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The optical brain imaging method functional near-infrared spectroscopy (fNIRS)

is a promising tool for real-time applications such as neurofeedback and

brain-computer interfaces. Its combination of spatial specificity and mobility

makes it particularly attractive for clinical use, both at the bedside and in

patients’ homes. Despite these advantages, optimizing fNIRS for real-time use

requires careful attention to two key aspects: ensuring good spatial specificity

and maintaining high signal quality. While fNIRS detects superficial cortical

brain regions, consistently and reliably targeting specific regions of interest

can be challenging, particularly in studies that require repeated measurements.

Variations in cap placement coupled with limited anatomical information may

further reduce this accuracy. Furthermore, it is important tomaintain good signal

quality in real-time contexts to ensure that they reflect the true underlying

brain activity. However, fNIRS signals are susceptible to contamination by

cerebral and extracerebral systemic noise as well as motion artifacts. Insu�cient

real-time preprocessing can therefore cause the system to run on noise

instead of brain activity. The aim of this review article is to help advance

the progress of fNIRS-based real-time applications. It highlights the potential

challenges in improving spatial specificity and signal quality, discusses possible

options to overcome these challenges, and addresses further considerations

relevant to real-time applications. By addressing these topics, the article aims

to help improve the planning and execution of future real-time studies, thereby

increasing their reliability and repeatability.

KEYWORDS

fNIRS, real-time preprocessing, neurofeedback, BCI, noise reduction, extracerebral
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1 Introduction

Real-time analyses are crucial for neurofeedback (NFB) and brain-computer interface

(BCI) applications because they allow instantaneous interpretation of brain signals

(Enriquez-Geppert et al., 2017; Lührs and Goebel, 2017). In contrast to offline analysis,

real-time analysis faces the challenge of maintaining consistent and fast calculation
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times, while ensuring that incoming data are continuously

processed within these limited time frames (Lührs and Goebel,

2017). This allows for immediate feedback and control. BCIs and

NFB rely on brain imaging data obtained using techniques such

as electroencephalography (EEG), functional magnetic resonance

imaging (fMRI), or functional near-infrared spectroscopy (fNIRS),

and their real-time data processing includes data streaming,

(pre-)processing, and feedback generation (Naseer and Hong,

2015; Enriquez-Geppert et al., 2017; Sitaram et al., 2017; Mahrooz

et al., 2023). Despite certain methodological similarities, there are

different definitions of BCI and NFB depending on the source or

expert, particularly regarding their areas of application (Mahrooz

et al., 2023). BCIs are often described as systems that enable

direct communication between the brain and external devices,

allowing individuals to interact with their environment using their

own brain signals (Naseer and Hong, 2015; Paulmurugan et al.,

2021; Saha et al., 2021; Mahrooz et al., 2023). BCIs are used

in different fields such as assistive technology, neuroprosthetics,

and entertainment (Millán, 2010; Rupp et al., 2014; Abdulkader

et al., 2015). On the other hand, NFB focuses more on self-

regulation of brain activity by providing feedback through sensory

cues with the overall goal of improving cognitive functions or

alleviating symptoms (Marzbani et al., 2016; Sitaram et al., 2017;

Kohl et al., 2020; Soekadar et al., 2021). Accordingly, NFB is

more commonly used in clinical settings, and research on this

topic includes conditions such as ADHD (e.g., Hudak et al., 2018;

Rubia et al., 2021), anxiety (e.g., Kimmig et al., 2019; Linhartová

et al., 2019; Lipp and Cohen Kadosh, 2020), depression (e.g.,

Trambaiolli et al., 2021; González Méndez et al., 2022), stroke

(e.g., Rieke et al., 2020; Sanders et al., 2022), and Parkinson’s

disease (e.g., Subramanian et al., 2011, 2016; Mehler, 2022).

Because of the methodological overlap, BCI and NFB probably

cannot be considered as completely independent methods. Since

both applications involve some kind of feedback mechanism,

NFB could be viewed as a specific form of BCI method that

focuses on (therapeutic) training and self-regulation of brain

activity (Mahrooz et al., 2023).

Real-time hemodynamic-based BCIs and NFB applications

have been shown to complement traditional electrophysiological-

based methods such as EEG. Reflecting the changes in blood flow

and oxygenation of the brain, hemodynamic signals are captured

using methods such as fMRI and fNIRS and provide valuable

insights into brain activity (Sitaram et al., 2009; Naseer and Hong,

2015; Mihara and Miyai, 2016; Wang et al., 2018; Kohl et al.,

2020; Paulmurugan et al., 2021; Pindi et al., 2022). For instance,

fNIRS captures hemodynamic brain signals using optodes (i.e., light

sources and detectors) placed on the head surface. It measures

changes in the absorption of near-infrared light and reflects changes

in concentration in oxygenated (1[HbO]) and deoxygenated

(1[HbR]) hemoglobin as the light travels from the source to the

detector (Scholkmann et al., 2014; Pinti et al., 2020). While fMRI,

considered the gold standard in hemodynamic brain imaging,

provides whole-brain measurements, fNIRS has limitations in

terms of spatial resolution as it can only access the superficial

cortex (Scarapicchia et al., 2017; Klein et al., 2022a). However,

fNIRS offers several advantages compared to fMRI. It is more

cost-effective and it allows the inclusion of different populations

without specific method-based exclusion criteria. Furthermore,

because fNIRS measures both 1[HbR] and 1[HbO], it offers

insights into hemodynamics and tissue oxygenation and therefore

provides more information than the fMRI blood-oxygen-level-

dependent (BOLD) signal, which reflects the 1[HbR] only. In

addition, fNIRS, with its superior temporal resolution (typically

∼10Hz compared to∼1Hz for fMRI), better distinguishes between

higher frequency activities such as cardiac (∼1 Hz) and respiratory

activities (∼0.3 Hz) and the lower frequency signals of interest.

Finally, fNIRS has lower sensitivity to motion-related artifacts and

offers portable and mobile measurements, enabling measurements

in real-world environments, from bedside applications in the

hospital to the home or virtually any other location (Cui et al.,

2011; Scarapicchia et al., 2017; Machado et al., 2018; Quaresima

and Ferrari, 2019; Pinti et al., 2020; Von Lühmann et al., 2021;

Klein et al., 2022a,b; Scholkmann et al., 2022). These advantages

make fNIRS particularly interesting for real-time applications

(Lu et al., 2010; Kohl et al., 2020; Soekadar et al., 2021).

fNIRS is a rapidly evolving technique with many possibilities

for offline and real-time applications. Methodologically, the field

of fNIRS-based real-time applications lags behind that of offline

applications, which could be due, among other things, to a lack of

comprehensive recommendations and strict validation processes.

This deficiency can complicate the interpretation, comparison, and

replication of fNIRS studies, a problem already identified in the

fNIRS community. For instance, the lack of standardized analysis

pipelines is a major problem which can be further complicated

by inadequate reporting practices, thereby significantly reducing

the impact, replicability, and reproducibility of published results

(Kohl et al., 2020; Yücel et al., 2021; Kelsey et al., 2023; Schroeder

et al., 2023). The importance of strict adherence to methodological

standards and research practices is underscored by a recent incident

of scientific misconduct in which an fNIRS-based BCI was tested

for communication with patients with degenerative diseases such as

amyotrophic lateral sclerosis (Chaudhary et al., 2017, 2019; Spüler,

2019). An investigation of the published study revealed several

issues, including selective omission of data without transparent

criteria, lack of disclosure of data and analysis scripts, discrepancies

between reported and available data, and potential data bias due

to incorrect data analysis. These results led to recommendations

for the study’s withdrawal and highlighted the urgent need for

transparency and careful methodology in research in real-time

analysis and beyond.1

Two challenges in particular should be highlighted in

the context of fNIRS-based real-time applications: improving

spatial specificity and signal quality. Due to limited anatomical

information and typically low head coverage, it is challenging

to achieve precise and consistent spatial targeting of relevant

regions of interest (ROIs). However, in applications such as NFB,

repeatability of optode placement is critical for reliably training

specific ROIs across multiple sessions (Benitez-Andonegui et al.,

2021; Klein et al., 2022a). Similarly, ensuring sufficient signal

quality is important. Insufficient real-time preprocessing in fNIRS

can lead to a system that operates on noise rather than brain

activity (Klein et al., 2022b), which might not only reduce the

1 see e.g., Discover Article, 2019 (accessed 9 April 2024); University of

Tübingen press release (in German), 2019 (accessed 9 April 2024).
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effectiveness of the application itself, but also could undermine

the user’s trust in the system. Since real-time processing, unlike

offline analysis, does not allow corrections after data acquisition,

the use of effective and robust real-time preprocessing techniques

is even more important to extract meaningful signals and improve

the accuracy of measurements to ensure reliability in real-time

applications.

To address this gap, the aim of this review is to identify potential

challenges in fNIRS applications regarding spatial specificity and

signal quality and discuss these for their potential application in

real-time scenarios. Since systematic methodological validations

and reviews for real-time contexts are still very limited, this

work discusses offline methods that are considered potentially

suitable for real-time applications based on the authors’ individual

knowledge and experiences. Please note, however, that the selection

of methods is not exhaustive andmay not cover all possible options.

For this purpose, this review is divided into two main sections:

Improvement of spatial specificity (see Section 2) and Improvement

of signal quality (see Section 3). Each section explores various

subtopics, outlines potential challenges, suggests possible options

for improvement strategies, and explores further considerations

for their applicability in the context of fNIRS-based real-time

applications. Please note that the figures in the manuscript

showing data comparing different signal processing methods are

for illustrative purposes only and come from individual, partly

unpublished data sets and do not reflect group analyses. They

are intended solely as a visual aid and not for in-depth analytical

interpretation. Additionally, it is important to note that these

figures represent offline preprocessed data, as there is currently a

lack of freely available tools for real-time processing. Finally, it is

important to note that the option boxes in each of the Possible

Options sections are intended to highlight and complement the

main text. Looking at these boxes in isolation could disrupt the

logical reading flow.

2 Improving spatial specificity

fNIRS offers good spatial specificity for superficial cortical brain

regions (Scarapicchia et al., 2017; Pinti et al., 2020). However,

achieving accurate ROI coverage can be challenging, especially with

a limited number of optodes and a lack of individual anatomical

information. The complexity is further compounded by the large

functional and structural variability between individual brains

(Uylings et al., 2005; VanHorn et al., 2008; Duffau, 2017). This issue

of inter-individual variability highlights the need for improved and

potentially more individualized approaches in fNIRS experiments

to increase spatial specificity as well as measurement accuracy.

Initial steps toward improvement include effective probe design,

accurate cap placement, and validating the ability of fNIRS to target

specific ROIs, for instance, by combining fNIRS data with higher-

resolution brain imaging techniques such as fMRI (cf. Figure 1)

(Toronov et al., 2001; Strangman et al., 2002; Cui et al., 2011;

Noah et al., 2015; Abdalmalak et al., 2017; Huppert et al., 2017;

Brigadoi et al., 2018; Zimeo Morais et al., 2018; Klein et al., 2022a).

Appropriate implementation can improve the reliability of fNIRS

measurements, especially in real-time applications where repeated

FIGURE 1

Overview of strategies covered to improve spatial specificity.

Possible options discussed in this context include probe design, cap

placement and spatial validation.

precise targeting is critical to obtain reliable results (Klein et al.,

2022a).

2.1 Probe design

2.1.1 Potential challenges
Designing an appropriate probe layout is a fundamental step

for performing fNIRS experiments. However, designing a probe

layout that achieves optimal coverage of the ROI can be challenging,

especially with limited available optodes and the lack of individual

anatomical information (Brigadoi et al., 2018; Zimeo Morais

et al., 2018). In cases where individual anatomical information

is not available, researchers often rely on standard templates or

probabilistic atlases to guide optode placement (Brigadoi et al.,

2018; Zimeo Morais et al., 2018). In addition, factors such as age,

head circumference, and anatomical differences between different

populations (e.g., due to differences in race/ethnicity) could

influence probe design. Therefore, cross-study probe designs, even

when targeting the same ROI, may not be directly applicable due

to individual variations and may not be appropriate for different

populations (Farkas et al., 1992; Bastir et al., 2006; Brigadoi et al.,

2018). Accordingly, careful consideration is required to address

these challenges.

2.1.2 Possible options
To ensure reproducibility and consistent cap placement, it

is recommended to design the probe layout in relation to

standardized landmarks such as the international 10–20 or 10–

5 EEG reference system (Oostenveld and Praamstra, 2001; Jurcak

et al., 2007; Brigadoi et al., 2018; Zimeo Morais et al., 2018). There

are several tools available that can use these standardized EEG

positions as a basis for designing probe layouts and/or quantify

them through so-called photon transport simulations (PTS) (Fang
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and Boas, 2009; Tran et al., 2020). For instance, PTS can be used

to create sensitivity profiles for each channel of a probe design

to estimate its sensitivity to a specific ROI (Aasted et al., 2015;

Brigadoi et al., 2018; Zimeo Morais et al., 2018; Fu and Richards,

2021). A user-friendly option for designing a probe layout is the

MATLAB-based toolbox called fOLD (fNIRS Optodes’ Location

Designer; Zimeo Morais et al., 2018).

fNIRS Optodes’ Location Designer (fOLD)

fOLD (https://github.com/nirx/fOLD-public; Zimeo Morais

et al., 2018) is an easy-to-use tool that helps design

probe layouts to target specific ROIs. Based on various

brain parcellation atlases, possible optode positions can be

determined based on standard EEG positions (ZimeoMorais

et al., 2018). Because fOLD is restricted to adult populations,

a derivation of fOLD called devfOLD was developed for

researchers studying infants (developmental fNIRS Optodes’

Location Designer; https://github.com/nirx/devfOLD; Fu and

Richards, 2021).

While the use of fOLD contributes to standardization

and replicability in fNIRS research, it may not account

for individual anatomical differences or provide individual

information on channel sensitivity (Zimeo Morais et al., 2018).

An alternative MATLAB-based toolbox that is particularly useful

for evaluating the sensitivity of a probe layout is AtlasViewer

(Aasted et al., 2015).

AtlasViewer

While AtlasViewer (https://github.com/BUNPC/

AtlasViewer) offers general probe design capabilities, it

is primarily based on a more subjective point-and-click

approach and does not have an objective ROI-based design

capability for probe layouts like fOLD (Brigadoi et al., 2018).

However, AtlasViewer has an advantage over fOLD/devfOLD

as it allows quantification of the sensitivity of a previously

designed probe layout. By loading 3D channel locations into

the toolbox, sensitivity profiles can be generated based on

standard head models or individual anatomy. This enables

researchers to evaluate whether the probe layout sufficiently

targets the ROI. To perform such validation, additional

information on predefined individual anatomical landmarks

including nasion (Nz), inion (Iz), left and right preauricular

points (LPA and RPA), as well as Cz are required (Aasted

et al., 2015).

AtlasViewer is a widely used and flexible tool for evaluating the

sensitivity of probe layouts. However, the pure probe design process

can become time-consuming due to subjective decision-making

(Brigadoi et al., 2018).

Another way to design probe layouts is to use the Array

Designer toolbox (Brigadoi et al., 2018).

Array Designer

Array Designer (https://github.com/DOT-HUB/

ArrayDesigner; Brigadoi et al., 2018) can be used to

generate sensitivity profiles for a variety of possible channel

locations based on a standard head model or individual

anatomy. The user can set parameters such as the number of

available optodes and the desired minimum and maximum

distance between sources and detectors. The toolbox allows

ROIs to be defined by either selecting them from an available

atlas, entering MNI coordinates, or manually selecting the

ROIs using a point-and-click approach (Brigadoi et al.,

2018). Based on the given specifications, Array Designer

identifies the optimal solution to cover the ROIs, labels

each optode with a 10–5 position (or 10–2.5 position) and

provides information on the total sensitivity in millimeters,

percentage of ROI coverage as well as the average, minimum

and maximum distance between source and detector

(Brigadoi et al., 2018).

As a flexible and automated tool, Array Designer offers a

way to design reproducible fNIRS probe layouts (Brigadoi et al.,

2018). However, a limitation highlighted by the authors is that the

underlying optimization algorithm used in Array Designer may not

always yield the optimal solution, especially when working with

large optode arrays (Brigadoi et al., 2018).

Compared to fOLD, both AtlasViewer and Array Designer

offer the ability to integrate individual anatomical information

into the probe design process, allowing researchers to improve

spatial specificity, potentially helping to improve the precision and

reliability of fNIRS measurements. To further increase accuracy,

additional individual information could be taken into account

(Benitez-Andonegui et al., 2021).

Adding More Individual Information

More specifically, the precision and accuracy could be

further improved by incorporating additional individual

information such as functional and vascular data (Benitez-

Andonegui et al., 2021). By including such data, probe

design could be optimized to account for between-

subject variability, resulting in more precise and robust

measurements in fNIRS studies. For instance, functional

information could explain differences in activation patterns

across individuals. In addition, the properties of individual

vascular information could be highly relevant for assessing

light sensitivity due to their strong scattering and absorption

properties, which makes the individual analysis even more

complex (Benitez-Andonegui et al., 2021).

2.1.3 Further considerations
A study by Benitez-Andonegui et al. (2021) compared different

probe design approaches to find out which approach provides
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the most added value in BCI experiments. They compared a

literature-based design with fOLD, the use of functional and

anatomical information from an independent data set, the use

of individual anatomical and functional information, and the use

of individual anatomical, functional and vascular information.

The study found that probe designs based on MRI information

outperformed designs generated by fOLD. However, given the

trade-offs between time, cost, and improvement, the authors

suggested that general anatomical information is sufficient and that

anatomy does not necessarily have to come from the individual in

order to achieve better results (Benitez-Andonegui et al., 2021). The

authors recommended using individual functional and anatomical

data whenever possible when designing optode layouts. In cases

where only anatomical data is accessible, probabilistic functional

maps could be a promising and cost-effective replacement (Benitez-

Andonegui et al., 2021).

If no individual anatomical information is available, tools like

fOLD and Array Designer appear to be a promising option as

they can facilitate the creation of reproducible probe layouts.

Using Array Designer or AtlasViewer, layouts can be adapted to

individual anatomies or general head models and evaluated using

PTS (Aasted et al., 2015; Brigadoi et al., 2018; Zimeo Morais et al.,

2018). Regardless of the specific software used for probe design,

accurate reporting of design details in research publications is

critical to a study’s reproducibility. Comprehensive documentation

should include information on the number and placement of

optodes, the targeted ROI, any relevant anatomical considerations

or landmarks, and the validation methods used (Yücel et al.,

2021). Transparent reporting plays an important role in improving

reproducibility by enabling accurate replication of experimental

conditions.

2.2 Cap placement

2.2.1 Potential challenges
In addition to the probe design, the exact placement of the

cap is another important prerequisite for carrying out fNIRS

experiments, as it contributes significantly to the precision and

reproducibility of the measurements (Novi et al., 2020a). Novi et al.

(2020a) emphasized the importance of precise cap placement and

stressed that while the reproducibility of fNIRS analysis is generally

satisfactory at the group level, it is observed less frequently at the

individual level. This result is particularly relevant for real-time

applications, as these typically require repeated measurements at

the individual subject level.

2.2.2 Possible options
A commonly used approach to probe placement comes from

the EEG field and involves standardized positioning of the cap

based on established systems such as the international 10–20, 10–10

or 10–5 EEG system (Klem et al., 1999; Oostenveld and Praamstra,

2001).

Standardized 10–20 Cap Placement

An important reference point for the placement of caps

within the standardized EEG systems is Cz, whose exact

placement occurs at the vertex, which lies where the

Nz to Iz and LPA to RPA lines intersect (cf. Figure 2).

Typically, this intersection point is at 50% of the length

of the respective lines (Klem et al., 1999; Oostenveld and

Praamstra, 2001). To ensure the cap is properly placed,

it is recommended to inspect the cap from the front and

back to verify symmetrical alignment both horizontally and

vertically, effectively controlling any shifts (Klem et al., 1999;

Oostenveld and Praamstra, 2001).

FIGURE 2

Exemplary probe placement relative to the 10–20 EEG system.

The advantage of this standardized approach is that consistent

and repeatable cap placement could be improved by reducing

different cap placement strategies, which can lead to increased

variability both within and between subjects, could be reduced.

However, the standardized approach could also be difficult to

follow, for instance, when individuals do not have a tactile Iz

landmark. Moreover, the standard approach does not account

for inter-individual anatomical differences, potentially leading to

sub-optimal placements. To address these issues, the real-time

neuronavigator approach has been presented as a promising

alternative (Novi et al., 2020a; Wu et al., 2021).

Neuronavigator Approach

The neuronavigator approach is based on the use of

neuronavigation software used in transcranial magnetic

stimulation to control coil placement. This approach

requires an individual anatomical image and a digitizing

system to guide and ensure correct placement of the cap

(https://www.dca.fee.unicamp.br/projects/mtk/rubianesD/

downloads.html; Novi et al., 2020a; Wu et al., 2021). By

registering each 3D optode position on the participant’s head

and aligning it with the anatomical image, a real-time 3D

view is created, allowing for individual adjustments to cap

placement (Novi et al., 2020a; Wu et al., 2021).
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Overall, the neuronavigator approach has the potential to

improve anatomically accurate cap placement (Novi et al., 2020a;

Benitez-Andonegui et al., 2021; Wu et al., 2021). However, this

approach appears to be based exclusively on purely anatomical

MRI data and does not offer the possibility of selecting brain

regions from a brain atlas, for example. Therefore, additional

individual functional information is required to effectively

guide cap placement. Moreover, this method requires additional

hardware, which increases the complexity and overall cost of

the process.

2.2.3 Further considerations
Using the neuronavigator approach, it was shown that the

within-subject reproducibility of fNIRS measurements can be

increased (Novi et al., 2020a). Thus, when factors such as cost and

time are not a constraint, the neuronavigator approach can be a

valuable tool for improved cap placement in real-time experiments.

However, when individual anatomical data is unavailable or

difficult to obtain, the standard approach to cap placement could

be considered. Adherence to standardized approaches is critical to

ensure reproducibility of fNIRS measurements within subjects and

across different studies. Compliance with such standards can help

promote consistency, comparability and transparency. Moreover,

in order to be able to reproduce the corresponding experimental

setup exactly, it is also important to report the exact procedure for

cap placement (Yücel et al., 2021).

2.3 Spatial validation

2.3.1 Potential challenges
Since the spatial resolution of fNIRS is ∼2–3 cm and

the depth resolution is ∼1.5–2 cm, it mainly detects activity

from the superficial cortical layers of the brain, thus showing

good spatial specificity to the activity from the regions directly

beneath the optodes (Pinti et al., 2020). However, due to

the different layer thicknesses between the scalp and different

brain regions, challenges may arise that potentially affect the

accuracy of fNIRS measurements in certain ROIs (Cui et al.,

2011). Therefore, if the goal is to target a ROI that may

be difficult to reach, it might be beneficial to first validate

whether fNIRS can reliably capture activity from that specific

ROI (Klein et al., 2022a). Such validation processes could help

ensure the suitability of fNIRS for achieving intended ROIs, thereby

providing greater confidence in the reliability and interpretability of

the results.

2.3.2 Possible options
A possible option to ensure reliable fNIRS measurements is to

conduct a validation study using fMRI, as this method is considered

the gold standard for spatially specific brain imaging (Cui et al.,

2011; Klein et al., 2022a). In such a study, coregistration analysis

incorporating individual anatomical information and registered 3D

optode positions can be performed to assess the spatial specificity of

the fNIRS measurements (Aasted et al., 2015; Klein et al., 2022a).

Coregistration

The general goal of a coregistration is to align anatomical

images with 3D optode positions using common anatomical

landmarks such as Nz, LPA and RPA (Cui et al., 2011; Klein

et al., 2022a). This alignment can be achieved, for instance,

by using the transformation equation (Arun et al., 1987)

B = RA+ t

Here, B denotes the data that has undergone a transformation

to the target space (e.g., head space) while R represents

the rotation matrix, A corresponds to the original data

in source space (e.g., optode positions) and t denotes

the translation vector. This transformation enables the

calculation of channel positions on the head surface, which

can be used for various purposes, such as creating sensitivity

maps using techniques such as PTS (e.g., Abdalmalak et al.,

2017; Huppert et al., 2017), or projecting the positions onto

the cortex for extracting channel-specific spatial voxel-based

information (Cui et al., 2011; Klein et al., 2022a).

By incorporating coregistration processes, such as those offered

by tools like AtlasViewer and Nirstorm, (https://github.com/

Nirstorm/nirstorm), a plugin for the MATLAB-based software

Brainstorm (Tadel et al., 2011), into the planning and validation of

real-time interventions, the accuracy of fNIRSmeasurements could

potentially be improved. This is particularly true for applications

where it is crucial to understand the brain region’s responses to

specific tasks (Klein et al., 2022a). These tools facilitate fMRI-fNIRS

coregistration by segmenting anatomical images into different

layers and converting them into mesh representations (Tran et al.,

2020), which are then used to extract coordinates for functional

MRI data. This approach can help validate fNIRS measurements

for task sensitivity and investigate the relationship between fNIRS

signals (e.g., 1[HbO] and 1[HbR]) and BOLD signal for specific

tasks and ROIs (Cui et al., 2011; Klein et al., 2022a).

2.3.3 Further considerations
In the earlier days of fNIRS research, coregistration studies

were common to validate the reliability of fNIRS measurements

across different tasks and brain regions (Toronov et al., 2001,

2003; Mehagnoul-Schipper et al., 2002; Strangman et al., 2002;

Cui et al., 2011). Although it appears that their frequency

has decreased over time, significant advances in hardware-based

correction methods in recent years, such as short-distance channel

correction (see Section 3), validation studies should continue to

be carried out to extend previous results. Interestingly, there

has recently been renewed interest in fMRI-fNIRS validation

studies (Abdalmalak et al., 2017; Wagner et al., 2021; Klein et al.,

2022a; Novi Junior et al., 2023; Pereira et al., 2023). Although

the simultaneous acquisition of (f)MRI and fNIRS data offers

optimal conditions (Toronov et al., 2001, 2003; Mehagnoul-

Schipper et al., 2002; Strangman et al., 2002; Cui et al., 2011;
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FIGURE 3

Overview of the strategies covered to improve signal quality in the

context of real-time applications. Based on typical o	ine methods,

channel quality assessment and correction, the modified Beer

Lambert law, correction of motion artifacts, temporal filtering and

correction of extracerebral systemic artifacts are discussed in this

context.

Anwar et al., 2016; Huppert et al., 2017), it presents technical

challenges due to additional hardware requirements. However, as

commercially available hardware enabling simultaneous fMRI and

fNIRS measurements becomes more accessible (e.g., NIRx Borealis

https://nirx.net/borealis; NIRx Medizintechnik, Berlin, Germany),

it is possible that this trend will increase again. Alternatively,

sequential designs are also used in which fMRI and fNIRS data

are acquired separately (Noah et al., 2015; Abdalmalak et al., 2017;

Klein et al., 2022a; Pereira et al., 2023).

Conducting validation studies before developing fNIRS-based

real-time applications is helpful to verify the accuracy of fNIRS

in measuring target ROIs, identify effective tasks for activating

these ROIs, and determine the most sensitive signal type for each

task-ROI combination (Klein et al., 2022a). Despite the additional

time and cost, these validation studies represent a promising

opportunity to improve task sensitivity and spatial specificity

in real-time applications. The findings from these studies are

applicable not only to the specific application being validated, but

also to future use cases with similar task-ROI combinations (Klein

et al., 2022a).

3 Improving signal quality

In addition to efforts to improve the spatial specificity of fNIRS,

another important area of improvement is the quality of the fNIRS

signal, as it can be affected by a variety of noise sources. One

source of noise is motion artifacts (MAs), which are mainly caused

by body and head movements and can lead to distortions in the

acquired fNIRS signal (Pollonini et al., 2016). At the same time,

systemic activity noise—including task-evoked and non-evoked

activities in both cerebral and extracerebral layers—represents a

broad spectrum of noise sources and poses a significant challenge

in signal analysis (Scholkmann et al., 2014, 2022; Tachtsidis

and Scholkmann, 2016). Although considerable efforts have been

invested in the development and validation of various correction

methods to reduce different types of artifacts in fNIRS signals

(e.g., Scholkmann et al., 2010; Cooper et al., 2012; Brigadoi et al.,

2014; Pollonini et al., 2014, 2016; Tachtsidis and Scholkmann, 2016;

Di Lorenzo et al., 2019; Novi et al., 2020b; Santosa et al., 2020;

Wyser et al., 2020, 2022; Klein et al., 2022b), it is not necessarily

possible to easily translate these algorithms for real-time use (cf.

Figure 3). Real-time analysis comes with its own challenges, such

as the need to preprocess data within a specific time frame to

keep up with ongoing data collection (Lührs and Goebel, 2017).

Additionally, some of these offline algorithms require parameter

tuning, which may not be possible in real-time scenarios due to the

limited data available.

3.1 Channel quality assessment and
channel pruning

3.1.1 Potential challenges
fNIRS is an optical imaging method whose signal quality

depends largely on the direct contact of the optodes with

the individual’s skin. This so-called optode-scalp coupling can

influence the signal-to-noise ratio of the measurement data. Poor

or inconsistent contact can introduce noise and artifacts and affect

data accuracy and reliability (Pollonini et al., 2014, 2016). In

addition, the quality of fNIRS signals can be affected both by

melanin in the skin, which reduces NIR light penetration, and

by hair characteristics such as color, thickness and density, which

absorb the light and reduce the signal quality (Pollonini et al., 2016;

Yücel et al., 2021; Kwasa et al., 2023).
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In offline analysis, it is common to perform signal quality

assessment early in the preprocessing pipeline. This approach

typically results in channels with poor signal quality being excluded

(Pollonini et al., 2014; Sappia et al., 2020; Yücel et al., 2021),

so that these channels no longer have any influence on the

data interpretation (Hocke et al., 2018). In real-time applications,

poor channel quality could have an immediate and detrimental

impact on data accuracy. Accordingly, implementing real-time

channel quality assessment could provide significant benefits. Such

an approach could monitor and account for potential channel

quality degradation during real-time analysis caused by factors

such as variations in optode-scalp coupling or varying external

environmental conditions. This would allow the system to identify

and potentially ignore poor quality channels, maintaining the

integrity of the real-time intervention over time.

3.1.2 Possible options
Various metrics are available for (offline) assessment of the

quality of fNIRS signals. A commonly used measure is the relative

coefficient of variation (CV), which is calculated from raw light

intensity data.

Coe�cient of variation (CV)

The CV is a measure of the variability of the signal and is

often expressed as a percentage in fNIRS research (Schmitz

et al., 2005; Piper et al., 2014; Hocke et al., 2018)

CV =
σλ

µλ

· 100%

where σλ represents the standard deviation and µλ the mean

of the signal of a wavelength λ (Schmitz et al., 2005; Piper

et al., 2014).

Calculating CV requires the use of raw light intensity data,

as conversion to optical density values would result in mean

values close to zero, causing the standard deviation to exceed the

mean, resulting in an exaggerated, uninterpretable CV (Hocke

et al., 2018). A higher CV indicates a lower signal-to-noise ratio,

and channels with CVs exceeding a predefined threshold (e.g.,

CV = 15%; Piper et al., 2014; or CV = 7.5%; Hocke et al.,

2018; Zimeo Morais et al., 2018) are typically excluded from

subsequent preprocessing. However, it should be noted that these

CV thresholds are usually chosen subjectively, which increases the

risk of data manipulation and highlights the need for transparency

and rigorous justification when setting these values. There is

therefore an urgent need to determine threshold values empirically,

using data-driven methods or based on theoretical frameworks.

Besides, the CV may not only detect poor channel quality but also

be sensitive toMAs (Hocke et al., 2018), which can lead to increased

standard deviations in the signal. Finally, CV is a rather liberal

metric, as channels with generally higher noise levels may not be

reliably identified as poor quality channels.

Another quality metric is the signal quality index (SQI). This

metric provides a quantitative assessment of the quality of the

fNIRS signal, ranging from very low to very high quality (Sappia

et al., 2020).

Signal Quality Index (SQI)

The SQI includes three different assessment stages that allow

the quality of fNIRS signals to be evaluated. In the initial

stage, very low quality signals are identified using three

different features and their associated threshold values. The

second stage then identifies very high quality signals based

on a single feature and the corresponding threshold. In the

third stage, the signals are finally rated on a scale of 1 to 5,

which indicates the signal quality from very low to very high

(Sappia et al., 2020).

By taking into account various features and their respective

thresholds, the SQI provides a differentiated and comprehensive

assessment of signal quality. However, it is important to note that

the thresholds used in SQI to assess signal quality are based on

heuristics derived from a single, relatively small data set (Sappia

et al., 2020). Therefore, the generalizability of this quality metric

to other data sets and experimental conditions requires further

validation.

A more direct assessment of the quality of the optode-scalp

coupling is done by calculating the scalp coupling index (SCI)

(Pollonini et al., 2014, 2016).

Scalp Coupling Index (SCI)

The SCI is a metric for assessing the strength of cardiac

oscillations within the raw light intensity (or optical density)

data. The calculation is done by determining the zero-lag

cross-correlation (∗) of the signals at two wavelengths, λ1

and λ2 from the same channel (yλ1 and yλ2 ), which is finally

normalized by the standard deviations of the respective

signals σλ1 and σλ2 (Pollonini et al., 2014, 2016):

SCI =
yλ1

σλ1

∗
yλ2

σλ2

To calculate the SCI, the raw fNIRS signal is band-pass filtered

to extract the cardiac signal component. Therefore, it is important

to ensure that the sampling rate is at least twice the higher cutoff

frequency to satisfy the Shannon-Nyquist theorem and thus avoid

aliasing, which could distort the signal representation (Oshana,

2006; Pollonini et al., 2016). If a channel has an SCI value of 1, it

means perfect signal quality and a threshold (e.g., thresh = 0.8)

is usually set to classify channels as either good or poor quality.

However, the SCI is also susceptible to the influence of MAs, which

can contribute to falsely inflating the SCI value (Pollonini et al.,

2016). To address this issue, the peak spectral power (PSP) metric

was introduced as a complement to the SCI. The PSP quantifies
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the spectral power of the cross-correlated signal and an empirically

determined threshold of PSP = 0.1 is used to further evaluate the

signal quality (Pollonini et al., 2016). The SCI is a simple measure

that takes physiological information into account and is well suited

for assessing signal quality. However, its conservative nature may

lead to the exclusion of potentially useful channels (Hocke et al.,

2018).

3.1.3 Further considerations
Current practice in real-time fNIRS research typically does

not include continuous monitoring of channel quality during

measurements (Kohl et al., 2020). In most fNIRS experiments,

channel quality is generally assessed during the calibration phase,

which occurs immediately before the actual experiment begins.

Metrics such as CV are commonly used for this purpose and are

built into some acquisition software. However, these metrics often

lack crucial physiological information, such as cardiac pulsations,

and therefore may not be themost appropriate metrics for assessing

channel quality. As illustrated in Figure 4, SCI and the combination

of SCI and PSP could accurately distinguish between good and

poor channel quality, underlining the importance of including

physiological information.

Integrating real-time quality control throughout the entire

data acquisition process offers potential benefits for online fNIRS

applications. For instance, the inclusion of channels with poor

quality or those that experience sudden drops or degradation in

quality during ongoing measurement could be avoided. The signal

quality assessment tool Placing Headgear Optodes Efficiently Before

Experiment (PHOEBE; https://github.com/lpollonini/phoebe) is a

toolbox that already provides real-time quality control, integrating

SCI and PSP (Pollonini et al., 2016). Although PHOEBE is actually

designed for signal quality assessment before data collection begins,

its functionality could be adapted for real-time fNIRS applications

and potentially improve the reliability and efficiency of online

experiments.

3.2 The modified Beer Lambert Law

3.2.1 Potential challenges
A limitation of the widely used continuous-wave (CW) fNIRS

systems is the inherent inability to directly derive absolute

hemoglobin values. This limitation is due to the lack of a direct

measurement of the optical properties of the underlying tissue

(Scholkmann et al., 2014; Pinti et al., 2020). However, through

certain reasonable assumptions, it is possible to estimate changes

in hemoglobin concentration (1[HbX], including 1[HbO] and

1[HbR]) (Scholkmann et al., 2014; Pinti et al., 2020). These

conversions are applied in both offline and real-time analysis.

However, to ensure accurate conversions in real time, there are

some important considerations to keep in mind.

3.2.2 Possible options
In fNIRS, the modified Beer-Lambert law (mBLL) (Delpy et al.,

1988) is fundamental for quantifying the interaction of light with

biological tissue.

modified Beer Lambert law (mBLL)

The mBLL extends the traditional Beer Lambert law with

a scattering-dependent light intensity loss parameter to

account for scattering in biological tissue. The mBLL

characterizes how light intensity decreases as it passes

through tissue. In this context, the optical density (OD)

is calculated as a dimensionless unit. OD represents the

attenuation of light as it penetrates tissue. The mBLL relates

the OD to the factors chromophore concentrations [HbX],

the molar extinction coefficient (ǫ), the differential path

length factor (DPF), the source-detector distance (d) and the

scattering parameter G (Scholkmann et al., 2014):

OD(t, λ) = − log
I

I0

=
∑

X

ǫX(λ)[HbX](t) · DPF(λ) · d + G(λ)

Here, log denotes the logarithm with base 10 (decadic

logarithm), and λ represents the wavelength and [HbX](t)

represents the concentration of chromophore X at time

t. In practice, G is often considered time invariant and

negligible for calculating temporal changes in chromophore

concentration when scattering changes are minimal

compared to absorption. This simplification focuses the

mBLL on absorption effects (Scholkmann et al., 2014):

1OD(1t, λ) = − log
I(t1, λ)

I(t0, λ)

=
∑

X

ǫX(λ)1[HbX] · DPF(λ) · d
(1)

Equation 1 reflects the change in optical density (1OD)

between two time points, t1 and t0, with respect to the change

in chromophore concentrations (1[HbX]). The scattering

parameter G is omitted assuming that the scattering changes

are small compared to the absorption changes (Scholkmann

et al., 2014). Finally, assuming two wavelengths λ1 and λ2,

the concentration changes of 1[HbO] and 1[HbR] can be

calculated by rearranging the Equation (1) as follows:

[

1[HbO]

1[HbR]

]

=
1

d

[

ǫHbO,λ1 ǫHbR,λ1
ǫHbO,λ2 ǫHbR,λ2

]−1 [

1OD(1t,λ1)
DPF(λ1)

1OD(1t,λ2)
DPF(λ2)

]

The resulting unit is themolar concentration (M) and is often

expressed in the range of µM (Yücel et al., 2021).

The values of DPF and ǫ depend on the wavelength of the

light used and the corresponding values are usually adopted from

the existing literature (Duncan et al., 1995; Matcher et al., 1995;

Jacques, 2013; Scholkmann et al., 2014). It is assumed that these

empirically determined parameters remain constant (Scholkmann

et al., 2014). The DPF, which acts as a correction factor, takes

into account the effects of scattering in tissue and indicates the
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FIGURE 4

Comparison of signal qualities of a poor (A) and a good (D) channel of 1OD at 760 and 850 nm during resting state data from a single subject.

Enlarged signal windows in (B, E) illustrate the presence or absence of a clear cardiac pulsation. The corresponding power spectra resulting from a

single-channel fast Fourier transform is shown in (C, F). Quality metrics SCI and PSP are shown in (A, D). Note that 1OD data is visualized but SCI and

PSP are calculated based on the raw light intensity data.

average path that photons travel from a source to a detector

(Whiteman et al., 2017). It provides a single average value and

neglects possible variations in light penetration depth at different

distances between source and detector. For instance, with a source-

detector distance of about 3 cm and an effective photon path length

of about 18 cm (taking back and forth scattering into account),

the corresponding DPF would be 6 (i.e., 6 × 3 cm = 18 cm)

(Whiteman et al., 2017). This assumes a uniform and invariant

spatial sensitivity profile across all source-detector pairs, which

may not accurately capture the true depth of light penetration

for a given channel. Furthermore, it has been shown that these

parameters can also vary significantly during the experiment and

that this variation can also be subject-dependent. These fluctuations

are often overlooked and not taken into account in analyses (Zohdi

et al., 2018). Moreover, it has been demonstrated that the DPF can

be influenced by several other individual factors, including age and

anatomical brain region (Scholkmann and Wolf, 2013; Whiteman

et al., 2017).

3.2.3 Further considerations
The mBLL plays a crucial role in detecting (real-time)

changes in hemoglobin concentration based on CW-fNIRS data

(Scholkmann et al., 2014; Pinti et al., 2020). For real-time

conversions, it is important to ensure that a sufficiently long

baseline (I0) has been recorded before 1OD is calculated. While

offline analyses typically use the entire recording as a baseline,

real-time applications rely on a shorter, predefined baseline that is

acquired before the actual real-time application starts. It is therefore

important to ensure that the baseline is sufficiently long (Lührs and

Goebel, 2017) and (mostly) free of artifacts.While a baseline as long

as possible would be beneficial, implementation may not always be
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FIGURE 5

Illustration of MAs (some are black framed) in 1OD data for

wavelengths 760 nm (blue) and 850 nm (red). The data displayed is

resting-state data from a single subject.

feasible, particularly in populations that tend to be more impatient,

such as children. As a rough estimate, 20–30 s of largely artifact-free

data can be considered a starting point for real-time applications.

Furthermore, considering age-dependent correction of the DPF

could be a promising strategy to improve real-time processing.

However, research is needed in both contexts to evaluate their

potential effectiveness in improving the accuracy of CW-fNIRS

data processing in real-time scenarios.

3.3 Motion artifact correction

3.3.1 Potential challenges
A frequently mentioned advantage of fNIRS compared to

other brain imaging methods is its tolerance to (head) motion

(Scarapicchia et al., 2017; Fishburn et al., 2019; Pinti et al., 2020;

Huang et al., 2022). However, MAs can also present a challenge for

fNIRS data, particularly in populations that are difficult to instruct

to keep their heads still, such as toddlers and infants (Di Lorenzo

et al., 2019; Fishburn et al., 2019; Gemignani and Gervain, 2021;

Yücel et al., 2021). As shown in Figure 5, MAs often appear as

abrupt signal changes, such as spikes, slow drifts and baseline

shifts, which are mainly due to optode and/or cap movements

(Di Lorenzo et al., 2019; Von Lühmann et al., 2019; Gemignani

and Gervain, 2021), but also more subtle movements such as

jaw movements that trigger activity in the temporalis muscle can

contribute to MAs (Zimeo Morais et al., 2017). The resulting

changes in the shape of the fNIRS signal can alter the shape of

the underlying hemodynamic response function (HRF), thereby

complicating interpretation (Brigadoi et al., 2014). The occurrence

of MAs is particularly critical in real-time applications, as abrupt

signal changes and spikes can have significant effects on the

feedback. In theory, most MAs should be relatively straightforward

to correct because they often manifest as rapid changes within a

slow hemodynamic signal. In practice, however, the effectiveness of

the correction process can depend heavily on the specific method

used and not all existing (offline) algorithms can be easily adapted

for use in real time.

3.3.2 Possible options
There are several validated MA correction methods for offline

analysis (Zhang et al., 2005; Cui et al., 2010; Scholkmann et al.,

2010; Molavi and Dumont, 2012; Yücel et al., 2014; Delgado Reyes

et al., 2018; Jahani et al., 2018; Di Lorenzo et al., 2019; Fishburn

et al., 2019; Von Lühmann et al., 2019; Novi et al., 2020a; Huang

et al., 2022). However, some of these methods require an initial

motion detection step that involves parameter tuning based on

specific thresholds (Di Lorenzo et al., 2019; Fishburn et al., 2019).

While parameter tuning can be beneficial for targeting specific

affected parts of the signal, it can be challenging due to participant

and instrument variability (Fishburn et al., 2019). Consequently,

these methods are rather impractical for real-time applications.

However, there are several alternative MA correction methods that

are suitable for real-time analysis because they work automatically

without the need for parameter tuning or prior artifact detection

steps.

One such method is the correlation-based signal improvement

(CBSI) approach (Cui et al., 2010).

Correlation-based Signal Improvement (CBSI)

According to Cui et al. (2010), the noisy 1[HbO] (yHbOMA
)

and 1[HbR] signals (yHbRMA
) affected by MAs can be

represented as:

yHbOMA
= yHbOideal

+ αMA

yHbRMA
= yHbRideal +MA

where yHbOideal
and yHbRideal represent the ideal (i.e.,

without MAs) 1[HbO] and 1[HbR] signals, respectively.

The MA has the same effect on 1[HbO] and 1[HbR]

which is subject to a positive factor α and is defined as the

(Continued)
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Continued

ratio of the noise amplitude in 1[HbO] and 1[HbR].

The CBSI method is based on two assumptions. First, a

perfect negative (i.e., correlation=−1) relationship between

yHbOideal
and yHbRideal is assumed (Cui et al., 2010):

yHbOideal
= −βyHbRideal

where β is defined as the ratio of the amplitude in the noise-

free 1[HbO] and 1[HbR] (Cui et al., 2010). Second, yHbOideal

and the MAs are assumed to be uncorrelated (i.e., correlation

= 0):

yHbOideal
=

1

2
(yHbOMA

− αyHbRMA
)

yHbRideal = −
1

α
yHbOideal

(2)

Assuming that α = β , it was shown that the parameter α

is calculated as the quotient of the standard deviations of

yHbOMA
and yHbRMA

(for more details see Cui et al., 2010).

With this result, the corrected signals yHbOideal
and yHbRideal

are finally estimated (cf. Equation 2) (Cui et al., 2010).

The CBSI method has been proposed as a suitable automated

MA correction method for real-time preprocessing in NFB

applications (Kohl et al., 2020), but its performance in real

time has not yet been validated. However, some criticisms of

the CBSI method have also been raised. One of the main

concerns is that it relies on correlation assumptions that are

often not met in real data sets. Furthermore, the CBSI method

alters the 1[HbR] signal in a way that differs from its original

representation (cf. Equation 2 and Figure 7C) (Brigadoi et al.,

2014; Di Lorenzo et al., 2019; Fishburn et al., 2019; Novi et al.,

2020b). In addition, changing 1[HbR] may affect other derived

variables, such as total hemoglobin (1[HbT] =1[HbO] +1[HbR])

and hemoglobin differences (1[HbDiff ]). = 1[HbO] - 1[HbR]),

two variables that have been also analyzed in fNIRS research

(Lu et al., 2015; Hakim et al., 2022). Accordingly, the CBSI

method may not be the preferred option for (real-time) MA

correction.

The temporal derivative distribution repair (TDDR) method

introduced by Fishburn et al. (2019) is also a fully automated

MA correction algorithm. This method is based on three

assumptions related to the first (i.e., temporal) derivative of

the fNIRS signals: (1) the measured activation is unrelated

to MAs and is approximately normally distributed, (2) the

majority of the signal is free of MAs, and (3) MAs have

a much larger amplitude compared to artifact-free parts of

the signal. By using the temporal derivative, which essentially

represents the signal changes over time, the TDDR method

effectively identifies MAs as outliers in the signal (Fishburn et al.,

2019).

Temporal Derivative Distribution Repair (TDDR)

The TDDR method uses an iterative reweighting scheme

similar to robust regression. To do this, the TDDR algorithm

calculates the time derivative of the signal for each sample,

given by ẏ, and initializes the observation weights w to 1.

The robust observation weights are then estimated iteratively

until convergence (Fishburn et al., 2019). The estimation

process begins by calculating the weighted average of the

signal fluctuations, represented as

µ(t) =
1

∑

w

∑

wẏ(t)

Next, the robust standard deviation of the residuals σ (t) is

computed by finding the median of the absolute differences

between the temporal derivative and the weighted mean.

A scaling factor k is applied to ensure compatibility

with normally distributed data. Scaled deviations, d(t), are

calculated by dividing the residuals ǫ(t) by the product of

σ (t) and an optimization parameter c = 4.685 (Fishburn

et al., 2019). New weights, w(t), are then determined based

on d(t) using Tukey’s biweight function, which is known to

be robust to outliers:

w(t) =

{

(1− d(t)2)2, if d(t) < 1.

0, otherwise.

The iterative process continues until convergence is achieved,

indicated by the stabilization of µ(t). Finally, the corrected

signal yc(t) is obtained by integrating the weighted and

centered signal y using the computed weights.

yc(t) =

N
∑

t=1

w(t)(y(t)− µ(t))

Since the calculations are based on the first derivative of the

signal, the application of the algorithm depends on the sampling

frequency, because the sampling frequency and the magnitude of

the first derivative are directly related. To account for this issue,

the data is separated into low and high frequency components

using a low-pass filter with a cut-off frequency of flow = 0.5 Hz

(Fishburn et al., 2019). Then TDDR is applied only to the low-

frequency part of the derivative and after correction, the high-

frequency parts are integrated back into the signal (Fishburn et al.,

2019). This limitation is probably acceptable because subsequent

processing steps often use additional band-pass filter steps with

lower cut-offs to reduce high-frequency components in the signal

(Pinti et al., 2019). Another limitation of TDDR, shared with many

other MA correction methods, is that it primarily corrects MAs

such as spikes and baseline shifts, while MAs with low amplitudes

or slow drifts may remain uncorrected (Fishburn et al., 2019).

However, TDDR offers the advantage of simple implementation
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and fast processing, which makes it particularly interesting fo

r real-time application.

Another possible option for real-time MA correction is

to utilize information from an inertial measurement unit

(IMU) that collects auxiliary information such as accelerometer,

gyroscope, and magnetometer data directly at the optode level

(Virtanen et al., 2011; Metz et al., 2015; Siddiquee et al.,

2018; Von Lühmann et al., 2019; von Lühmann et al., 2020a).

Such a correction method uses the time-stamped head motion

information (Figure 6) and corrects MAs in the fNIRS signal

through a regression-based approach, for instance, in the

context of a general linear model (GLM) (von Lühmann et al.,

2020a).

GLM-filter using Inertial Measurement Units (IMUs)

GLMs are widely used in both fMRI and fNIRS analysis

to estimate brain activation associated with a task being

performed (Huppert, 2016; von Lühmann et al., 2020a). In

fNIRS, the measured data Y is typically modeled using a

design matrix Xtask which consists of task-related regressors.

These regressors represent the temporal structure of the

experiment with respect to task onsets and are usually

derived by integrating an a-priori hypothesis about the

underlying HRF via a basis function that characterizes the

expected shape (Huppert, 2016; von Lühmann et al., 2020a):

Y = Xtask · βtask + ǫ

Here, βtask is a vector indicating the strength of the

relationship between the signals in Y and the design matrix

Xtask, while the residual term ǫ represents the error or part of

the data that cannot be explained by the model. To account

for MAs in the signal Y , the IMU XIMU data can be added to

the design matrix of the GLM:

Y =

[

Xtask XIMU

]

·

[

βtask

βIMU

]

+ ǫ

where βIMU quantifies the contribution of MAs to the

signal Y . This approach has already been used in fNIRS

studies to improve the estimation of task-related activation

(von Lühmann et al., 2020a). For real-time applications that

require a cleaned time-series signal, a special GLM filter can

be applied that includes only the IMU data as regressors:

Y = XIMU · βIMU + ǫ (3)

In this approach, ǫ is assumed to represent

the cleaned fNIRS data Yclean, which can be

(Continued)

Continued

calculated by rearranging the Equation (3) to

ǫ = Y − XIMU · βIMU

= Yclean

FIGURE 6

Visualization of (A) 1[HbX] signals including MAs, (B) corresponding

3D accelerometer data and (C) 3D gyroscope data. The data

displayed is motor execution data from a single subject.
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Although this simple implementation requires additional

hardware, it is a promising option for MA correction in real-time

applications. However, one of the challenges with this method is

managing the synchronization between the occurrence of MAs

in auxiliary signals and fNIRS data (cf. Figure 6) (von Lühmann

et al., 2020a). To address this issue, von Lühmann et al. (2020a)

proposed a possible solution by combining the (offline) GLM with

the temporally embedded canonical correlation analysis (tCCA).

tCCA is an extension of CCA, a dimensionality reduction technique

for correlation analysis that finds linear combinations between two

sets of time series while maximizing their correlation (Zhuang et al.,

2020). In particular, (t)CCA reduces the risk of overfitting and

shortens computation time by setting a correlation threshold above

which components are considered artifacts. tCCA additionally

introduces time-shifted versions of the nuisance signals and can

therefore be used to effectively detect and correct MAs in the

fNIRS data (von Lühmann et al., 2020a; Zhuang et al., 2020). To

optimize accuracy, themethod relies on key parameters such as step

size (τD), maximum time delay (1t), and a correlation threshold

(ρthresh). Globally optimized values have been suggested, but

individual parameter tuning might further improve performance

(von Lühmann et al., 2020a).

3.3.3 Further considerations
Real-time MA correction is not yet often used in fNIRS, as

evidenced by the limited number of studies that have reported

its use in NFB studies (Kohl et al., 2020). However, addressing

MAs in real time is critical to ensure good signal quality and

provide accurate and reliable feedback to the user during online

experiments. A regression-based approach using IMUs could be

a promising solution for real-time MA correction since MAs are

directly taken into account at the optode level. Since the use

of tCCA led to a significant improvement in MA correction for

offline analyzes (von Lühmann et al., 2020a), this could also be

interesting for real-time applications. Correcting MAs using IMUs

by approximating the time lag between them and the slower

hemodynamic response is a practical and promising real-time

approach. However, despite the promising potential in offline

validations (von Lühmann et al., 2020a), implementation in real-

time fNIRS applications has not yet been demonstrated.

If IMU hardware is not available, the TDDR method could

be a promising option for online MA correction. The TDDR

method offers several advantages, including automatic operation

without the need for parameter tuning, ease of implementation,

and fast convergence (Fishburn et al., 2019). Compared to the

CBSI method, which removes MAs but changes the 1[HbR]

signal to become a modified version of 1[HbO] (cf. Figure 7A vs.

Figure 7C), the TDDR method effectively removes MAs without

profound signal changes (cf. Figure 7A vs. Figure 7B). Based on

the general results of several studies investigating offline MA

correction techniques, due to the dependence of the CBSI method

on strong assumptions, its application for both offline and real-time

applications should be carefully considered (Brigadoi et al., 2014;

Di Lorenzo et al., 2019; Fishburn et al., 2019; Novi et al., 2020b).

The question of the optimal method for real-time MA correction

cannot currently be answered conclusively and requires further

investigation. Future research is needed to compare and evaluate

potential MA correction techniques for use in fNIRS-based real-

time applications and to determine the most effective and reliable

approach to improving the quality and accuracy of real-time fNIRS

data.

3.4 Temporal filtering

3.4.1 Potential challenges
A large portion of the recorded fNIRS signal contains

non-evoked extracerebral and cerebral systemic artifacts. These

artifacts originate from spontaneous physiological changes such as

heartbeat (∼1 Hz), respiration (∼0.3 Hz), Mayer waves (∼0.1 Hz),

and very low-frequency oscillations (∼0.01–0.05 Hz) (Scholkmann

et al., 2014; Wyser et al., 2020). Since some of these artifact

frequencies have only little overlap with the typically used task

frequencies (∼0.02 Hz < ft < 0.05 Hz), it is possible to reduce this

physiological noise with conventional temporal filters (Pinti et al.,

2019). The application of temporal filters for artifact reduction

is common in both offline and real-time fNIRS analysis (Pinti

et al., 2019; Kohl et al., 2020). However, not every offline filter

can be applied directly in real-time. One of the reasons for this

is that offline filters have access to the entire data set, allowing

the implementation of more sophisticated and computationally

intensive filtering techniques. However, in real-time scenarios,

the available data window for filtering remains limited and is

continuously updated with new data points, which is why real-

time filtering is often based on the use of simpler and more

computationally efficient algorithms (Lührs and Goebel, 2017).

Filtering is a fundamental aspect of digital signal

processing that is explained in detail in various resources

(e.g., Smith, 1997; Widmann et al., 2015; De Cheveigné

and Nelken, 2019). Therefore, the following section

covers only the most basic parts that could likely be

relevant to designing a filter for fNIRS-based real-time

analysis.

3.4.2 Possible options
In general, a filter is a system that produces an output signal

by applying certain weights to an input signal (De Cheveigné and

Nelken, 2019).

Digital Filter

A digital filter works by convolving the input signal y (e.g.,

the fNIRS signal) with an impulse response (IR) (h(n), where

n = 0, ...,N) at each time point t (De Cheveigné and Nelken,

2019). The output signal yfilter(t) is obtained as the sum of the

weighted contributions of N points of the input signal:

yfilter(t) =

N
∑

n=0

h(n)y(t − n)
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FIGURE 7

Illustration of the e�ect of offline MA correction. (A) shows only band-pass filtered 1[HbX] data without MA correction, (B) 1[HbX] data corrected

with TDDR + band-pass filtering and (C) 1[HbX] data corrected with CBSI + band-pass filtering. Applied filter was a zero-phase 2nd order

Butterworth filter with cut-o� frequencies of [0.01, 0.09] Hz and all preprocessing steps were performed o	ine. The data displayed is motor

execution data from a single subject.

Accordingly, each point of the output signal yfilter(t) is

influenced by N points of the input signal y(t), which leads

to a temporal smearing effect whose properties, such as signal

smoothing, are determined by the IR function h(n) (De Cheveigné

and Nelken, 2019).

Impulse Response (IR) Functions

The IR of the filter characterizes its behavior and can be

divided into two main types: finite impulse response (FIR)

filter and infinite impulse response (IIR) filter (Widmann

et al., 2015; De Cheveigné and Nelken, 2019; Pinti et al.,

2019). FIR and IIR filters differ in their phase response,

stability, and filter order (De Cheveigné and Nelken, 2019;

Pinti et al., 2019):

• Phase response describes how much the filter

delays each frequency component of the input

signal. FIR filters typically have linear phase

responses, which means that they introduce a

constant delay across all frequency components

of the input signal. In contrast, IIR filters

generally have nonlinear phase responses,

resulting in frequency-dependent delays

(Widmann et al., 2015; De Cheveigné and

Nelken, 2019).

• Stability refers to the ability of a filter to

produce a finite output based on a finite input.

With a stable filter, uncontrolled oscillations

do not occur and the amplitude does not

grow to infinity. This is important for reliable

signal processing and to avoid signal distortion.

(Continued)

Continued

FIR filters are always stable. IIR filters, on

the other hand, can be stable or unstable

depending on their design (Widmann et al.,

2015; De Cheveigné and Nelken, 2019; Pinti

et al., 2019).

• The filter order represents the number of

previous input samples used to calculate a

single output sample. A higher filter order thus

indicates that the filter relies on more past

samples to determine the current output. For

FIR filters, the filter order is determined by the

number of coefficients used in the IR function.

IIR filters typically have lower filter orders

compared to FIR filters because their reliance

on feedback loops allows them to achieve

similar filtering effects with fewer coefficients,

(Widmann et al., 2015; De Cheveigné and

Nelken, 2019; Pinti et al., 2019).

IIR filters such as the Butterworth filter are widely used in

offline and real-time preprocessing of fNIRS. The moving average

filter, on the other hand, is an example of a FIR filter used in real

time (Pinti et al., 2019; Kohl et al., 2020).

For task-related analysis in fNIRS, designing a filter that

preserves the task frequency of interest (ft) is crucial (Pinti et al.,

2019).

Task Frequency

The task frequency (ft) is defined as the inverse of the sum

of the task period (tt) and the rest period (tr) (Pinti et al.,

2019) (Continued)
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Continued

ft =
1

(tt + tr)

For instance, in a block design with a task and rest period of 15 s

each, ft would be∼0.03 Hz ( 1
30 Hz). If the rest period is jittered (i.e.,

different rest lengths occurring in a pseudo-randomized order) a

task frequency range ([ftlow , fthigh ]) should be considered (Pinti et al.,

2019). However, to finally determine the cut-off frequencies for the

filter, it should be determined which type of filter to use.

Filter Type

Filter types commonly used in fNIRS research include high-

pass, low-pass, and band-pass filters (Pinti et al., 2019; Kohl

et al., 2020). High-pass filters attenuate frequencies below

a certain cut-off frequency (fhigh), effectively eliminating

slow drift and trends while centering the signal around

zero (Figure 8A vs. Figure 8C). Low-pass filters, on the

other hand, attenuate frequencies above a cut-off frequency

(flow), resulting in a smoother output signal (Figure 8A vs.

Figure 8B). Band-pass filters combine the effects of high-

and low-pass filters, only allowing frequencies within a

certain range ([fhigh, flow]) to pass (Figure 8A vs. Figure 8D)

(Widmann et al., 2015; De Cheveigné and Nelken, 2019).

FIGURE 8

(Continued)

Continued

FIGURE 8

Illustration of the e�ects of different filter types applied to 1[HbO]

(red) and 1[HbR] (blue) of semi-simulated data based on resting state

data from a single subject. (A) shows the unfiltered signals. (B)

Demonstrates the result of a low-pass filter with ftlow = 0.09 Hz,

e�ectively smoothing the signal. (C) shows the outcome of a

high-pass filter with fthigh = 0.01 Hz, e�ectively removing slow drifts.

(D) shows the output of a band-pass filter with a cut-o� frequency

range of [0.01, 0.09] Hz. The filters were applied o	ine using a

zero-phase 2nd order Butterworth filter. The gray areas indicate task

periods.

In addition to the filter type, a decision should be

made as to whether a causal or acausal filter should

be used.

Causal vs. Acausal Filters

Acausal filters include both past and future data points

in their calculations. This allows them to achieve zero-

phase properties and minimize phase distortion (Widmann

et al., 2015; De Cheveigné and Nelken, 2019; Pinti et al.,

2019). Causal IIR filters use only past and current data

while achieving similar output to acausal IIR filters,

which minimize phase distortion but are based on both past

(Continued)
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Continued

and future data (cf. Figure 9A). With FIR filters, causal

versions lead to significantly larger phase delays due to the

typical high filter order, while the acausal types can eliminate

these delays through bidirectional processing (cf. Figure 9B)

(Widmann et al., 2015).

FIGURE 9

Illustration of the e�ect of causal and acausal filters for (A) IIR and (B)

FIR filters. IIR: filter order = 2, Butterworth; FIR: filter order = 450.

Note that band-pass filters with [0.01, 0.09] Hz were applied o	ine.

The gray areas indicate task periods. The data displayed is

semi-simulated data based on resting state data from a single

subject.

Accordingly, causal filters, especially causal IIR filters, seem to

be particularly well suited for real-time applications.

3.4.3 Further considerations
According to Kohl et al. (2020), a filter step is often integrated

into the real-time data processing pipeline of many fNIRS-guided

NFB studies. Popular filter implementations include moving

average (FIR) filters with lengths of 2–5 s and band-pass IIR filters

with cut-off frequencies between 0.01 and 1.5 Hz (Kohl et al.,

2020). For offline preprocessing, Pinti et al. (2019) proposed a

zero-phase FIR band-pass filter with cut-off frequencies of [0.01,

0.09] Hz. This band effectively reduced physiological noise while

preserving task-related and additional important information such

as task frequency harmonics (Pinti et al., 2019).While FIR filters are

efficient for offline processing, they can introduce significant delays

when configured as causal filters for real-time applications, making

FIGURE 10

Comparison of o	ine filtered data with di�erent cut-o�

frequencies. (A) Data filtered with cut-o�s of [0.01, 0.5] Hz and (B)

data filtered with cut-o�s of [0.01, 0.09] Hz. The vertical black line

indicates the same time point in both figures. The data displayed is

semi-simulated data based on resting state data from a single

subject.

them less suitable where low signal delay is critical. In contrast,

IIR filters such as Butterworth filters, when implemented as causal

filters, require less computational effort and typically have lower

delays compared to causal FIR filters, although they still cannot

reach the zero-delay performance of acausal filters. The resulting

delay depends mainly on the cut-off frequencies chosen. Higher

cutoff frequencies (above 0.1 Hz) can reduce delay but retain more

physiological noise, potentially affecting real-time performance

(cf. Figure 10A). The cut-off frequencies recommended by Pinti

et al. (2019) are therefore probably also suitable for real-time

applications, as long as they are not too close to the task frequency,

as the resulting delay appears manageable (cf. Figures 10A, B).

3.5 Extracerebral systemic activity
correction

3.5.1 Potential challenges
Another source of noise in fNIRS is the extracerebral

systemic artifacts, which have both non-evoked and task-evoked

components (Scholkmann et al., 2014; Tachtsidis and Scholkmann,

2016). These artifacts arise from changes in blood flow and oxygen

supply in the extracerebral layers (i.e., scalp, skull and cerebrospinal

fluid) which are influenced by systemic physiological fluctuations,
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local conditions of the scalp and the subject’s movements. The

fact that NIR light penetrates these extracerebral tissues twice,

once upon entry and once upon exit, makes the measured signals

susceptible to contamination from these non-neural sources (Klein

and Kranczioch, 2019). This type of noise can lead to possible

misinterpretation of the fNIRS data. For instance, Caldwell et al.

(2016) showed that systemic activity can either falsely mimic

functional activation (false positives) or mask actual activation

(false negatives) and highlighted that extracerebral and systemic

factors significantly influence hemodynamic signals, sometimes

triggering almost all of the recorded changes. In their study, they

identified several sources of extracerebral contamination that can

significantly influence the interpretation of neuronal activity from

fNIRS data. These causes are mainly related to changes in blood

flow and oxygen supply in the extracerebral layers, which are

influenced by a variety of factors. These factors include autonomic

nervous system activity, which in turn can be modulated by stress,

emotions or even temperature fluctuations, as well as movements

of the subject, which can lead to changes in scalp blood flow or a

change in the optical properties of extracerebral tissue (Caldwell

et al., 2016). Identifying and mitigating these confounding factors

is therefore crucial for reliable data interpretation (Tachtsidis and

Scholkmann, 2016). Of particular concern here are the task-related

extracerebral components, as the frequency components of the

artifact may overlap with the frequency of the task being performed,

rendering traditional temporal filters ineffective for correction

(Kirilina et al., 2012; Wyser et al., 2020; Klein et al., 2022b).

However, recent hardware advances have produced a promising

solution that allows direct correction of extracerebral systemic

activity components and thus may help improve the accuracy

and reliability of fNIRS signal analysis (Scholkmann et al., 2014;

Tachtsidis and Scholkmann, 2016; Santosa et al., 2020; Wyser et al.,

2020; Yücel et al., 2021; Abdalmalak et al., 2022; Klein et al.,

2022b). Of course, correcting these artifacts is also critical for

real-time applications, although this has not been done frequently

to date (Kohl et al., 2020). Failure to correct for extracerebral

systemic artifacts may result in misleading interpretations of brain

activity, which could result in delays or inaccuracies in real-

time applications, thereby negatively impacting user experience,

performance and/or therapy outcomes.

3.5.2 Possible options
Currently, short-distance channels (SDCs) are considered the

gold standard for correcting extracerebral systemic activity, and

several methods for integrating SDC signals are available that aim

to improve the accuracy of regular-distance channels (RDC; ∼3

cm source-detector distance) (Saager and Berger, 2005; Santosa

et al., 2020; Von Lühmann et al., 2020b; Wyser et al., 2020, 2022;

Abdalmalak et al., 2022; Klein et al., 2022b). An SDC is created

by positioning a source and detector <10 mm apart, ideally 8.4

mm (in adults; Brigadoi and Cooper, 2015). Since the penetration

depth of an fNIRS channel is about half the distance between source

and detector, SDCs mainly detect the activity of extracerebral tissue

(cf. Figure 11) (Santosa et al., 2020; Wyser et al., 2020; Klein et al.,

2022b).

A simple regression-based correction method that uses SDCs is

the short separation regression (SSR) approach (Saager and Berger,

2005; Klein et al., 2022b).

Short-Separation Regression (SSR)

The SSR method corrects for extracerebral systemic artifacts

by subtracting the SDC signal multiplied by a scaling factor

α from each RDC signal. This process yields the corrected

signal (yclean) that represents the actual task-evoked brain

activation:

yclean = yRDC − α · ySDC (4)

The scaling factor α is determined by the quotient of two dot

products (〈·, ·〉):

α =
〈ySDC , yRDC〉

〈ySDC , ySDC〉
(5)

The dot product (〈ySDC , yRDC〉) quantifies the relationship

between the SDC and RDC signals, while the dot product

(〈ySDC , ySDC〉) represents the magnitude of the SDC signal.

As a result, α quantifies the influence of the SDC signal

(ySDC) on the RDC signal (yRDC) (Fang and Boas, 2009). It

thus indicates the extent to which the SDC influences the

RDC signal and provides a measure of how much correction

is required to obtain a more accurate representation of the

actual underlying brain activation.

FIGURE 11

Illustration of the penetration depth of a short-distance channel (0.8

cm source-detector distance) as compared to a regular-distance

channel (∼3 cm source-detector distance).

There are theoretically different ways to define ySDC in the

Equations (4, 5). Possible options would be to use the SDC that

is spatially closest to the RDC to be corrected, the SDC with the

highest correlation to the RDCs, the average of all available SDCs,

or the firstm principal components (PCs) obtained from a principal

component analysis (PCA) across all available SDCs. Due to its

simplicity, the SSR method is well suited for real-time correction.
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However, when used without prior channel quality assessment,

there is a risk that SDCs with poor signal quality will introduce

noise into the RDC data (Klein et al., 2022b).

A more advanced regression-based method to correct for

extracerebral systemic activity is to include the SDCs as (additional)

regressors in a GLM framework (Santosa et al., 2020; von Lühmann

et al., 2020a; Wyser et al., 2020; Klein et al., 2022b; Cockx et al.,

2023).

GLM filter using SDCs

As shown in Equation (3) in Section 3.3, additionally

recorded signals like IMUs can be used as regressors in the

designmatrix of a GLM. This also applies to SDCs, which can

be used either alone or in combination with other nuisance

regressors (Santosa et al., 2020; von Lühmann et al., 2020a;

Wyser et al., 2020; Klein et al., 2022b; Cockx et al., 2023). If

only SDCs are included as regressors in the GLM filter, the

residual term ǫ in Equation (3) represents the SDC-cleaned

data Yclean (Klein et al., 2022b; Cockx et al., 2023). This can

be calculated by rearranging the equation as follows:

ǫ = Y − XSDC · βSDC

= Yclean

Here, XSDC represents the design matrix containing only

the SDCs, and βSDC represents the estimated coefficients

reflecting the influence of the SDCs on the uncorrected data

Y (Klein et al., 2022b).

In contrast to the conventional application of the GLM, which

uses SDCs (and/or other auxiliary signals) as (nuisance) regressors

in addition to task-related regressors, this GLM filter approach

is particularly suitable for real-time processing as it directly

provides a corrected time series instead of statistical outcomes

such as beta values (Klein et al., 2022b). Beyond SDCs, the

inclusion of additional systemic physiological measures as nuisance

regressors would be in line with the increasing recognition of their

value in improving our understanding of brain-body interactions

(Scholkmann et al., 2022). In this context, Scholkmann et al.

(2022) emphasized that brain activity is strongly influenced by

physiological changes and body interactions such as breathing

and heart-brain connections, suggesting that it is too simplistic to

view the brain in isolation. They proposed viewing the brain as

integrated into the body and its environment and introduced a

method called systemic physiology augmented fNIRS (SPA-fNIRS)

to address this problem (Scholkmann et al., 2022). The goal of

SPA-fNIRS is to combine fNIRS signals with systemic physiological

signals that track cardio-respiratory and autonomic nervous system

indicators such as arterial carbon dioxide levels, blood pressure,

respiratory and heart rate, oxygen saturation, skin conductance and

photoplethysmography. By integrating a variety of physiological

data, SPA-fNIRS provides a nuanced analysis of the relationships

between fNIRS signals and systemic physiology (Scholkmann

et al., 2022). In this context, the previously mentioned tCCA

approach (see Section 3.3) with SDCs alone or in combination

with other auxiliary signals might be particularly suitable as an

approach to generate optimal nuisance regressors (von Lühmann

et al., 2020a; Scholkmann et al., 2022). This method takes into

account the non-instantaneous and variable coupling between the

fNIRS signals and auxiliary data (e.g., systemic physiology and

SDCs) and has demonstrated its superior performance over the

classic GLM-based approach using only SDCs (von Lühmann

et al., 2020a) and therefore could be considered as a promising

method for correction in real time. However, this approach

has not yet been tested in a real-time scenario and it remains

to be shown whether performance will improve in this case

as well. SPA-fNIRS is also still in the development phase and

faces challenges in implementation, particularly regarding the

complexity and effort of adding multiple sensors, which may limit

its applicability in certain experimental settings (Scholkmann et al.,

2022). These limitations highlight the need for further development

of both hardware and software to fully exploit the potential of

SPA-fNIRS (Scholkmann et al., 2022), particularly for real-time

applications.

Although the use of SDCs is considered the gold standard

for extracerebral systemic artifact correction, not all researchers

have access to SDCs, either due to limited availability or

financial constraints. However, in such cases, alternative correction

methods can be used instead (Pfeifer et al., 2018; Klein

and Kranczioch, 2019; Santosa et al., 2020; Klein et al.,

2022b). A simple alternative is to use a common average

reference (CAR) filter (Bauernfeind et al., 2014; Klein et al.,

2022b).

Common Average Reference (CAR)

Using CAR, a corrected version of each channel’s signal

yclean is obtained by subtracting the average signal across

all channels, or a predefined number, denoted as c, from its

uncorrected version y:

yclean = y−
1

c
·

c
∑

i=1

yi

Instead of subtracting the averaged time course, an alternative

approach could be to use the SSRmethod (as described in Equation

4) to regress the averaged signal across all or a predefined number

of channels from each individual channel (Pfeifer et al., 2018).

The CAR method offers simple and straightforward calculations

and should therefore easily applicable in real-time preprocessing.

However, it is important to note that the CARmethod is susceptible

to noise and may overcorrect the data (Bauernfeind et al., 2014;

Klein et al., 2022b).

Another alternative method when SDCs are not available is to

use a PCA (Abdalmalak et al., 2022) or a baseline PCA method

(bPCA; Zhang et al., 2005; Santosa et al., 2020). PCA can be

viewed as a spatial filter that reduces the dimensionality of a

data set while maximizing the variance in the data (Jolliffe and

Cadima, 2016; Fang and Boas, 2009). PCA converts the original

set of variables into a new set of variables that represent linear
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combinations of the original variables, the PCs (Jolliffe and Cadima,

2016; Fang and Boas, 2009). The difference between PCA and

bPCA lies in the data to which the algorithm is applied. In bPCA,

the algorithm is applied to an individually collected baseline,

while PCA is applied directly to the data to be corrected (Zhang

et al., 2005; Santosa et al., 2020). The underlying assumption for

this correction approach is that the systemic artifact accounts for

a significant portion of the variance in the data and therefore

should be captured by the initial set of PCs (Abdalmalak et al.,

2022).

Principal Component Analysis (PCA)

For this approach, a singular value decomposition (SVD) is

calculated based on either the spatial covariance matrix C of

the data Y or the data itself (or the baseline in the case of

bPCA):

Y = U6VT

The SVD yields the matrix V , which represents the spatial

information of the data, and the diagonal matrix 6, which

contains the singular values (i.e., a kind of “importance

factors”) and the matrix U represents the temporal structure

of the data (Zhang et al., 2005). The reconstruction of the

cleaned signal Yclean is then performed using the lower part

of the spectrum of singular values (i.e., those corresponding

to noise are removed):

Yclean = Uk6kV
T
k

where k represents the truncated versions of U, 6, and

VT , after removing the k largest singular values. Because

the optimal value for k can vary between subjects, some

researchers instead report the amount of variance to be

retained (Cooper et al., 2012; Brigadoi et al., 2014).

However, since task-related brain activity should also

contribute significantly to the overall variance, it is possible

that the corresponding brain activity is present in the first m

PCs. In contrast to traditional PCA, bPCA has the advantage of

avoiding the risk of removing task-related information when the

assumption that most of the variance is explained by artifacts

is incorrect (Santosa et al., 2020). Overall, however, it should

be noted that the assumption that the systemic artifacts explain

the majority of the variance in the data is rather arbitrary and

requires validation (Abdalmalak et al., 2022). Furthermore,

the performance of (b)PCA relies on specifying the number of

components or the desired explained variance in advance, without

prior knowledge of the data. This aspect can be particularly

challenging in real-time applications, as the optimal choice of m

may vary depending on the subject or experimental conditions.

Despite these limitations, (b)PCA remains a possible option for

real-time fNIRS processing.

The global component removal (GCR) method

proposed by Zhang et al. (2016) offers a similar correction

procedure. In contrast to PCA, GCR also takes into

account information about the (individual) channel locations

(Zhang et al., 2016).

Global Component Removal (GCR)

The GCR method uses a matrix D to store the 3D channel

positions. This matrix is then smoothed using a Gaussian

kernel filter:

G(D) = e
−D2

2σ2

The width of the Gaussian kernel is defined by σ and has been

found to be effective with σ = 46◦ (Zhang et al., 2017; Noah

et al., 2021). After applying SVD to Y , the resulting vectors vi
in matrix V are then smoothed by convolving them with the

Gaussian kernel G:

v∗i = vi ∗ G

This operation results in the smoothed vectors v∗i in the

matrixV∗. Convolution with the Gaussian kernelG, removes

localized neural patterns from the vectors and preserves the

spatial information of the global component Yglobal (Zhang

et al., 2016). The Yglobal can be computed by replacing V with

V∗ in the SVD formula:

Yglobal = U6V∗

Finally, to obtain the cleaned data Yclean, the global

component Yglobal is subtracted from the original

uncorrected data Ytask (Zhang et al., 2016):

Yclean = Ytask − Yglobal

The GCR method requires a relatively large kernel to achieve

optimal performance. Therefore, to ensure the effectiveness of the

GCRmethod, an optode coverage of at least 9 cm2 is recommended

to avoid artificially negative brain activation (Zhang et al., 2016).

Accordingly, the method should only be used when adequate head

coverage can be ensured to minimize the risk of overcorrection and

the resulting loss of brain activity information in the signal (Zhang

et al., 2016; Klein et al., 2022b).

3.5.3 Further considerations
According to Kohl et al. (2020), only a few NFB studies

have attempted to correct for extracerebral systemic artifact

contributions (e.g., using the CAR method; Hudak et al., 2017,

2018) and only one NFB study applied SDC-based correction in the

real-time preprocessing pipeline (Fujimoto et al., 2017). Likewise,

in BCI applications, only about 4% of studies have addressed this

artifact (as of 2020; Von Lühmann et al., 2020b). As shown in

Figure 12 and reported in previous studies, this type of artifact can

significantly affect fNIRS signals, and also show different effects

between subjects, tasks, brain regions and signal types, highlighting

the importance of correction (Scholkmann et al., 2014; Tachtsidis
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and Scholkmann, 2016; Dravida et al., 2017; Santosa et al., 2020;

Wyser et al., 2020; Klein et al., 2022b). The preferred choice for

both offline and real-time corrections is probably to use SDCs.

In particular, the GLM-based correction that includes all available

SDCs for both the 1[HbO] and 1[HbR] data turned out to be the

preferred choice, at least for the offline correction (Santosa et al.,

2020; Wyser et al., 2020; Klein et al., 2022b). Additionally, it has

been shown to be beneficial to include an additional regressor that

represents the global component of this artifact, such as the first PC

obtained from a PCA using all available SDCs (Wyser et al., 2020).

If SDCs are not available, the CAR method or a regression-based

approach using PCA or bPCA could be a potentially promising

alternatives (Pfeifer et al., 2018; Santosa et al., 2020; Abdalmalak

et al., 2022; Klein et al., 2022b).

Systematic validation of correction methods with and without

SDCs, especially in real-time applications, is currently limited.

Therefore, the question of which correction methods work best in

real-time analysis cannot yet be answered. In any case, correction

of extracerebral systemic artifacts is crucial for both offline and

real-time fNIRS applications and should by no means be neglected

as inadequate artifact correction can affect the interpretation of

brain activity. In particular, it can either falsely mimic or mask

the true underlying brain activity (Tachtsidis and Scholkmann,

2016), thereby compromising the accuracy and reliability of real-

time systems. Accordingly, it is important to choose an appropriate

correction approach to ensure the credibility and validity of the

fNIRS data in all types of analyses.

4 Discussion

High spatial specificity and signal quality are essential for

reliable and effective fNIRS-guided real-time applications such

as NFB and BCIs. Spatial specificity can be crucial, particularly

for repeated measurements, as it allows precise localization of

relevant brain activity. In addition, signal quality could directly

affect the reliability of the recorded neural signals, as only

sufficient quality ensures robust and meaningful information

extraction. These factors can play a crucial role in building user

trust, thereby encouraging positive interactions with real-time

technology. The aim of the present work was therefore to present

and compare possible options that could contribute to improving

spatial specificity and signal quality in the context of fNIRS-based

real-time applications.

4.1 Improving spatial specificity

Despite the lower spatial resolution of fNIRS compared to

fMRI, fNIRS offers the advantage of capturing spatially specific

measurements of superficial cortical brain regions in more natural

environments (Scarapicchia et al., 2017; Pinti et al., 2020; Klein

et al., 2022a). However, challenges such as the typically limited

number of available optodes and the lack of individual anatomical

data can make precise targeting of specific ROIs difficult (Brigadoi

et al., 2018; Zimeo Morais et al., 2018). Therefore, the development

and use of standardized yet adaptable methods is particularly

important.

The present work focused on three possible options to improve

spatial specificity for (real-time) fNIRS experiments: probe design,

precise cap placement, and systematic validation of fNIRS’ ability

to precisely target specific ROIs. With respect to optimizing probe

design (e.g., Aasted et al., 2015; Brigadoi et al., 2018; Zimeo Morais

et al., 2018; Fu and Richards, 2021) and in the development of

methods for cap placement, remarkable progress has already been

made (e.g., Oostenveld and Praamstra, 2001; Novi et al., 2020a;

Wu et al., 2021). In addition, spatial validation techniques have

been developed and applied in studies to assess the precision

of fNIRS measurements in targeting specific brain regions and

tasks (Toronov et al., 2001, 2003; Mehagnoul-Schipper et al.,

2002; Strangman et al., 2002; Cui et al., 2011; Abdalmalak et al.,

2017; Wagner et al., 2021; Klein et al., 2022a; Novi Junior et al.,

2023; Pereira et al., 2023). However, despite these advances, a

gap remains in the comprehensive documentation and validation

of methods to improve spatial specificity in repeated real-time

applications. To close this gap, the aim of this work was to

provide an initial overview of possible options that have already

been implemented in order to advance future standardization

for real-time applications. A summary of all potential challenges,

possible options, and discussed further considerations regarding

their benefits for improving spatial specificity in fNIRS experiments

is shown in Figure 13. Whether these methods actually improve

the application of fNIRS in real-time scenarios remains an open

question and requires future systematic validation.

4.2 Improving signal quality

The presence of various artifacts represents a significant

challenge in fNIRS research in general (Pinti et al., 2020), and is

particularly a problem in real-time applications, as uncorrected

signals can cause the system to run on noise instead of real

brain activity, reducing the reliability of these applications (Klein

et al., 2022b). There have already been several efforts to improve

offline (pre-)processing steps, including aspects such as channel

quality assessment (Pollonini et al., 2014, 2016; Sappia et al., 2020),

mBLL calculations (Scholkmann and Wolf, 2013; Scholkmann

et al., 2014; Whiteman et al., 2017), temporal filtering (Pinti

et al., 2019), MA correction (Scholkmann et al., 2010; Cooper

et al., 2012; Brigadoi et al., 2014; Delgado Reyes et al., 2018;

Jahani et al., 2018; Di Lorenzo et al., 2019; Fishburn et al., 2019;

Von Lühmann et al., 2019; Novi et al., 2020b; Huang et al., 2022),

and extracerebral systemic activity correction (Santosa et al., 2020;

Von Lühmann et al., 2020b; Wyser et al., 2020; Noah et al., 2021;

Abdalmalak et al., 2022; Klein et al., 2022b). Despite these advances,

not all methods are suitable for real-time processing and real-

time validation remains limited (Lotte et al., 2018; Klein et al.,

2022b).

So how can we further address these challenges and leverage

existing technologies and methodologies to advance the field of

real-time fNIRS applications? For instance, Lotte et al. (2018)

suggested that real-time rather than offline validations are

essential for evaluating the performance of real-time methods.

However, conducting multiple real-time tests for each algorithm

and each individual presents logistical challenges due to time,
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FIGURE 12

Illustration of the e�ects of extracerebral systemic artifact correction methods with and without SDCs on two subjects (A, B) s01, and (C, D) s02 that

performed a motor execution task. The task-evoked time series are shown for preprocessed data without correction (UNCORRECTED). Correction

methods without SDCs, including CAR, PCA, and GCR, as well as correction methods with SDCs, such as GLM-filter-based correction using eight

SDCs (GLM FILTER) and SSR with the spatially closest SDC, are used to present the data corrected for extracerebral systemic artifacts. Gray areas

indicate task periods.

cost, as well as individual and environmental variability. In this

regard, simulated and semi-simulated data are invaluable for

validating correction algorithms (von Lühmann et al., 2020a;

Klein et al., 2022b) as they allow performance assessment against

known ground truth data. Using semi-simulated data, a modeled

HRF is combined with resting-state data, allowing recovery of

the underlying HRF using selected correction methods while

incorporating real physiological artifacts. Semi-simulated data

could be used in combination with software tools like Turbo-

Satori (Brain Innovations, Maastricht, The Netherlands; Lührs and
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FIGURE 13

Tabular overview of all options discussed in this paper that could help improve spatial specificity, including potential challenges, possible options and

further considerations. Please note that this overview does not claim to be complete and only represents suggestions.

Goebel, 2017), which allows for simulated real-time validation

and integrates with MATLAB and Python, enabling even more

advanced processing.

In summary, ensuring signal quality is critical in real-time

applications such as BCI and NFB. Artifacts and noise can

affect measurement reliability and could lead to possible incorrect

interpretations and reduced user experience. Given the limitations

of real-time data, which can not be post-corrected like offline

data, immediate and accurate data processing is critical. Therefore,

this review is intended to serve as a comprehensive resource

for researchers working on fNIRS-based real-time applications by

providing an overview of potential challenges, possible options, and

further considerations on selectedmethods that could help improve

signal quality. A summary of this can be found in Figure 14. As

mentioned before in the spatial specificity section, this overview

is mostly about documenting possible options and future work

on systematic validation in real-time context is needed to make

concrete recommendations. Please note that this review does not

claim to be complete in terms of the selection of possible options,

as it is based primarily on the author’s subjective choice of methods

and there may be additional options for improving signal quality

for real-time applications.

4.3 Final remarks

While the replication crisis poses major challenges for all

scientific disciplines, including fNIRS research, it also paves the

way for (methodological) improvements (Poldrack et al., 2017; Paul

et al., 2021; Yücel et al., 2021; Niso et al., 2022; Kelsey et al., 2023;

Schroeder et al., 2023). However, rigorous study design, transparent

reporting, and community collaboration are required to address

this issue. Adopting best practices and open science principles,

including study preregistration, creates a solid foundation for

improving the reproducibility and credibility of (real-time) fNIRS

studies (Yücel et al., 2021; Kelsey et al., 2023; Schroeder et al., 2023)

and lays the foundation for progress in this direction. The purpose

of this review was to contribute to these initiatives by providing a

detailed overview of methods that could help to optimize real-time

applications.

In addition to refining spatial specificity and signal quality,

topics such as feature extraction and feedback algorithms should

not be forgotten. Progress has already been made in these areas

(e.g., Naseer and Hong, 2015; Paulmurugan et al., 2021). However,

ever-evolving computing capabilities and advances in machine

learning and artificial intelligence suggest that these assessments
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FIGURE 14

Tabular overview of all preprocessing steps discussed in this review that might help improve signal quality in real-time applications, including

potential challenges, possible options and further considerations. Please note that this overview does not claim to be complete and only represents

suggestions.

should be updated regularly, but this is beyond the scope of the

present work.

The aim of the present review was to guide future advances in

real-time applications by discussing potential challenges, exploring

possible options, and providing further considerations that could

help improve both spatial specificity and signal quality to advance

research, strengthen existing applications and stimulate innovation

in this rapidly evolving field.
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