comes from

a normal distribution, and it was used to determine whether the

multiscale-multifractal self-similarity for each group was normally

distributed. Subsequently and in accordance with the previous

test, the one-way ANOVA (Sheats and Pankratz, 2002) was used

with p < 0.05 to determine significant differences. ANOVA is a

method for comparing the means of several populations if they

are approximately normally distributed. It is important to note, the

α(q, τ ) coefficients were compared between groups at each τ and q;

regardless of the neighborhood.

3 Results

The results of the multifractal analysis performed on the HRV

of women during the first hours of sleep, both under shift and non-

shift conditions, are presented in this section. In the first subsection,

we present the MMF-DFA coefficients, denoted as α(q, τ ), for each

respective group, accompanied by a detailed statistical comparison

between the groups. Then, in the second subsection, the results of

the Multifractal Index for each group will be discussed in detail,

together with statistical comparisons between the groups.

The heart rate and the total power of the four IMFs were

calculated, as shown in Table 1. The total power of each IMF was

normalized with respect to the total power of the IBI signal. Shift

workers showed a heart rate lower than non-shift workers (p-value

< 0.05). However, the total power of each IMF was similar in both

groups.

3.1 MMF-DFA coe�cients

Figure 2 shows the averaged results of α(q, τ ) for the IBI

signal, along with the associated IMFs calculated for both non-

shift and shift workers. Within the context of the IBI signal, the

scaling coefficients consistently remain around 0.8 across different

values of τ and q, indicating the monofractal property of IBI.

Noticeable statistical differences were observed only in isolated

regions, therefore, it remains difficult to draw definitive conclusions

regarding the statistical differences between the groups.

IMF1 correlates predominantly with fast oscillations,

specifically with frequencies between 0.15 Hz and 0.4 Hz.

The α(q, τ ) values are around 0.5, suggesting a white noise process.

However, within scales spanning from 16 to 64, the shift working

group manifests higher values in α(q, τ ) for q negatives. These

values of α(q, τ ) in shift workers at short scales present statistical

differences with respect to the non-shift groups (p-value < 0.05)

and suggest a tendency of IMF1 to 1/f noise only for small scales.

IMF2 and IMF3 are related to the low frequency of the HRV,

this means, with frequencies between 0.04 and 0.15 Hz. It is

observed that both groups present a clear increment for α(q, τ ) of

scales lesser than 64 s, this values override the value of one. This

suggests that small-scale time tends to present properties similar to

the 1/f noise. However, when α(q, τ ) is compared between groups,

the shift workers present higher values than non-shift workers. This

high value of α(q, τ ) in shift workers at short scales was statically

significant (p-value < 0.05), considering negative moments of q.

Finally, the results of the IMF4 show higher values in α(q, τ )

were observed in τ < 128 s, mainly in the positive moments q of

shift workers compared to non-shift workers.

3.2 Multifractal index

Figure 3 shows the averaged MFI(τ ) results for the IBI signal,

along with the associated IMFs, for both non-shift and shift

workers. The behavior of theMFI(τ ) along the scales is represented

by a solid blue and red line for non-shift workers and shift

workers, respectively. In addition, the standard deviation of the

index is represented by shading around the average line in blue

and red, depending on the group. Also, scales where the MFI(τ )

was significantly different between non-shift and shift workers are

indicated by dots accompanied by shaded bands. In both groups,

theMFI(τ ) of the IBI signal had values close to 0.2 across different

values of τ . On the other hand, the evaluation of theMFI(τ ) in the

IMFs reflected an increase of α(q, τ ) variability at short scales, with

values > 0.2, and a decrease of MFI(τ ) at large scales, indicating

a monofractal behavior. Also, statistical differences were observed

between shift and non-shift workers at different τ scales, indicated

by dots.

In the context of the IBI signal, a decrease in MFI(τ ) was

observed at scales close to 256 s in shift workers. These MFI(τ )

values in shift workers show statistical differences compared to

the non-shift workers (p-value < 0.05), suggesting a reduction in

α(q, τ ) variability at time scales near 256 s.

The multifractality quantion in IMF1 showed that shift workers

had higher MFI(τ ) values at 29 s ≤ τ ≤ 64 s scales. This increase
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FIGURE 2

Multiscale-multifractal analysis of the IBI signal components. Average surfaces of MMF-DFA coe�cients, α(q, τ ), for non-shift workers (left) and shift

workers (center). Statistical significance of the MMF-DFA coe�cients between both groups (right). The surfaces of the coe�cients are presented

with di�erent ranges on the α(q, τ ) axis to facilitate the identification of di�erences between groups.
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FIGURE 3

Mean ± standard deviation of the multifractal index, MFI(τ ), of non-shift workers and shift workers. The symbol •, together with shaded bands,

indicates the scales where significant di�erences vs. non-shift workers (p < 0.05).

in MFI(τ ) at these scales was significantly different (p-value <

0.05) compared to non-shift workers, suggesting more variations

of scaling exponents along q. In addition, a decrease inMFI(τ ) was

observed in shift workers at large scales, particularly near 1,024 s,

which was statistically different (p-value < 0.05) from the values

obtained in non-shift workers.

When analyzing the IMF2, it was observed that shift workers

presented higher MFI(τ ) values along all time scales compared to

the values obtained in non-shift workers. This increase in MFI(τ )

observed in shift workers was statistically significant (p-value <

0.05), particularly in the range of 55–75 s, suggesting a higher

multifractal complexity of the IMF2 dynamics.

The IMF3 analysis showed that in both groups, MFI(τ )

presented values > 0.2 in short scales and decreased as the τ

scale increased. In addition, shift workers exhibited an increase

in MFI(τ ) on scales from 25 to 80 s and a decrease on scales

> 1,024 s; these changes were significantly different (p-value <

0.05) compared to non-shift workers. Finally, despite the changes

observed in the scaling exponents in IMF4, the MFI(τ ) showed

similar behavior in both groups, with no significant differences.

4 Discussion

In the present study, the self-similarity property of the IBI

signal during sleep was evaluated using the MMF-DFA method

in female shift and non-shift workers. To our knowledge, this is

the first study to address changes in the multiscale-multifractal
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dynamics of HRV in shift workers. In addition, the analysis

of the multiscale-multifractal dynamics of the fast and slow

components of the IBI signal (obtained by the CEEMDAN

method) was performed. Our main observations are: (a) In both

groups, the IMFs presented multifractality at small scales, i.e., the

multifractal index showed an increase at small scales, and (b) when

multifractality is observed, it is different between shift workers and

non-shift workers.

Previous studies have shown that the MMF-DFA method

adequately describes the dynamics of the cardiovascular series

during wakefulness and sleep under normal and pathological

conditions (Kokosińska et al., 2018; Castiglioni et al., 2020);

however, under shift work has not been evaluated. Many efforts

have been performed regarding the analysis of HRV using time and

frequency domain indices, where the findings are not conclusive,

the results include higher LF of permanent night shift workers

in comparison with rotating shift workers during daytime sleep

(Chung et al., 2011), normalized LF during sleep significantly

elevated on the night shift vs. the day shift (van Amelsvoort et al.,

2001b), in contrast with a reduction in normalized LF and LF/HF

during night work compared with other diurnal working periods

(Furlan et al., 2000), increased HF during the night shift than

during the day shift (Munakata et al., 2001), among other results.

Therefore, the analysis of multifractal andmultiscale characteristics

of IBI signal can provide more insight in the ANS regulation

changes in shift workers.

Moreover, previous efforts have evaluated the self-similarity

of parasympathetic and sympathetic activity separately by

administering autonomic blocking agents (Castiglioni et al., 2011;

Moghtadaei et al., 2022). In contrast to Castiglioni et al. (2011),

our study included the multifractal part by evaluating positive and

negative moments (−5 ≤ q ≤ +5), analyzed longer signals during

sleep (∼2 h), and evaluated the high and low frequencies separately

by decomposing the IBI signal using CEEMDAN.

In our initial analysis, we evaluated the α(q, τ ) coefficients of

the IBI signal among both shift workers and non-shift workers.

The results showed a similar behavior of the scaling exponents;

in fact, no statistically significant differences emerged between the

two groups. In contrast, when the multiscale-multifractal behavior

of the fast and slow wave components are evaluated separately,

the scaling coefficients show significant changes at different scales

and moments, suggesting a change in the ANS due to shift work.

Therefore, it is evident that a multifractal analysis of the IBI signal

is not sufficient to reveal the multifractal properties of the ANS,

since the changes due to the interaction between the ANS branches

maintain themonofractal structure of the IBI, which is independent

of scale and q.

In the frequency domain of HRV analysis, HF is associated with

parasympathetic nervous system activity. Given that IMF1 contains

frequency information similar to HF, IMF1 could be associated

with the dynamics of parasympathetic modulation. As illustrated

in Figure 2, shift workers exhibit lower α(q, τ ) values at large

scales and higher values at short scales with q < 0. Consequently,

these findings suggest that shift workers present an alteration

in the dynamics of parasympathetic modulation. Changes in

parasympathetic activity were also observed in Hulsegge et al.

(2018), where the relationship between shift work and cardiac

activity during sleep was evaluated, considering differences by age

and sex. The results from that study suggested that compared

to non-shift working women, shift-working women have an

autonomic balance in favor of parasympathetic activity.

IMF2 and IMF3 could also be associated with sympathetic

modulation, as they contain information in the 0.04–0.15 Hz range,

corresponding to LF of HRV spectral analysis. Our results of

IMF3 in non-shift workers coincide with the analysis performed in

Castiglioni et al. (2018), where it is suggested that at short scales,

the process modulating sympathetic heart rate activity is similar

to fractional Brownian motion, and at large scales, it is similar to

fractional Gaussian noise. The behavior described above is also

observed in shift workers; however, α(q, τ ) is significantly larger

at short scales. In contrast, at large scales, shift workers exhibit

a decrease in MFI(τ ), suggesting less variability in the scaling

exponents and a decrease in fractality, and an alteration in the

modulation of sympathetic activity. These changes in sympathetic

modulation could be associated with the increased cortisol levels

observed in shift workers (Lindholm et al., 2012). Cortisol is

a hormone involved in regulating metabolism, stress response,

inflammatory response, and immune function. An alteration in

cortisol levels can be detrimental to the functions of the nervous,

immune, respiratory, and cardiovascular systems, among others

(Oakley and Cidlowski, 2013). In normal sleep, cortisol has very low

levels at the beginning of sleep and maximal values at awakening in

the morning. However, a circadian mismatch similar to that due to

shift work leads to a complete reversal of the cortisol profile, i.e., an

increase in cortisol at the beginning of sleep (Scheer et al., 2009).

In addition, shift work induces physiological stress due to altered

circadian rhythm and decreased sleep quality. Consequently, stress

is another factor that can alter cortisol levels in the long term,

increasing the risk of cardiovascular disease (Anjum et al., 2011).

The IMF4 could be associated with very slow sympathetic

activity because, similar to VLF, it contains frequencies < 0.04 Hz.

Previous studies suggest that VLF are related to slowmechanisms of

sympathetic function, such as the renin-angiotensin system activity,

the mechanism of thermoregulation or metabolism over HRV

(Arslan et al., 2019). Shift workers present an increase in scaling

exponents at short scales (τ < 128 s), suggesting an alteration in

the dynamics of the VLF of the IBI signal. This alteration could

be caused by circadian rhythm dysregulation, because VLF may be

associated with this phenomenon (Arslan et al., 2019).

Furthermore, a significant decrease inMFI(τ ) of IBI signal was

observed at scales near 256 s in shift workers compared to non-

shift workers. This decrease in MFI(τ ) could be associated with

changes in the circadian rhythm of shift workers. Previous studies

have shown that the circadian rhythm can affect the self-similarity

properties of heartbeats (Hu et al., 2004), particularly between 128

and 256 s (Castiglioni et al., 2020). Castiglioni et al. (2020) studied

the dynamics of α(q, τ ) in cardiovascular series during day and

night. They found a decrease in α(q, τ ) during the night compared

to the day, within the range of scales from 128 to 256 s. Similar to

the findings of Castiglioni et al. (2020), non-shift workers showed

a decrease in α(q, τ ), although it was more evident at q > 0.

In addition, shift workers demonstrated a narrower α(q, τ ) range

compared to non-shift workers, mirroring the α(q, τ ) dynamics

observed throughout the day. Therefore, it could be suggested
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that the impact of circadian mismatch on various physiological

processes could lead to a reduction in the α(q, τ ) variability. In

addition, the multifractality quantification results for IMF1–IMF3

indicate higher variability in α(q, τ ) between 29 ≤ τ ≤ 80 along

q. Also, a decrease in the variability of α(q, τ ) of IMF1 and IMF3 at

large scales in shift workers suggests a tendency towardmonofractal

behavior.

Moreover, similar to Castiglioni et al. (2011, 2018), our results

suggest that under normal conditions, sympathetic modulation is

characterized by Brownian motion components at short scales. On

the other hand, vagal modulation presents components that tend to

a behavior closer to white Gaussian noise.

The altered sleep macrostructure resulting from night shifts

could be another factor influencing the self-similarity properties

of the IBI signal. Shift workers experience a decrease in the total

sleep duration and changes in the duration of rapid eye movement

(REM) sleep (Vogel et al., 2012; Zimberg et al., 2023), and non-

REM sleep (Chung et al., 2009; Vogel et al., 2012). Moreover,

REM sleep is characterized by greater sympathetic modulation and

higher long-term scaling exponents of DFA compared to non-

REM sleep (Penzel et al., 2003). Therefore, sleep macrostructure

could also contribute to the observed changes in the IBI signal

scaling exponents of shift workers. Future studies should explore

the multifractal-multiscale properties of the IBI signal in shift

workers throughout the sleep cycles, considering altered sleep

macrostructure due to shift work.

Finally, it is important to comment the limitations of this

study. The first limitation is the small number of recordings due

to the cost involved by the polysomnography in the acquisitions.

Furthermore, even though it has been demonstrated that IBI signals

extracted from BCG or ECG offer similar results in HRV analysis,

there is a possibility of differences observed in MMF-DFA analysis

due to the method of cardiac activity acquisition. However, with

the use of systems similar to PBS, rings or smart watches able

to acquire IBI signal, the recordings could be performed in a

simple and economical way (Kortelainen et al., 2010; Guerrero

et al., 2015). The second limitation is the lack of databases with

similar characteristics to perform the study, giving that in our

study shift workers and non-shift workers women are not matched

by age, which could affect the results since HRV is partially age-

dependent (Agelink et al., 2001). Moreover, this analysis did not

evaluate the impact of shift work on HRV in male shift workers,

which is proposed as a future study to enhance our understanding

of how gender may influence HRV responses to shift work. Note

that these results are preliminary and cannot be used to follow

clinical decisions, since the results need to be validated in a larger

population.

5 Conclusions

The evaluation of the multiscale-multifractal properties of

cardiac function in female shift and non-shift workers was

presented, considering the decomposition of the IBI signal into

high and low frequency components. The main findings are that

both groups exhibit multifractality in their IMFs, mainly at smaller

scales. Additionally, cardiovascular stress experienced by shift

workers led to an alteration of the scaling exponents of the IBI

signal components, particularly at short scales, and considering

positive and negative moments. Also, the variability of scaling

exponents in IMF1 and IMF3 of shift workers decreased at larger

scales despite exhibiting higher variability at small scales. The

changes in multiscale-multifractal properties of HRV components

are associated with various physiological processes that affect

cardiac activity, such as the misaligned circadian cycle due to

shift work. Additionally, to our knowledge, this is the first study

to evaluate the fractal structure of the IBI signal components

separately during sleep for shift workers. The methodology has

allowed us to emphasize the contribution of both high and

low frequencies of HRV in the overall multiscale-multifractal

structure. It was also possible to evaluate sympathetic modulation

by separating it from HRV activity where there is an influence of

respiration, since the 0.15–0.4 Hz interval corresponds to HRV

related to the respiratory cycle. In addition, this methodology

identified changes in HRV fractal properties during sleep due to

cardiovascular stress experienced by shift work which could be used

as clinical indicator for cardiovascular diagnosis.
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Kokosińska, D., Gierałtowski, J. J., Żebrowski, J. J., Orłowska-Baranowska, E., and
Baranowski, R. (2018). Heart rate variability, multifractal multiscale patterns and their
assessment criteria. Physiol. Meas. 39:114010. doi: 10.1088/1361-6579/aae86d

Kortelainen, J. M., Mendez, M. O., Bianchi, A. M., Matteucci, M., and Cerutti, S.
(2010). Sleep staging based on signals acquired through bed sensor. IEEE Trans. Inf.
Technol. Biomed. 14, 776–785. doi: 10.1109/TITB.2010.2044797

Kunikullaya, K. U., Kirthi, S. K., Venkatesh, D., and Goturu, J. (2010). Heart rate
variability changes in business process outsourcing employees working in shifts. Indian
Pacing Electrophysiol. J. 10, 439–446.

Lee, S., Kim, H., Kim, D. H., Yum, M., and Son, M. (2015). Heart rate variability
in male shift workers in automobile manufacturing factories in South Korea. Int. Arch.
Occup. Environ. Health 88, 895–902. doi: 10.1007/s00420-014-1016-8

Lindholm, H., Ahlberg, J., Sinisalo, J., Hublin, C., Hirvonen, A., Partinen, M., et al.
(2012). Morning cortisol levels and perceived stress in irregular shift workers compared
with regular daytime workers. Sleep Disord. 2012:789274. doi: 10.1155/2012/789274

Moghtadaei, M., Dorey, T. W., and Rose, R. A. (2022). Evaluation of non-linear
heart rate variability using multi-scale multi-fractal detrended fluctuation analysis

Frontiers inNeuroergonomics 10 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1382919
https://doi.org/10.1007/BF02322053
https://doi.org/10.5582/bst.2011.v5.4.182
https://doi.org/10.1007/978-3-319-58709-7_7
https://doi.org/10.3389/fphys.2019.00115
https://doi.org/10.1155/2018/4801924
https://doi.org/10.3390/e22040462
https://doi.org/10.1109/TBME.2008.2005949
https://doi.org/10.1113/jphysiol.2010.196428
https://doi.org/10.2486/indhealth.MS1305
https://doi.org/10.5271/sjweh.1324
https://doi.org/10.2486/indhealth.MS1259
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1161/01.CIR.102.16.1912
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.13026/C2VC79
https://doi.org/10.1109/TIM.2014.2366976
https://doi.org/10.3389/fphys.2012.00450
https://doi.org/10.3390/ijerph18115551
https://doi.org/10.1073/pnas.0408243101
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.ijcard.2018.01.089
https://doi.org/10.1007/s40675-017-0071-6
https://doi.org/10.1007/978-1-4614-1806-1_30
https://doi.org/10.1038/nrcardio.2017.189
https://doi.org/10.1088/1361-6579/aae86d
https://doi.org/10.1109/TITB.2010.2044797
https://doi.org/10.1007/s00420-014-1016-8
https://doi.org/10.1155/2012/789274
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Delgado-Aranda et al. 10.3389/fnrgo.2024.1382919

in mice: roles of the autonomic nervous system and sinoatrial node. Front. Physiol.
13:970393. doi: 10.3389/fphys.2022.970393

Monteze, N. M., Souza, B. B., Alves, H. J., de Oliveira, F. L., de Oliveira, J. M.,
de Freitas, S. N., et al. (2015). Heart rate variability in shift workers: responses to
orthostatism and relationships with anthropometry, body composition, and blood
pressure. BioMed Res. Int. 2015:329057. doi: 10.1155/2015/329057

Munakata, M., Ichii, S., Nunokawa, T., Saito, Y., Ito, N., Fukudo, S., et al.
(2001). Influence of night shift work on psychologic state and cardiovascular
and neuroendocrine responses in healthy nurses. Hypertens. Res. 24, 25–31.
doi: 10.1291/hypres.24.25

Neufeld, E. V., Carney, J. J., Dolezal, B. A., Boland, D. M., and Cooper, C. B. (2017).
Exploratory study of heart rate variability and sleep among emergency medical services
shift workers. Prehosp. Emerg. Care 21, 18–23. doi: 10.1080/10903127.2016.1194928

Oakley, R. H., and Cidlowski, J. A. (2013). The biology of the glucocorticoid
receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol.
132, 1033–1044. doi: 10.1016/j.jaci.2013.09.007

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE
Trans. Biomed. Eng. 32, 230–236. doi: 10.1109/TBME.1985.325532

Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., Goldberger, A.
L., et al. (1994). Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689.
doi: 10.1103/PhysRevE.49.1685

Peng, C-. K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time series.
Chaos 5, 82–87. doi: 10.1063/1.166141

Penzel, T., Kantelhardt, J. W., Grote, L., Peter, J. H., and Bunde, A. (2003).
Comparison of detrended fluctuation analysis and spectral analysis for heart rate
variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 50, 1143–1151.
doi: 10.1109/TBME.2003.817636

Puttonen, S., Härmä, M., and Hublin, C. (2010). Shift work and cardiovascular
disease - pathways from circadian stress to morbidity. Scand. J. Work Environ. Health
36, 96–108. doi: 10.5271/sjweh.2894

Scheer, F. A., Hilton, M. F., Mantzoros, C. S., and Shea, S. A. (2009). Adverse
metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl.
Acad. Sci. 106, 4453–4458. doi: 10.1073/pnas.0808180106

Sheats, R. D., and Pankratz, V. S. (2002). Common statistical tests. Semin. Orthod.
8, 77–86. doi: 10.1053/sodo.2002.32073

Shen, S. H., Yen, M., Yang, S. L., and Lee, C. Y. (2016). Insomnia, anxiety, and heart
rate variability among nurses working different shift systems in Taiwan. Nurs. Health
Sci. 18, 223–229. doi: 10.1111/nhs.12257

Souza, B. B., Monteze, N. M., de Oliveira, F. L., de Oliveira, J. M., de
Freitas Nascimento, S., Marquesdo Nascimento Neto, R., et al. (2015). Lifetime
shift work exposure: association with anthropometry, body composition, blood
pressure, glucose and heart rate variability. Occup. Environ. Med. 72, 208–215.
doi: 10.1136/oemed-2014-102429

Tenkanen, L., Sjöblom, T., Kalimo, R., Alikoski, T., and Härmä, M. (1997). Shift
work, occupation and coronary heart disease over 6 years of follow-up in the Helsinki
Heart Study. Scand. J. Work Environ. Health 23, 257–265. doi: 10.5271/sjweh.218

Torres, M. E., Colominas, M. A., Schlotthauer, G., and Flandrin, P. (2011). “A
complete ensemble empirical mode decomposition with adaptive noise,” in 2011
Proc. IEEE Int. Conf. Acoust. Speech Signal Process (Prague: IEEE), 4144–4147.
doi: 10.1109/ICASSP.2011.5947265

van Amelsvoort, L. G., Schouten, E. G., Maan, A. C., Swenne, C. A., and Kok, F.
J. (2001a). Changes in frequency of premature complexes and heart rate variability
related to shift work. Occup. Environ. Med. 58, 678–681. doi: 10.1136/oem.58.10.678

van Amelsvoort, L. G., Schouten, E. G., Maan, A. C., Swenne, K. A., and Kok, F.
J. (2001b). 24-Hour heart rate variability in shift workers: impact of shift schedule. J.
Occup. Health 43, 32–38. doi: 10.1539/joh.43.32

Vogel, M., Braungardt, T., Meyer, W., and Schneider, W. (2012). The effects
of shift work on physical and mental health. J. Neural. Transm. 119, 1121–1132.
doi: 10.1007/s00702-012-0800-4

Wessel, N., Voss, A., Malberg, H., Ziehmann, C., Voss, H. U., Schirdewan, A.,
et al. (2000). Nonlinear analysis of complex phenomena in cardiological data.Herzschr.
Elektrophys. 11, 159–173. doi: 10.1007/s003990070035

Yap, B. W., and Sim, C. H. (2011). Comparisons of various types of normality tests.
J. Stat. Comput. Simul. 81, 2141–2155. doi: 10.1080/00949655.2010.520163

Zimberg, I., Ftouni, S., Magee, M., Ferguson, S. A., Lockley, S., Rajaratnam,W., et al.
(2023). Circadian adaptation to night shift work is associated with higher REM sleep
duration. Sleep Health 10, S112–S120. doi: 10.1016/j.sleh.2023.08.024

Frontiers inNeuroergonomics 11 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1382919
https://doi.org/10.3389/fphys.2022.970393
https://doi.org/10.1155/2015/329057
https://doi.org/10.1291/hypres.24.25
https://doi.org/10.1080/10903127.2016.1194928
https://doi.org/10.1016/j.jaci.2013.09.007
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1063/1.166141
https://doi.org/10.1109/TBME.2003.817636
https://doi.org/10.5271/sjweh.2894
https://doi.org/10.1073/pnas.0808180106
https://doi.org/10.1053/sodo.2002.32073
https://doi.org/10.1111/nhs.12257
https://doi.org/10.1136/oemed-2014-102429
https://doi.org/10.5271/sjweh.218
https://doi.org/10.1109/ICASSP.2011.5947265
https://doi.org/10.1136/oem.58.10.678
https://doi.org/10.1539/joh.43.32
https://doi.org/10.1007/s00702-012-0800-4
https://doi.org/10.1007/s003990070035
https://doi.org/10.1080/00949655.2010.520163
https://doi.org/10.1016/j.sleh.2023.08.024
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org

	Assessing cardiovascular stress based on heart rate variability in female shift workers: a multiscale-multifractal analysis approach
	1 Introduction
	2 Materials and methods
	2.1 Database
	2.2 Decomposition of the IBI signal
	2.3 Multiscale-multifractal analysis
	2.4 Statistical analysis

	3 Results
	3.1 MMF-DFA coefficients
	3.2 Multifractal index

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


