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Robot faces often di�er from human faces in terms of their facial features

(e.g., lack of eyebrows) and spatial relationships between these features (e.g.,

disproportionately large eyes), which can influence the degree to which social

brain [i.e., Fusiform Face Area (FFA), Superior Temporal Sulcus (STS); Haxby

et al., 2000] areas process them as social individuals that can be discriminated

from other agents in terms of their perceptual features and person attributes.

Of interest in this work is whether robot stimuli are processed in a less

social manner than human stimuli. If true, this could undermine human–

robot interactions (HRIs) because human partners could potentially fail to

perceive robots as individual agents with unique features and capabilities—

a phenomenon known as outgroup homogeneity—potentially leading to

miscalibration of trust and errors in allocation of task responsibilities. In this

experiment, we use the face inversion paradigm (as a proxy for neural activation

in social brain areas) to examine whether face processing di�ers between

human and robot face stimuli: if robot faces are perceived as less face-

like than human-faces, the di�erence in recognition performance for faces

presented upright compared to upside down (i.e., inversion e�ect) should be

less pronounced for robot faces than human faces. The results demonstrate

a reduced face inversion e�ect with robot vs. human faces, supporting the

hypothesis that robot faces are processed in a less face-like manner. This

suggests that roboticists should attend carefully to the design of robot faces

and evaluate them based on their ability to engage face-typical processes.

Specific design recommendations on how to accomplish this goal are provided

in the discussion.

KEYWORDS

human–robot interaction, human–agent interaction, social cognition,

face-processing, anthropomorphism

Introduction

When interacting with groups of non-human entities, such as robots or avatars,

we tend to perceive them as homogenous groups of agents that all have similar

characteristics and capabilities (Keller and Rice, 2009). This overgeneralization

of features from one agent to another is often due to a lack of familiarity with

or a lack of motivation to process non-social agents, leading to a reduction in

brain areas [i.e., Fusiform Face Area (FFA), Superior Temporal Sulcus (STS)]

specialized to perceive agents as having identities with unique personality

attributes and characteristics that be utilized to discriminate between them.
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Social agents, however, engage brain areas that process stimuli

at the individual level (Hugenberg et al., 2010). In human–

robot teams, this failure to perceive robot team members as

individual social agents with unique characteristics and abilities

can undermine trust and performance, such that knowledge

about one robot could be erroneously overgeneralized to other

robot team members (Geels-Blair et al., 2013). The consequence

is that trust in robot team members is either too high (positivity

bias, if initial experience with robots was positive) or too low

(negativity bias, if initial experience was negative), resulting in

overreliance in the former case, and distrust in the latter case

(Parasuraman and Riley, 1997). The belief that all agents in

a system are interchangeable leads to System-Wide Trust—an

omnibus belief in the overall trustworthiness of the system—

which undermines team performance when relying on robots

that perform below expectations, and an increase in workload

of the human operator when distrusting robots that perform

above expectations (Parasuraman and Riley, 1997; Geels-Blair

et al., 2013). A better calibration of trust could be achieved if

human operators perceived robot team members as identifiable

social entities with unique characteristics and abilities rather

than a homogenous group of agents with similar features and

capabilities. This phenomenon, known as Component-Specific

Trust, is associated with improved performance and attitudes in

human–robot teams and is established when human operators

develop the ability to successfully differentiate specific agents

within a system leading to better-calibrated, agent-specific

beliefs (Keller and Rice, 2009; Geels-Blair et al., 2013).

But to generate component-specific trust, one must be

able to perceive a robot agent as a social entity at the

individual level to distinguish between them. Fortunately,

extensive research has examined the phenomenon of seeing

agents as unique social entities with identifiable personality

attributes vs. interchangeable. Indeed, a long established

phenomenon in perception is the tendency to see non-

social stimuli as more similar than they are—a phenomenon

known as outgroup homogeneity (Quattrone and Jones, 1981;

Chance and Goldstein, 1996; Hugenberg et al., 2010). Outgroup

homogeneity causes people to perceive agents as having features

that blend in with others rather than individuating features

that distinguish the agent from others (Hugenberg et al.,

2010). Perception of others as unique social individuals rather

than homogenous depends on two factors—familiarity with

a class of stimuli and motivation (i.e., social relevance of

agent/group/situation to self)—and in turn determines how

difficult it is to perceive differences between individual agents

(Fiske and Neuberg, 1990). Outgroup homogeneity occurs

with little cognitive effort, does not require familiarity with

the stimulus, and consumes so few cognitive resources that

categorically relevant information can be extracted under high

task-load or when being irrelevant to the task (Looser and

Wheatley, 2010; Schein and Gray, 2015; Martini et al., 2016;

Mandell et al., 2017; Wiese et al., 2018) whereas processing

an agent as a social entity on the individual level engages the

extraction of identifiable information from the stimuli, which

requiresmore time and effort, and only happens when perceivers

are sufficiently familiar with the stimuli and/or motivated

(i.e., consider stimuli as part of their ingroup) to discriminate

between stimuli (Fiske and Neuberg, 1990; Cloutier et al., 2005;

Macrae et al., 2005).

The most important cues for perceiving an agent as

social individuals with unique personality attributes in human–

human interaction are derived from the face region: faces

encode information relevant to identity, such as gender, age,

or ethnicity, personality attributes, and characteristics as well

as information regarding internal states, such as emotions

and intentions (Haxby et al., 2000), and human brain areas

sensitive to processing social stimuli during interactions are

specifically implicated in the processing of human faces. For

example, the FFA processes characteristics of faces that are

unchangeable, such as an individual’s identity. The STS, on the

other hand, processes changeable characteristics of faces, such as

an individual’s internal states.

In line with this neural specialization, behavioral data

suggests that faces are processed in a unique manner, relative to

most other stimuli: whereas most visual stimuli are processed

via a piecemeal integration of their separate features, faces are

typically processed configurally, as an integrated Gestalt (see

Maurer et al., 2002; for a review). This configural processing

style leads to a variety of unique effects (Deska and Hugenberg,

2017), and causes perceivers to be sensitive to the orientation

in which human faces are presented. When faces are presented

upright, perceivers can process faces configurally, supporting

strong face encoding and recognition. When faces are presented

upside-down, however, configural processing is disrupted and

participants are significantly less capable of recognizing familiar

faces. Most importantly, this inversion effect does not occur

for non-face stimuli (e.g., cars/dogs; Diamond and Carey, 1986;

Rossion and Curran, 2010) and emphasizes the uniqueness of

this face perception process. The special nature of faces has not

been lost on roboticists, who often focus extensively on how to

design non-verbal cues derived from the face region (e.g., facial

expressions) in order to be easily understandable by humans or

to avoid negative consequences associated with robot faces that

are of ambiguous human-likeness (i.e., uncanny valley; Mathur

and Reichling, 2016).

However, robots challenge both the familiarity and

motivational components of face perception. In terms of the

familiarity component of face perception, because robot are

not (yet) part of everyday life, human face recognition areas

did not evolve to be proficient at detecting robot faces, as

demonstrated by poor performance at distinguishing similar

looking robots. Furthermore, because robot faces do not contain

the same familiar features as human faces (e.g., lack of eyebrows)

and often do not display human-typical spatial relationships

between facial features (Blow et al., 2006), it is possible that
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their faces do not fully engage face-typical processing. However,

research suggests that non-face stimuli can be processed like

faces when sufficient familiarity has been generated through

perceptual learning (Nussbaum, 1999; Tanaka, 2001; Curby and

Gauthier, 2009). Dog experts, for example, show an inversion

effect (i.e., face-like processing) when viewing dogs—an effect

not observed for non-experts.

In terms of the motivational component of face perception,

robots’ lack of apparent humanness (Kuchenbrandt et al.,

2013) undermines motivation to encode them, making it

less likely that they are individuated. This is in line with

past research showing that perceivers often fail to individuate

even human targets that do not belong to their own social

group (Bernstein et al., 2007). Further, given that robots are

not actually human, past research has shown that excluding

others from the human ingroup (i.e., dehumanization) makes

them being seen as interchangeable (Nussbaum, 1999). One

way to increase motivation to discriminate others is making

them seem similar to the perceiver, thereby enhancing their

chances of being perceived as ingroup (Haslam and Loughnan,

2014), or increasing their motivational relevance in other

ways. For example, making perceivers outcome dependent on

targets (Young and Hugenberg, 2012) or explicitly rewarding

discrimination can improve perceivers’ ability to distinguish

between them (Hugenberg et al., 2007) and can improve

recognition and facilitate perceivers building further familiarity.

Notably, there is evidence that similar mechanisms also affect

how non-human agents are perceived. Almaraz et al. (2018),

for instance, demonstrated that leading perceivers to believe

that novel non-human agents had humanlike capacities made it

easier for perceivers to discriminate between them. Analogously,

research in human–robot interaction (HRI) has shown that

robots can be made perceived as ingroup members by displaying

physical (i.e., gender; Kuchenbrandt et al., 2011, 2013) or

behavioral signs (i.e., mannerisms; Bartneck et al., 2007; Oistad

et al., 2016) of human-likeness, suggesting that the degree to

which a robot is perceived as human-like could potentially

improve discrimination via increasing an observer’s motivation

to do so.

Aim of study

Here, we investigate whether social robots’ faces are

sufficiently human-like to trigger face-typical processing. Given

that perceivers typically have little familiarity with robots,

and may be less motivated to individuate robot faces, we

hypothesized that robot faces would be unlikely to receive

face-like configural processing. We operationalized face-like

processing using the face inversion paradigm that is commonly

employed in studies of human face encoding. In this paradigm,

participants first complete a learning phase, in which faces are

presented to participants in upright position and participants

are asked to memorize them; during the subsequent recognition

phase, both previously seen and new face stimuli are presented,

and participants indicate whether they had seen each face

before. Most importantly, during the recognition phase, some

of the faces are presented upright and some upside down and

discrimination performance for upright vs. upside down stimuli

is compared using the Signal Detection index sensitivity (d
′

).

For human faces, presenting a previously encountered face

stimulus upside-down reduces recognition performance due to

a disruption of face-typical processing (i.e., inversion effect). For

non-face stimuli, the inversion effect is typically absent (Yin,

1969). If robot faces are processed differently from human faces,

the inversion effect should be reduced compared to human faces,

indicating attenuated face-typical processing.

Methods and materials

Participants

A power analysis conducted with the effect size (η2 = 0.07)

of a previous experiment employing the inversion task in a

similar within-subjects design (Young et al., 2014; Experiment

2), indicated a sample size of n = 86 would give us more than

a 95% to obtain significance, given an effect. To compensate for

participants we would likely remove due to poor performance,

we oversampled, collecting 104 participants (M = 37.25, range:

20–72, 59 females). Of these, 13 participants were removed

due to performing below chance on the inversion task, leaving

91 participants. Participants were recruited via Amazon’s

Mechanical Turk and participated in the experiment in exchange

for compensation. All participants provided informed consent,

and the research was approved by the Office of Research

Integrity and Assurance at the University.

Apparatus

The experiment was run on the Inquisit 5 (2016)

platform online. Inquisit allows collection of behavioral data

remotely over the web via participant keystrokes. Participants

downloaded the software and participated in the experiment

locally on their computer. Screen size, keyboard, and refresh

rate depended on the settings of the participant’s individual

computers and were not controlled.

Stimuli

The sample of faces consisted of 40 robot faces, and 40

white male human faces. Robot face stimuli were collected

by first compiling images of robots via the ABOT database

(Anthropomorphic robot database; Phillips et al., 2018) and
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FIGURE 1

Example of human (left) and robot (right) stimulus.

internet searches with the only inclusion criteria being that faces

contained eyes. Our rationale for limiting inclusion criteria to

eyes, without including other features (i.e., eyebrows, eyes, nose,

mouth) is that prior face perception research indicates eyes

are the defining feature of face-likeness (Looser and Wheatley,

2010). Additionally, given that many robots only contain eyes,

this inclusion criteria allowed us to include robots with a range

of features typical in social robots, increasing the generalizability

of our findings. Furthermore, exclusion criteria was limited to

android robots, who bear such strong resemblance to human

faces, prior research indicates participants may confuse them for

human stimuli at short stimulus times (Wheatley et al., 2011).

After a robot face was identified, we searched for images of

them displayed in frontal aspect and which the entirety of the

face was visible from the top of the head to the bottom of the

chin. Afterwards, robot bodies and peripheral background areas

were then cropped so that only the robot’s face remained. Then,

the robot torso and all peripheral information were cropped

from the image and Human face stimuli were obtained from

the Chicago Face Database (Ma et al., 2015). All faces were then

converted to gray scale and presented on a white background

that measured 768× 768 pixels; see Figure 1 for example human

and robot stimuli and Figure 2 for all robot stimuli.

Task

The inversion task consisted of a learning phase and a

recognition phase. During the learning phase, participants

passively viewed 20 target faces displayed in a randomized order

for 2,000ms each, with an inter-trial interval (ITI) of 500ms. All

faces had an equal chance of being displayed or not displayed;

see Figure 2.

During the recognition phase, the faces from the learning

phase were presented with 20 new faces of the same agent

type. Additionally, half of the original and half of the new faces

were inverted, enabling us to gauge the impact of disrupting

configural processing. For each trial of the recognition phase,

participants had to indicate whether they had seen a given face

during the previous learning phase by pressing either the “D” key

if they had seen the face, and the “K” key if not. A trial did not

end until participants gave a response. All distractor and target

faces had an equal chance of being displayed upright or inverted;

see Figure 3.

Procedure

Participants first provided informed consent and then

received instructions explaining the experimental procedure.

Specifically, they were told that during the experiment they

would first be asked to memorize a subset of the faces before

being asked to recognize those faces when being presented

together with a set of new faces.

Participants were then directed to the inversion task, which

consisted of a learning and a recognition phase blocked by agent

condition (human or robot), such that participants performed

both the learning and recognition phase for one agent first (e.g.,

human) before completing both sequences for the other agent

(e.g., robot). The order in which participants performed the task

with a particular agent was randomized across participants.

At the beginning of the learning phase, participants were

instructed that they would see 20 upright human or robot

faces (depending on the current agent condition) onscreen

and should attend to these faces in order to recognize them

later. After successful completion of the learning phase, the

participants proceeded to the recognition phase. During the

recognition phase, they were instructed that they would see

another series of faces, some of which they had already seen

during the learning phase, and some of which they had not.

Additionally, they were told that their task was to respond as

quickly and accurately as possible as to whether they had seen

the presented face during the learning phase, by pressing the

“D” key, or not, by pressing the “K” key. Once the learning

a recognition phase was completed for the first agent (e.g.,

human), participants completed the same sequence for the other

agent (e.g., robot). Finally, participants were thanked for their

participation, received their compensation, and were debriefed.

Analysis

To assess face recognition performance, we first calculated

hit rates (familiar face correctly identified), misses (familiar

face not correctly identified), correct rejections (unfamiliar face

correctly rejected), and false alarms (unfamiliar face falsely

identified) during the recognition phase and used them to

calculate accuracy within the Signal Detection Framework.

Within the Signal Detection Framework, traditionally, hit rates

are calculated by dividing the number of hits by the sum of hits

and misses. False alarm rates are calculated by dividing false

alarms by the sum of false alarms and correct rejections. Hit rate

and false alarms are then z-transformed and subtracted from
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FIGURE 2

Learning phase. Participants were first instructed they would see 20 upright human (or robot depending on counterbalance) faces and should

attend to these faces in order to recognize them later. Participants then proceeded to the learning phase in which they passively viewed the 20

target faces which were displayed in a randomized order for 2,000ms each, with an ITI of 500ms.

FIGURE 3

Recognition phase. Participants were instructed they would see another series of human (or robot depending on counterbalance) faces, some

of which they had already seen and had some of which they had not. They were also told some of the faces they had not and had not seen

would be presented upside-down and that their task was to report whether or not they had seen the face during the learning task.

each other, for human and robot faces separately, and used to

calculate sensitivity (d
′

) scores—a measure of target detection

that accounts for both hit rates and false alarms (Stanislaw and

Todorov, 1999). Since participants who had 100% hit-rates or

0% false alarm rates would result in a d
′

score that is infinite,

a log-linear approach was used to adjust d
′

scores (see Hautus,

1995; Stanislaw and Todorov, 1999; for detailed procedure). The

data from 13 participants were excluded whose performance was

worse than chance (d
′

= 0).

For the remaining participants, d
′

scores were entered

into a 2 (Agent: human vs. robot) × 2 (Orientation: upright

vs. inverted) repeated-measures ANOVA. If configural

processing was attenuated, a significant interaction

effect between agent and orientation would be expected,

such that the difference in d
′

between the upright and

inverted face presentation condition would be more

pronounced for the human face stimuli than the robot

face stimuli.

Results

The ANOVA showed a main effect for Orientation, such

that participants showed a better recognition performance for

upright (M = 1.36, SD= 0.83) compared to inverted (M = 0.90,

SD = 0.81) faces; F(1,90) = 56.75, p < 0.001. Additionally, a

significant main effect of Agent showed that participants had

better recognition performance for robot (M = 1.23, SD= 0.86)

compared to human faces [M = 1.04, SD = 0.84; F(1,90) = 6.46,

p= 0.013].

Most importantly, and in line with our hypothesis, the

interaction effect between Agent and Orientation was also

significant, such that there was a larger difference in recognition

performance for human faces that were presented upright

(M = 1.37, SD = 0.85) vs. upside-down (M = 0.71, SD = 0.69)

than for robot faces [upright:M = 1.35, SD = 0.83; inverted:M

= 1.10, SD = 0.87; F(1,90) = 8.93, p = 0.004]. Post-hoc t-tests

indicated a significant difference in upright vs. upside-down
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FIGURE 4

Results. For human faces, there was a larger di�erence in

recognition performance when comparing faces presented

upright and inverted than for robots.

recognition performance (i.e., inversion effects) for both human

[upright: M= 1.37, SD = 0.84; inverted: M = 0.71, SD = 0.69;

t(90) = 7.08, p < 0.001] and robot faces [upright: M = 1.35, SD

= 0.83; inverted: M = 1.10, SD = 0.87; t(90) = 2.83, p = 0.006];

see left-hand side of Figure 4.

General discussion

The goal of the current experiment was to examine whether

faces of current social robots were sufficiently human-like to

elicit face-typical processing. Comparable to previous studies on

human face perception, face-typical processing was assessed via

the face inversion paradigm, which shows a significant decrease

in recognition performance of previously encountered faces

if those faces were presented upside down vs. upright (i.e.,

inversion effect).

In line with predictions, we find that robot faces elicit less

face-like processing than do human faces. If robot faces engaged

face-typical mechanisms less strongly than human faces, human

operators would be expected to have difficulties distinguishing

robot agents in mixed human-robot teams, with potentially

negative consequences for trust calibration and allocation of

task resources.

Theoretical contributions

The findings indicate that although robot faces possess some

human-like features, they do not engage face-typical processing

to a similar extent as human faces. In light of previous studies

that show reduced inversion effects for non-social object stimuli

like houses compared to human face stimuli (Yin, 1969), the

current findings suggest that robot stimuli may cause under-

activation in social brain areas such as the FFA and STS,

causing them to be processed more like objects than faces,

which might not only have negative consequences on face-

related processes like individuation but also impact the degree

to which robots are perceived as social entities. This can have

severe consequences for HRI: a reduced ability to distinguish

robot team members can lead to problems with trust calibration

and resource allocation (Keller and Rice, 2009; Geels-Blair et al.,

2013) and a reduced perception of robots as social entities can

lead to attenuated social-cognitive processing on joint human-

robot tasks (see Wiese et al., 2017 for a review). Both issues are

discussed in further detail below.

The fact that robots are not processed in a face-like manner

indicates that perceivers may lack the familiarity and/or the

motivation to engage social brain areas with robot stimuli. This

may not necessarily lead to an inability to discriminate robot

stimuli by default (as is indicated in an overall good recognition

performance for robot faces) but it indicates that robot faces are

processedmore like objects (Yin, 1969) rather than unique social

agents with indentifiable personality attributes. Indeed, although

perceptual discrimination per se does not necessarily need face-

typical processing but could also be accomplished via object-

like processing, social perceived stimuli are discriminated in

terms of their perceptual features and accompanying identifiable

personality characteristics and attributes. A similar effect has

been observed in human face perception, such that faces of

members of social outgroups (e.g., racial outgroups) engage

brain areas more associated with object-like processing rather

than social processing afforded to faces of members of social

ingroups (e.g., same racial group as observer). In particular,

the Occipital Gyrus (Gauthier et al., 1999) is associated with

processing objects and is linked to categorical thinking, the

activation of stereotypes (Hugenberg et al., 2010), and overall

failures to see targets as having sophisticated humanlike faculties

(Cassidy et al., 2017). Of particular importance, object-like

perception could reduce the degree to which robots are

perceived as agents with sophisticated processing capacities (i.e.,

mind perception, Wiese et al., 2017). On the other hand, it has

been shown that processing non-human faces in a configural

manner is linked to seeing those agents as having sophisticated

minds (Young et al., 2019). Given that mind perception is a

pre-requisite for engaging social-cognitive processes, robots that

fail to trigger face-typical processing could also be accompanied

by impairments of higher-order social mechanisms like theory

of mind (see Baron-Cohen, 2000 for a review). In terms of

future research, it will be important to examine to which

extent building expertise and familiarity with robots will help

shift perception from (non-social) object-like to (social) face-

like processing.

Finally, object-like processing may also reduce people’s

motivation to engage with robot stimuli in everyday interactions

and reduce their willingness to apply human-like social scripts

and norms to the interaction. It could also significantly impact

discrimination performance in vivo, such that people may pay
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less attention to robot than human faces in realistic interactions

(rather than paradigms where they are instructed to pay

attention to the robot faces), which may negatively impact

stimulus discrimination (independent of whether it is based

on object- or face-like processing). Perceiving robots as objects

potentially also reduces the extent to which they are perceived

as belonging to the “human” ingroup, which may reduce the

motivation to pay attention to individuating agent features

even more.

Practical contributions

This study also has important practical implications for HRI.

First, not being able to distinguish robot teammembers that have

different reliabilities and capabilities leads to miscalibrated levels

of trust such that we may distrust skilled robots and over rely on

less skilled ones. Robots with human-like features may be more

likely to be processed as unique social, rather than homogenous,

entities based on our life-long experience with human faces,

and may motivate people to see robots as individuals when

they display human-like face features that activate social brain

areas (see Haxby et al., 2000 for a review). Previous research in

psychology has identified several low-level perceptual features

that are unique to human faces and as such have a high chance of

triggering face-typical processing. One such feature is the facial-

width-to-height ratio (FWHR), such that faces with low FWHRs

(narrower than wide faces) are more likely to be perceived as

human-like than faces with high FWHRs (wider than narrow

faces; Deska et al., 2018). Upon visual inspection, the robot

faces used in the current research were oftentimes round and

more symmetric in terms of FWHR than human faces, which

may have impacted the degree to which they triggered face

perception. However, because the robot stimuli were based

on an internet search using pre-defined criteria that did not

include FWHR (see section Methods), this should be taken as

a reasonably representative sample of facial features of current

robots rather than a biased selection of stimuli. To examine

the effect of FWHR on face perception in robots further, future

studies should experimentally manipulate the FWHR of robot

faces (i.e., human-like vs. non-human-like FWHR) and measure

the effects of such a manipulation on the face inversion effect.

Another hallmark human face-likeness is that certain

features need to be present, namely: eyes, eyebrows, mouth,

and nose. A lack of one or more features is associated with a

reduction in human-likeness (Deska and Hugenberg, 2017). In

line with this, Looser and Wheatley (2010) showed that when

face morphs varied in human-likeness from doll to human, as

the amount of human facial features increased and doll features

decreased, the facial stimuli were perceived as more human-

like. The authors also provide evidence that the most important

facial feature conveying human-likeness is the presence of eyes

(Looser and Wheatley, 2010), while other authors showed that

eyes that deviate from human size and/or shape are associated

with violations of human-likeness and the uncanny valley

phenomenon (Kätsyri et al., 2015). On the other hand, the

presence of human-like eyes has been shown to increase the

level of anthropomorphism that is induced by very non-human

stimuli like light switches, cars, or geometric shapes (Aggarwal

and McGill, 2007; Gao et al., 2010; Ahn et al., 2014). In addition

to the mere presence of human facial features, the spatial

relationship between the features also plays a role for configural

processing (Maurer et al., 2002). For instance, placing eyes at

unusual locations in human faces disrupts face processing and

reduces the inversion effect (Maurer et al., 2002). Since most

current robots do not contain all essential human facial features

or display facial features in an exaggerated fashion that does not

follow human-typical spatial relationships, future research needs

to examine to what extent these design features affect face-typical

processing in robots.

Lastly, the current research also highlights the suitability of

traditional psychological paradigms, such as the face inversion

effect, to objectively evaluate the design of social robots and

to make specific predictions about how specific design choices

will impact social-cognitive mechanisms in HRI. Specifically,

because the face inversion effect is an early-stream perceptual

effect rather than a late-stage judgment effect, it is likely

less susceptible to response biases, allowing for a more direct

measure of the extent to which a robot face is being perceived

as human-like. Given that past research has reliably linked

outgroup membership status to a reduction in face-typical

processing, the current research provides evidence that robots

are often perceived as lacking key perceptual components of the

“human ingroup.” While not being the first to demonstrate the

outgroup status of social robots (Eyssel and Loughnan, 2013)

or impaired configural processing of robots (Zlotowski and

Bartneck, 2013), we are the first ones to show its’ consequences

for face perception.

Limitations and future directions

The current study is bounded by certain limitations. First, it

is not clear to which degree the current results can be explained

by a lack of perceptual experience with the stimuli as opposed to

motivational factors related to the relevance of robot stimuli to

oneself. As discussed earlier, it is reasonable to assume that both

familiarity and motivational factors may explain the observed

reduction in face-typical processing for robot faces. However,

because the current study cannot answer which of the factors

played the major role, future studies need to examine the

particular contribution of these two factors to face perception

in HRI.

Second, while we argue that discrimination of robot faces

may enable better trust calibration and allocation of resources

in human–robot teams, the current study does not directly
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measure how reductions in face-typical processing affects

performance measures in human–robot teams. The challenge

for future research will be to link attenuated face processing

to system-wide trust and interventions designed to improve

configural processing to component-specific trust.

Third, it is also important to mention that the external

validity of the current research may be limited since images

of robot faces were used instead of embodied robot platforms.

This could particularly impact participants’ motivation to pay

sufficient attention to identity-specific features. Furthermore,

although objective criteria for image selection were defined prior

to conducting the image search, we cannot fully exclude that the

observed effect is to a certain degree due to the specific robot

images used here.

Conclusions

The current study uses objective measures to show that

prototypical robot faces are perceived as less face-like than

human faces and discusses implications for human–robot

interaction, as well as potential intervention strategies that

could improve face processing of robot stimuli. Because face-

like processing can prevent issues in human-robot teaming

related to miscalibration of trust, our research has important

practical implications for HRI. Future research will explore

practical applications further and extend our results to embodied

robot platforms.
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