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Background: Multiple sclerosis (MS) is an immune-mediated disease

characterized by inflammatory demyelinating lesions in the central nervous

system. Studies have shown that the inflammation is vital to both the onset and

progression of MS, where aging plays a key role in it. However, the potential

mechanisms on how aging-related inflammation (inflammaging) promotes MS

have not been fully understood. Therefore, there is an urgent need to integrate

the underlying mechanisms between inflammaging and MS, where meaningful

prediction models are needed.

Methods: First, both aging and disease models were developed using

machine learning methods, respectively. Then, an integrated inflammaging

model was used to identify relative risk factors, by identifying essential

“aging-inflammation-disease” triples. Finally, a series of bioinformatics analyses

(including network analysis, enrichment analysis, sensitivity analysis, and

pan-cancer analysis) were further used to explore the potential mechanisms

between inflammaging and MS.

Results: A series of risk factors were identified, such as the protein

homeostasis, cellular homeostasis, neurodevelopment and energy metabolism.

The inflammaging indices were further validated in di�erent cancer types.

Therefore, various risk factors were integrated, and even both the theories of

inflammaging and immunosenescence were further confirmed.

Conclusion: In conclusion, our study systematically investigated the potential

relationships between inflammaging and MS through a series of computational

approaches, and could present a novel thought for other aging-related diseases.

KEYWORDS

inflammaging, multiple sclerosis, machine learning, network analysis, pan-cancer

analysis

1 Introduction

Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory

demyelinating lesions in the central nervous system (CNS). MS is one of the major causes

of disability (GBD 2016 Neurology Collaborators, 2019), leading to a heavy burden on

families and society (Wang et al., 2023). It has been estimated that the number of people

Frontiers inMolecularNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2024.1398665
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2024.1398665&domain=pdf&date_stamp=2024-05-21
mailto:xzsha@cmu.edu.cn
mailto:saint5288@hotmail.com
mailto:chinawangyin@foxmail.com
https://doi.org/10.3389/fnmol.2024.1398665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnmol.2024.1398665/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnmol.2024.1398665

with MS increased to 2.8 million globally in 2020, 30% greater than

that in 2013 (Walton et al., 2020). Therefore, it is imperative to

study the underlying risk factors of MS.

There is substantial (i.e., epidemiological, pathological and

clinical) evidence indicating that chronological age is as the factor

mostly vital to MS (Graves et al., 2023), and even the development

of MS is closely related to aging (Graves et al., 2023). For example,

telomere abrasion is associated with disability and brain atrophy

in MS patients (Krysko et al., 2019), and reproductive aging

might also affect MS progression (Graves et al., 2018). Moreover,

aging microglia create a chronic inflammatory microenvironment

declining the normal function of remyelination (Neumann et al.,

2019), and aging astrocytes are vital to impair synaptic plasticity

and disturb the neuronal metabolic homeostasis (Correale and

Farez, 2015; Oost et al., 2018). In short, there is growing evidence

that aging promotes the development of MS.

MS is a chronic inflammatory disease closely relate to the

aging process (where aging-related inflammation is often defined

as inflammaging) (Xia et al., 2016; Cantuti-Castelvetri et al., 2022).

The main pathological hallmark of MS was demyelinating plaque,

which was also accompanied by chronic inflammation (Howe et al.,

2007; Lemus et al., 2018). It has been reported that aging promoted

neuroinflammation in MS and even led to a diminished ability

of microglia responding to axonal deficits (Mestre et al., 2021).

Moreover, senescent microglia were characterized by reduced

migration and phagocytosis abilities, indicating that they were less

efficient in removing myelin debris from damaged neurons in MS

(Neumann et al., 2009). Furthermore, ongoing neuroinflammation

was associated with neuronal death, which was vital to injure

the neuronal health (Simkins et al., 2021). During inflammatory

CNS episodes, several types of neurotoxic oxidation products were

synthetized, thus leading to increased energy demands (Mahad

et al., 2009; Haider et al., 2011). In conclusion, it could be speculated

that the aging-related inflammation (inflammaging) was as one

of the major risk factors in MS that needed to be explored

more systematically.

Fortunately, with the development of artificial intelligence,

many of the researches on MS utilized machine learning (ML),

which allowed for the diagnosis and prognosis using real datasets

(Aslam et al., 2022). In addition, ML techniques offered new

insights in the diagnosis, characterization and prediction of

disease progression (Jasperse and Barkhof, 2023). Several studies

have shown that ML can recognize key markers associated with

inflammation and aging (Mezzaroba et al., 2020; Zhou et al., 2023).

Meanwhile, there was an urgent need to integrate key biomarkers

and biological information (e.g., bymendelian randomization,MR)

(Yuan et al., 2021; Li C. et al., 2022). In addition, gene co-expression

network analysis could also identify highly correlated gene clusters

and explore their potential molecular mechanisms in MS (Creanza

et al., 2016; Gu et al., 2022). However, despite a large number of

studies explaining the risk factors in MS, potential mechanisms of

in MS based on inflammaging were still unclear and thus needed to

be further explored at the system level.

To further explore the potential mechanisms involved in

aging, inflammation and MS, a series of computational methods

were integrated in this work (Figure 1): (1) Machine learning was

used to identify aging and disease (MS) markers, respectively;

(2) An integrated inflammaging model was used to explore the

key relationship between inflammaging and MS, by identifying

essential “aging-inflammation-disease” triples; (3) Network

analysis, sensitivity analysis and enrichment analysis were used to

study potential risk factors for multiple sclerosis; (4) Pan-cancer

analysis was used to further validate relative biological functions in

cancers based on “aging-inflammation-disease” triples. Ultimately,

a series of underlying mechanisms of MS (i.e., protein homeostasis,

cellular homeostasis, neurodevelopment, and energy metabolism)

were integrated, which also provided key indicators for cancer.

These results could also present a novel thought for other

aging-relative experimental validations.

2 Results

2.1 Modeling prediction models and
identifying relative biomarkers

Gene expression profiles were obtained from the GEO database,

including 445 samples (Supplementary Table S1) and 16,275 genes

(Supplementary Table S2). These genes were ranked by the ReliefF

algorithm, and then the aging predictor and disease predictor were

modeled using the k-nearest neighbors (kNN; k = 9 with the

correlation distance) algorithm and optimized by 10-fold cross-

validation. The learning curves for the aging and disease models in

the training dataset were shown in Figures 2A, B, where the models

with the highest accuracy were selected (Table 1), including 70

aging markers and 19 disease markers (Supplementary Tables S3,

S4). As a result, the accuracies of the aging model and the disease

model in the test set were 0.8390 and 0.7233, respectively (Table 1).

Furthermore, the areas under the curve (AUCs) for the aging and

disease models in the test were 0.73672 and 0.64063 (Figures 2C,

D), by summarizing the specificity (the accuracy for the normal old

samples in the aging model, or for the MS samples in the disease

model) and the sensitivity (the accuracy for the normal young

samples in the agingmodel, or for the control samples in the disease

model) based on the ReliefF ranking results (i.e., the first one gene

expression, the first two genes, or the first three genes,..., the first

100 genes), respectively. In addition, the AUC of the ROC curves

were 0.74382 and 0.84711 based on the aging and disease score,

respectively (Figures 2E, F). Consequently, these results indicated

that our predictors were with enough accuracies in both aging and

disease models.

Both aging and disease markers indicated important biological

functions. For example, TSPAN6 (tetraspanin 6, ReliefF weight

was 0.135) was the top aging marker. It had been reported

that TSPAN6 was as a novel regulator of APP-CTF protein

homeostasis that prevented APP-CTF degradation from the

impairment in autolysosomal pathway (Guix et al., 2017). In

addition, TSPAN6 was identified as a regulator of synaptic

transmission and plasticity mechanisms, playing a key role

in synaptic development and AMPAR transport (Salas et al.,

2017; Becic et al., 2022). POM121L9P (POM121 transmembrane

nucleoporin like 9 as a pseudogene, ReliefF weight 0.051) was

the top disease marker. FNDC4 (Fibronectin type III structural

domain-containing protein 4, ReliefF weight was 0.050) was the

second top disease marker, and it have been shown to induce

the AMP-activated protein kinase (AMPK) phosphorylation and
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FIGURE 1

The workflow of our study.

heme oxygenase-1 (HO-1) expression in adipocytes, which in turn

suppressed inflammation and endoplasmic reticulum stress (Lee

et al., 2018). In short, these results indicated potential mechanisms

(i.e., neurodevelopment and energy metabolism) between aging

and MS.

2.2 Identifying essential relationships in MS
by the integrated inflammaging model

An integrated inflammaging model was developed to explore

the important relationships among aging, inflammation and MS

(shown in Section 5.3). Table 2 (Chen and D’Mello, 2010; Wan,

2014; Maridas et al., 2017; Jatczak-Pawlik et al., 2020; Tong

et al., 2020; Black et al., 2021; Correale, 2021; Fadul et al.,

2021; Sehgal et al., 2021; Atiyah et al., 2023) demonstrated the

top ten aging, inflammatory and disease markers, respectively.

For example, BMP8A (bone morphogenetic protein 8a), the

top aging marker, can achieve anti-adiposity by promoting

fatty acid oxidation and inhibiting adipocyte differentiation

(Zhong et al., 2023). Here, FNDC4 was also identified as

the top disease marker in triples. IDO1 (indoleamine 2,3-

dioxygenase 1) was the top inflammatory marker as a key

determinant enzyme in the metabolism of L-tryptophan (Trp),

shifting the process from serotonin production to kynurenine

production (Correale, 2021). The roles of the kynurenine pathway

included endogenous regulation of neuronal excitability, initiation

of immune tolerance and synthesis of nicotinamide adenine

dinucleotide (NAD), where NAD+ being a key molecule in a

variety of biochemical processes (Mbongue et al., 2015; Zhong

et al., 2023). In summary, the integrated inflammaging model

revealed important relationships among aging, inflammation

and MS.

2.3 Sensitivity analysis revealed crucial
relationships between inflammaging and
MS

The Markov Chain Monte Carlo (MCMC) method was used

to assess the sensitivity indices between inflammaging and MS.

As a result, the 35 sensitive triples (by calculating the absolute

difference frequency) were shown in Table 3 (Sarasin-Filipowicz

et al., 2009; Chen and D’Mello, 2010; Bergbold and Lemberg, 2013;

Liu et al., 2013; Malhotra et al., 2013; Wan, 2014; Charbit et al.,

2015; Fusco et al., 2015; An et al., 2017; Arentsen et al., 2017;

Maridas et al., 2017; Mathur et al., 2017; Xiao et al., 2019; Immler

et al., 2020; Sato et al., 2020; Tong et al., 2020; Buhelt et al., 2021;

Correale, 2021; Fadul et al., 2021; Ma et al., 2021; Peng et al., 2021;

Bogacka et al., 2022; Franceschi et al., 2022; Hjæresen et al., 2022;

Khurana and Goswami, 2022; Liu S. et al., 2022; Schebb et al.,

2022; Watanabe et al., 2022; Saeidi et al., 2023). For example, the

sensitive triple with maximum difference was “TMPRSS13-USP18-

DCHS2” (the absolute difference value was 0.270469). TMPRSS13

(transmembrane serine protease 13) had an essential role in its

zymogen autoactivation, proteolytic activity to ward the protein

substrate prostasin and phosphorylation (Martin et al., 2021).

USP18 (Ubiquitin-specific peptidase 18) was a deubiquitinating

enzyme, and as a negative regulator of type I IFN (IFN-α and

IFN-β) signaling pathway, where IFN-β was effective for treating

MS (Sarasin-Filipowicz et al., 2009; Malhotra et al., 2013; Charbit

et al., 2015). In short, USP18 was vital to MS pathogenesis

(Malhotra et al., 2013). DCHS2 (dachsous cadherin-related 2) has

been implicated in the regulations of planar cell polarity and cell

movement (such as convergence-extension and cell migration)

(Lodge et al., 2020).

The top sensitive (with occurring times) aging, inflammatory

and disease markers were also shown in Table 4 (Sarasin-Filipowicz
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FIGURE 2

Machine learning results. (A, B) Learning curve for the training dataset; (C, D) sensitivity and specificity (similar to receiver operating characteristic)

curves; (E, F) the ROC curve for the test dataset; (A, C, E) the aging model; (B, D, F) the disease (MS) model.
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TABLE 1 The accuracy of the aging predictor model and disease predictor model.

The accuracy of training
datasets

The accuracy of

test datasets

Markers used for
classification

The aging predictor 0.8744 0.8390 70

The disease predictor 0.6853 0.7233 19

TABLE 2 The top ten aging, inflammatory, and disease markers from the integrated inflammaging model.

Aging
marker

Times Disease
marker

Times Inflammatory
marker

Times Contents of
reference

Experimental
method

References

BMP8A 48 POM121L9P 127 IDO1 51 IDO1 had a role in

regulating neuronal

excitability.

IDO1 gene-deficient

mouse model

Correale, 2021

TMPRSS13 29 FNDC4 70 SLC18A2 25 SLC18A2 had a

neuroprotective effect.

Human embryonic

kidney cell culture and

96-well plate screening

assay

Black et al., 2021

KHDRBS3 27 DCHS2 56 CD40LG 23 Blocking CD40LG might

be an effective treatment

for patients with MS.

Humanized

(αCD40Ltoralizumab) IV

infusion

Fadul et al., 2021

FAT1 23 SOBP 53 CAMK1D 22 CAMK1D caused

increased protein

expression levels and

altered regulation of

glucose processing.

Protein resonance

assignment

Tong et al., 2020

FRAS1 22 CRYGB 45 IGFBP4 19 IGFBP4 might be a key

regulator of adipose

tissue development and

maintenance.

Igfbp4 knockout mouse

model

Maridas et al.,

2017

CTNND2 20 CR2 34 PNMA1 19 PNMA1 could promote

neuronal apoptosis.

Western blot and

co-immunoprecipitation

analysis

Chen and

D’Mello, 2010

COL21A1 20 ADAM28 30 GATA3 14 GATA3 regulated T-cell

development,

proliferation and

maintenance.

cDNA representational

difference analysis

Wan, 2014

CXADR 19 PCDH9 27 TLR10 13 TLR10 was recognized as

a novel inhibitor of the

inflammatory responses,

and was downregulation

in serum of MS.

Enzyme-linked

immunosorbent assay

Atiyah et al., 2023

CAP2 19 RASGRP3 26 CCR6 13 CCR6 on regulatory T

cells might be a potential

target for therapeutic

intervention in MS.

Flow cytometry Jatczak-Pawlik

et al., 2020

AMOT 17 LOC647070 24 CSF1 13 CSF1 controlled the

differentiation, survival,

proliferation and

renewal of monocytes

and macrophages.

Injection of recombinant

human CSF1 into a

mouse model

Sehgal et al., 2021

et al., 2009; Chen and D’Mello, 2010; Malhotra et al., 2013;

Charbit et al., 2015; An et al., 2017; Arentsen et al., 2017; Lee

et al., 2018; Xiao et al., 2019; Sato et al., 2020; Peng et al., 2021;

Franceschi et al., 2022; Saeidi et al., 2023). For example, the top

aging and inflammatory markers were also TMPRSS13 and USP18,

respectively. POM121L9P was a pseudogene and the second disease

marker was DCHS2. In summary, the sensitive analysis indicated

that protein homeostasis and cellular homeostasis played important

roles in the development of MS.

2.4 Underlying inflammaging mechanisms
by enrichment analysis

To further explore potential underlying mechanisms between

inflammaging and MS, each shortest path between inflammatory

and disease markers was obtained based on the Dijkstra algorithm,

then the enrichment analysis was performed based on Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway and

Biological Process (BP) terms in Gene Ontology (GO). Because the
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TABLE 3 Absolute di�erence frequencies for 35 triples in the sensitivity analysis.

Aging marker Inflammatory
marker

Disease
marker

Absolute
di�erence
frequencies

Contents of reference Experimental method References

TMPRSS13 USP18 DCHS2 0.270469 USP18 was a deubiquitinating enzyme, related to IFN-β that

can treat MS.

Real-time PCR Sarasin-Filipowicz et al., 2009;

Malhotra et al., 2013; Vécsei

et al., 2013; Charbit et al., 2015

TMPRSS13 USP18 POM121L9P 0.250288 USP18 was a deubiquitinating enzyme, related to IFN-β that

can treat MS.

Real-time PCR Sarasin-Filipowicz et al., 2009;

Malhotra et al., 2013; Vécsei

et al., 2013; Charbit et al., 2015

TMPRSS13 PLA2G2D DCHS2 0.246574 PLA2G2D increased energy expenditure and thermogenesis

by facilitating adipocyte browning.

Global and macrophage-specific Pla2g2d

deletion mouse models

Sato et al., 2020

TMPRSS13 CUEDC2 DCHS2 0.230594 CUEDC2 was involved in the cell cycle regulation and

inflammation.

Real-time PCR and methylation-specific

polymerase chain reaction

Xiao et al., 2019

TMPRSS13 MMP8 POM121L9P 0.223794 MMP8 could initiate the first step of collagen degradation

and was associated with the initial inflammatory stages of

wound repair.

DNA purification An et al., 2017

TMPRSS13 XCL1 POM121L9P 0.206697 XCL1 might contribute to the migration of autoreactive T

cells to the CNS and played a key role in the pathogenesis

and development of MS.

Enzyme-linked immunosorbent assay

(ELISA)

Saeidi et al., 2023

TMPRSS13 CAMK2N1 POM121L9P 0.195029 CAMK2N1 was involved in the negative regulation of cell

population proliferation.

qRT-PCR and immunoblotting assays Peng et al., 2021

TMPRSS13 SHPK DCHS2 0.181103 SHPK catalyzed the phosphorylation of sedoheptulose in the

non-oxidative arm of the pentose phosphate pathway.

Immunofluorescence and WST1 assay Franceschi et al., 2022

TMPRSS13 IKBKG POM121L9P 0.176078 IKBKG was involved in a variety of physiological and

cellular processes, such as immunity, inflammation, cell

proliferation, and survival.

Mutation sequence analysis Fusco et al., 2015

BMP8A CCR4 POM121L9P 0.126684 CCR4 was important in the pathogenesis of MS. CCR4 knockout mouse model Bogacka et al., 2022

TMPRSS13 USP18 CRYGB 0.126354 USP18 was a deubiquitinating enzyme, related to IFN-β that

can treat MS.

Real-time PCR Sarasin-Filipowicz et al., 2009;

Malhotra et al., 2013; Charbit

et al., 2015

CRYBG3 USP18 POM121L9P 0.125618 USP18 was a deubiquitinating enzyme, related to IFN-β that

can treat MS.

Real-time PCR Sarasin-Filipowicz et al., 2009;

Malhotra et al., 2013; Charbit

et al., 2015

FRAS1 IDO1 ADAM28 0.112627 IDO1 had a role in regulating neuronal excitability. IDO1 gene-deficient mouse model Correale, 2021

CAP2 IDO1 ARHGAP17 0.111331 IDO1 had a role in regulating neuronal excitability. IDO1 gene-deficient mouse model Correale, 2021

ATP10D IL2RA CRYGB 0.108406 IL2RA was involved in the pathogenesis of MS. Flow cytometry analysis Buhelt et al., 2021
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TABLE 3 (Continued)

Aging marker Inflammatory
marker

Disease
marker

Absolute
di�erence
frequencies

Contents of reference Experimental method References

CAP2 RHBDD3 POM121L9P 0.106237 RHBDD3 was a negative regulator of natural killer cell

activation and positive regulator of protein catabolic process.

Flow cytometry, coimmunoprecipitation and

western blot

Bergbold and Lemberg, 2013;

Liu et al., 2013

CRHBP CD40LG FNDC4 0.104379 Blocking CD40LG might be an effective treatment for

patients with MS.

Humanized αCD40L (toralizumab) IV

infusion

Fadul et al., 2021

SGCD UMOD SOBP 0.104191 UMOD underwent proteolytic cleavage to pUMOD, which

was the most abundant urinary protein in healthy

individuals.

Immunofluorescence and transendothelial

electrical resistance measurements

Immler et al., 2020

CAP2 GATA3 POM121L9P 0.103396 GATA3 regulated T-cell development, proliferation and

maintenance.

cDNA representational difference analysis Wan, 2014

BCMO1 XCL1 PCDH9 0.101988 XCL1 might contribute to the migration of autoreactive T

cells to the CNS and played a key role in the pathogenesis

and development of MS.

ELISA Saeidi et al., 2023

BMP8A SMPDL3B POM121L9P 0.099676 SMPDL3B was involved in the negative regulation of

toll-like receptor signaling pathway.

qRT-PCR analyses and western blot Watanabe et al., 2022

FLJ11292 ALOX15 POM121L9P 0.08205 ALOX15 produced a variety of bioactive lipid mediators and

played a role in the resolution of inflammation.

ELISA and LC-MS analysis of SPMs Schebb et al., 2022

VPS13C CAMK1D DCHS2 0.075201 CAMK1D caused increased protein expression levels and

altered regulation of glucose processing.

Protein resonance assignment Tong et al., 2020

MPPED2 IDO1 FNDC4 0.074466 IDO1 had a role in regulating neuronal excitability. IDO1 gene-deficient mouse model Correale, 2021

POLR2H IGFBP4 CRYGB 0.063038 IGFBP4 might be a key regulator of adipose tissue

development and maintenance.

Igfbp4 knockout mouse model Maridas et al., 2017

ATP10D NCR3 FNDC4 0.056491

TMPRSS13 IRF3 CRYGB 0.051158 IRF3 could inhibit STING pathway, which was a regulator of

microglial reactivity and neuroinflammation.

qRT-PCR, siRNA knockdown and flow

cytometry

Mathur et al., 2017

BMP8A FABP4 POM121L9P 0.051109 FABP4 was responsible for promoting lipid storage,

distribution, transportation, decomposition and metabolism.

Fluorescence in situ hybridization and

somatic cell hybridization

Liu S. et al., 2022

FRAS1 TNFSF4 CR2 0.045746

MPPED2 ACE SOBP 0.030306 ACE was involved in regulating blood pressure. Chromatographic and electrophoretic

techniques

Khurana and Goswami, 2022

ELL2 PGLYRP2 ADAM28 0.027812 PGLYRP2 affected the development of neurons. PGN detection assay, qPCR and western blot Arentsen et al., 2017

CACNA2D2 ITIH4 POM121L9P 0.021254 ITIH4 played a role in inflammation and infection response. Western blot and qRT-PCR Ma et al., 2021

FLJ11292 MIF POM121L9P 0.021218 MIF mediated neuroprotective effects by suppressing

inflammatory responses, and inhibiting apoptosis.

ELISA Hjæresen et al., 2022

COL21A1 IDO1 ADAM28 0.011991 IDO1 had a role in regulating neuronal excitability. IDO1 gene-deficient mouse model Correale, 2021

CRHBP PNMA1 FNDC4 0.001599 PNMA1 could promote neuronal apoptosis. Western blot and coimmunoprecipitation

analysis

Chen and D’Mello, 2010
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TABLE 4 Sensitivity analysis of the top 10 genes related to aging, disease, and inflammation.

Aging marker Times Diseasemarker Times Inflammatory

marker

Times Contents of reference Experimental method References

TMPRSS13 11 POM121L9P 14 USP18 4 USP18 was a deubiquitinating enzyme,

related to IFN-β that can treat MS

Real-time PCR Sarasin-Filipowicz et al., 2009;

Malhotra et al., 2013; Charbit et al.,

2015

CAP2 3 DCHS2 5 IDO1 4 IDO1 was involved in the catabolism of

amino acids.

IDO1 gene-deficient mouse model Correale, 2021

BMP8A 3 CRYGB 4 XCL1 2 XCL1 might contribute to the migration of

autoreactive T cells to the CNS and played a

key role in the pathogenesis and development

of MS.

ELISA Saeidi et al., 2023

MPPED2 2 FNDC4 4 CUEDC2 1 CUEDC2 was involved in the cell cycle

regulation and inflammation.

Real-time PCR and

methylation-specific polymerase

chain reaction

Xiao et al., 2019

CRHBP 2 ADAM28 3 CAMK2N1 1 CAMK2N1 inhibited HCC and colorectal

carcinoma, and modulated obesity by

affecting many metabolic syndrome features.

qRT-PCR and immunoblotting

assays

Peng et al., 2021

ATP10D 2 SOBP 2 PLA2G2D 1 PLA2G2D increased energy expenditure and

thermogenesis by facilitating adipocyte

browning, thereby ameliorating diet-induced

obesity and WAT inflammation.

Global and macrophage-specific

Pla2g2d deletion mouse models

Sato et al., 2020

FRAS1 2 ARHGAP17 1 SHPK 1 SHPK catalyzed the phosphorylation of

sedoheptulose in the non-oxidative arm of

the pentose phosphate pathway and was

associated with energy metabolism.

Immunofluorescence and WST1

assay

Franceschi et al., 2022

FLJ11292 2 PCDH9 1 MMP8 1 MMP8 could initiate the first step of collagen

degradation and was associated with initial

inflammatory stages of wound repair.

DNA purification An et al., 2017

CRYBG3 1 CR2 1 PGLYRP2 1 PGLYRP2 affected the development of

neurons.

PGN detection assay, qPCR and

western blot

Arentsen et al., 2017

ELL2 1 PNMA1 1 PNMA1 could promote neuronal apoptosis. Western blot and

coimmunoprecipitation analysis

Chen and D’Mello, 2010

F
ro
n
tie

rs
in

M
o
le
c
u
la
r
N
e
u
ro
sc
ie
n
c
e

0
8

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnmol.2024.1398665
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnmol.2024.1398665

starting point in each shortest path was a inflammatory marker, the

enriched functions was analyzed by deleting the starting point, or

analyzed other enriched functions excluding inflammation related

function if containing the starting point.

The top ten KEGG pathways were shown in Table 5 (Lasky,

1991; Reichardt, 2006; Fujita et al., 2009; O’Callaghan et al.,

2017; Conway, 2018; Gao et al., 2018; Kotelnikova et al., 2019;

Plantone et al., 2019; Ten Bosch et al., 2021; Bahadoram

et al., 2022; Bohmwald et al., 2022; Sen et al., 2022; Wu

and Zhou, 2022; Chen et al., 2023; Liu et al., 2023; Touil

et al., 2023; Guerra-Espinosa et al., 2024) and Figure 3 and

Supplementary Figure S1 (without the starting point). For example,

the KEGG pathway that was most enriched shortest paths was “B

CELL RECEPTOR SIGNALING PATHWAY” (enriched 50 shortest

paths, Figure 3A and Supplementary Figure S1A). BCR was critical

for B cells to properly elicit an immune response (Tanaka and

Baba, 2020). The KEGG pathway with minimum FDR was

“ALDOSTERONE REGULATED SODIUM REABSORPTION”

(FDR = 0.0902, Figure 3C and Supplementary Figure S1C), where

sodium reabsorption occurred in the kidney (Franken et al.,

2021). Sodium accumulation might play a critical role in both

inflammatory and neurodegenerative processes in MS patients

(Zostawa et al., 2017; Huhn et al., 2019). Furthermore, it has been

shown that sodium accumulation leads to the release of calcium,

which can exacerbate neurological disorders (Yang et al., 2015).

The top ten BP terms were shown in Table 6 (Lasky, 1991; Rønn

et al., 1998; Olivieri et al., 2003; Vély and Vivier, 2005; Suzuki

and Takeichi, 2008; Shishido et al., 2012; Janssens et al., 2015;

Yan et al., 2018; Nick, 2019; Bjornevik et al., 2023; Marzvanyan

and Alhawaj, 2023; Soldan and Lieberman, 2023) and Figure 3

and Supplementary Figure S1 (without the starting point). For

example, the BP term with the most enriched shortest paths

was “VIRAL PROCESS” (GO: 0016032, enriched 53 shortest

paths, Figure 3B and Supplementary Figure S1B). Some studies

have shown that EBV is one of the primary causes of MS (Bjornevik

et al., 2023), by affecting the cellular homeostasis (Sun et al.,

2013). The BP term with minimum FDR was “REGULATION

OFMEMBRANE REPOLARIZATIONDURINGVENTRICULAR

CARDIACMUSCLE CELL ACTION POTENTIAL” (GO:1905024,

FDR = 0.0104, Figure 3D and Supplementary Figure S1D), which

affected neurons, and thus MS, through action potentials (Mangold

et al., 2017).

The top ten KEGG pathways were shown in

Supplementary Table S5 (containing the starting point) (Lasky,

1991; Reichardt, 2006; Allen et al., 2007; O’Callaghan et al., 2017;

Conway, 2018; Gao et al., 2018; Kotelnikova et al., 2019; Plantone

et al., 2019; Cui et al., 2020; Amoriello et al., 2021; Balkan and

Bilge, 2021; Wu and Zhou, 2022; Chen et al., 2023; Leonard

and Lin, 2023; Suptela and Marriott, 2023; Touil et al., 2023;

Guerra-Espinosa et al., 2024). For example, one enriched pathway

was “COMPLEMENT AND COAGULATION CASCADES,”

where complement and coagulation were major blood-borne

proteolytic cascades (Conway, 2018). Another crucial enriched

pathway was “MAPK SIGNALING PATHWAY,” which was critical

for cell survival, proliferation, adhesion and chemotaxis, as well

as pro-inflammatory responses of immune cells (Kotelnikova

et al., 2019). In addition, studies have shown that microglia

with overactive MAPK interfere with local oligodendrocytes,

leading to localized regional demyelination (a hallmark of MS)

(Ten Bosch et al., 2021). The KEGG pathway with minimum

FDR (Supplementary Table S6) was “NICOTINATE AND

NICOTINAMIDE METABOLISM” (FDR = 0.001626), which

produced the biologically active coenzymes, nicotinamide adenine

dinucleotide (NAD), and its phosphate analog, the nicotinamide

adenine dinucleotide phosphate (NADP) (Gasperi et al., 2019).

Moreover, nicotinamide had been implicated in the development,

survival and other function of neurons in the CNS, with both

neuronal death and neuroprotection (Fricker et al., 2018). The top

ten BP terms were shown in Supplementary Table S7 (Holman

et al., 2011; Shishido et al., 2012; Zevini et al., 2017; Díaz et al.,

2019; Silk and Margolin, 2019; Liu et al., 2022a,b; Huang et al.,

2023) and the top ten BP terms with minimum FDR were shown

in Supplementary Table S8 (containing the starting point). There

were some BP terms connected to the microglia cell, which closely

related to remyelination (Lloyd et al., 2019).

In summary, the enrichment analysis revealed various risk

factors in MS, such as inflammation, neurodevelopment and

cellular homeostasis.

2.5 Network markers identified potential
risk markers

Network markers were identified by calculating the betweeness

of the shortest path for each “inflammation-disease” pair, where

the top 10 markers were shown in Table 7. For example, the top

network marker (with the maximum betweeness and significant

permutation result) was TARDBP (Transactive response DNA

binding protein), where the relative network modules (including

all the related shortest paths) were shown in Figure 4. It has been

reported that TARDBP encoded the intranuclear protein TDP-

43 (Transactive response DNA binding protein of 43 kDa) that

played a role in the cellular stress response (Higashi et al., 2013).

Stress granules were cytoplasmic foci that respond to cellular stress,

and TDP-43 bound to ribosomes in stress granules, temporarily

halting translation and promoting cytoprotective protein synthesis

(Higashi et al., 2013; Baradaran-Heravi et al., 2020; Meneses et al.,

2021). In addition, TARDBP was a risk factor for amyotrophic

lateral sclerosis, frontotemporal dementia, and Alzheimer’s disease,

exacerbating cognitive impairment (Manohar et al., 2009; Meneses

et al., 2021). In short, potential crucial risk markers were further

identified by network analysis.

2.6 Pan-cancer analysis further validated
the mechanism of inflammaging in MS

Pan-cancer analysis was used to further validate the relevant

functions of “aging-inflammation-disease” triples. For example, the

markers in triples were used to assess the survival indices across

different cancer types. There were 9 out of 16 cancer types with

significant results (including BLCA, HNSC, KIRC, KIRP, LIHC,

LUAD, LUSC, READ and UCEC, shown in Figure 5). These results

suggested that inflammaging markers could also be used as relative

risk factors for cancer.
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TABLE 5 Top 10 most enriched KEGG pathways.

KEGG Enriched
shortest paths

Functions Experimental method References

B CELL RECEPTOR SIGNALING PATHWAY 50 Survival and priming of B cells to receive T-cell help and B cells

may potential contributors to progressive MS.

Flow cytometry Chen et al., 2023; Touil et al., 2023

HEMATOPOIETIC CELL LINEAGE 36 Impact on immune function and bone marrow hematopoiesis

might drive MS progression

Single-cell sequencing Gao et al., 2018; Wu and Zhou,

2022

COMPLEMENT AND COAGULATION CASCADES 29 Complement and coagulation were major blood-borne proteolytic

cascades and might play a role in the pathogenesis of MS.

an animal model of MS, Single-cell

RNA sequencing and flow

cytometry

Conway, 2018; Plantone et al., 2019

MAPK SIGNALING PATHWAY 16 Critical for cell survival and proliferation, cell adhesion and

chemotaxis, and pro-inflammatory responses of immune cells.

xMAP Assays, flow cytometry and

ELISA

Kotelnikova et al., 2019; Ten Bosch

et al., 2021

NEUROTROPHIN SIGNALING PATHWAY 12 Associated with neuronal survival, development and function. Reichardt, 2006; Bohmwald et al.,

2022

NEUROACTIVE LIGAND RECEPTOR INTERACTION 12 1) Closely related to neurological function

2) Impact on memory capacity.

Reichardt, 2006

CELL ADHESIONMOLECULES CAMS 9 1) In the immune system, CAMs regulated cell development,

activation, differentiation, migration and many other cellular

processes of crucial importance for the immune response.

2) Involved in the regulation of synaptic plasticity and the

formation of neuronal networks.

3) CEACAM1 might prove to be a novel target for

immunotherapy of multiple sclerosis.

Flow Cytometry Lasky, 1991; Fujita et al., 2009;

O’Callaghan et al., 2017;

Guerra-Espinosa et al., 2024

ENDOCYTOSIS 7 1) Related to immunity, inflammation.

2) Phagocytosis was one of the prerequisites for myelin

regeneration in MS patients.

Animal models fed CPZ Sen et al., 2022

RENAL CELL CARCINOMA 6 Renal cell carcinoma and MS share the same risk factors age. Bahadoram et al., 2022

PANCREATIC CANCER 6 MS was a risk factor for pancreatic cancer. Liu Q. et al., 2023
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FIGURE 3

Enrichment analysis of the shortest paths of KEGG and BP, after combining overlap shortest paths. (A) KEGG with the most shortest enriched paths;

(B) BP with the most shortest enriched paths; (C) KEGG with the minimum FDR; (D) BP with the minimum FDR. The orange nodes represent the

inflammaging markers, the blue nodes represent the genes connecting inflammaging markers and disease markers, the green nodes represent the

disease markers, and the genes in the red square frames coincide with those genes in the enriched functions.

In addition, based on enrichment analysis, both the

commonality and specificity across 16 cancer types were further

investigated. The top 10 common KEGG pathways were shown

in Figure 6A, with the highest enrichment score of “CALCIUM

SIGNALING PATHWAY.” A growing body of research suggested

that calcium homeostasis contributed to well-known cancer-

causing signals. Many studies had emphasized that calcium

signaling contributed to the progression of several cancer types

(e.g., glioma, prostate, and breast) through the activation of

STAT3 (Wu et al., 2021). Meanwhile, calcium channels played

an important role in the excitation and propagation of neuronal

action potentials (Pourtavakoli and Ghafouri-Fard, 2022). The

top 10 common BP terms were shown in Figure 6B, with the

highest enrichment scoring of “NERVOUS SYSTEM PROCESS”

(GO:0050877), indicating the key role of the nervous system

in cancer (Hanahan and Monje, 2023). Supplementary Table S9

(Peterson et al., 2020; Feng et al., 2021; Glorieux and Buc

Calderon, 2021; Hou et al., 2021; Naghshi et al., 2021) and

Supplementary Table S10 (Martens and Mithöfer, 2005; Turner

and Grose, 2010; Menezes et al., 2018; Arneson and Doles, 2019;

Przygodzka et al., 2019; Keough and Monje, 2022; Ohkuni et al.,

2022; Libretti and Aeddula, 2023; Lustberg et al., 2023) summarized

the specific enrichment results in each cancer, indicating that a

series of risk factors (such as neurodevelopment and cellular

homeostasis) were also crucial to cancer.

In summary, our findings highlighted a series of key functions

associated with inflammaging that could also be used to investigate

potential mechanisms in cancer.

3 Discussion

The inflammatory response plays a crucial role inMS. However,

the important relationships among aging, inflammation and MS

remain to be further explored in depth. In this paper, a series of

computational methods were used to explore these relationships

and relative mechanisms in MS. First, both aging and disease

predictors were modeled to identify relative aging and disease

markers, respectively. Then, an integrated inflammagingmodel was

developed to find important “aging-inflammation-disease” triples.

Further, the potential mechanisms between inflammation and

MS were investigated using network analysis, sensitivity analysis,

enrichment analysis and pan-cancer analysis. In short, various risk

factors in MS were integrated at system level.

Our findings emphasized that protein homeostasis was

vital to the MS development. For example, the disease marker

FNDC4, could lead to AMP-activated protein kinase (AMPK)

phosphorylation (Lee et al., 2018). Moreover, in the MCMC

(Table 3), the most sensitive marker of aging was TMPRSS13,

playing a key role in proteolytic activity and phosphorylation
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(Martin et al., 2021). In the enrichment analysis, the KEGG

pathway was “COMPLEMENT AND COAGULATION

CASCADES,” which was associated with protein catabolism

(Conway, 2018). In summary, our results also confirmed that the

protein homeostasis played an important role in MS by interacting

with the immune system, even accelerating the progression of MS

(Negrotto and Correale, 2017).

The cellular homeostasis was also highlighted in this work. For

example, the top network marker was TARDBP (Figure 4), which

encoded the intranuclear protein TDP-43 that played a role in the

cellular stress response (Higashi et al., 2013). Moreover, in MCMC

(Table 3), the inflammatory marker CUEDC2 was involved in the

cell cycle regulation (Xiao et al., 2019). According to the enrichment

analysis, one of the most enriched KEGG pathways was “MAPK

SIGNALING PATHWAY.” The MAPK pathway is associated

with cell proliferation, differentiation, migration, senescence, and

apoptosis (Sun et al., 2015). Furthermore, lytic cell death pathways

(such as pyroptosis, necroptosis, ferroptosis, and PANoptosis) are

closely related to neuroinflammation and even exacerbate MS (Lee

et al., 2023). This demonstrated the key role of cellular homeostasis

in MS.

Neurodevelopment played an important role in the

development of MS. For example, the top aging marker TSPAN6

was a regulator of synaptic transmission and plasticity mechanisms

(Salas et al., 2017). The inflammaging model had identified

a series of inflammatory markers associated with neuronal

formation in MS (Table 2): DO1 had a role in regulating neuronal

excitability (Correale, 2021); SLC18A2 was neuroprotective and

PNMA1 promoted neuronal apoptosis (Chen and D’Mello,

2010; Black et al., 2021). In the enrichment analysis, the KEGG

pathways “NEUROTROPHIN SIGNALING PATHWAY” and

“NEUROACTIVE LIGAND RECEPTOR INTERACTION” also

highlighted the neurodevelopment (Reichardt, 2006; Bohmwald

et al., 2022). MS is a wellknown neuroinflammatory disease, where

neuronal damage is vital to the progression ofMS lesions (Schirmer

et al., 2019). In sum, our results highlighted the neurodevelopment

in MS.

The energymetabolismwas also involved in the development of

MS. For example, in the integrated inflammaging model (Table 2),

the aging marker BMP8A, enabled anti-adiposity by promoting

fatty acid oxidation and inhibiting adipocyte differentiation

(Zhong et al., 2023); the inflammatory marker IGFBP4 was

an important regulator of adipose tissue development (Maridas

et al., 2017). In addition, in MCMC (Table 4), the inflammation

marker SHPK catalyzed the phosphorylation of sedoheptulose

in the non-oxidative arm of the pentose phosphate pathway

(Franceschi et al., 2022). Furthermore, in the enrichment analysis

(Supplementary Table S6), the KEGG pathway withminimum FDR

was “NICOTINATE AND NICOTINAMIDE METABOLISM”

(FDR = 0.001626), which produced the biologically active

coenzymes NAD (its phosphate analog was the NADP) (Gasperi

et al., 2019). There was also a series of pathogenesis in MS along

with the energy failure of the CNS (Park and Choi, 2020). These

results suggested that energy metabolism was closely related to the

MS progression.

It has been well known that MS is a chronic inflammatory

disease, which is closely related to the aging process. Herein

various risk factors for MS were explored based on aging-related

inflammation (inflammaging). In this work, a series of

computational methods were used to investigate potential

molecular mechanisms in MS. An inflammaging model was

constructed to obtain the “aging-inflammation-disease” triples,

and then crucial inflammaging characteristics in MS were

identified. In addition, these results could also indicate further

the relative experimental validations. In short, the complex

mechanisms in MS could be further studied by exploring key

inflammaging indices, where various risk factors were integrated at

system level.

Stridently, the identified inflammaging characteristics in MS

(i.e., the inflammaging markers, enriched KEGG pathways or

BP terms, shown in Tables 2–6) have been validated by a series

of relative experiment results. For example, inflammaging could

alter the transport capacity of B cells, making them more

sensitive to cytokines and pro-inflammatory molecules, which were

overproduced in the elderly (Bulati et al., 2014). Recently, using

the flow cytometry, it has been demonstrated that the combination

of pro-inflammatory interleukin-21 (IL-21) and B-cell receptor

(BCR) stimulation enabled B cells to produce/secrete the active

form of the cytotoxic serine protease granzyme B (GrB), which

might exacerbate the MS progression (Niland et al., 2010; Bulati

et al., 2014). Further, the coagulation pathway was also identified

in this work, and even confirmed by other experimental results

of MS (by using animal models, single-cell RNA sequencing,

or flow cytometry). It has been reported that the coagulation

cascade increased neuroinflammation during the aging process,

thus interacting with a series of physiological factors such as

neuronal deficits, oxidation, or dysfunction of the endoplasmic

reticulum andmitochondria, which in turn contributed to the onset

of MS (Conway, 2018; Plantone et al., 2019). In addition, Enzyme-

linked immunosorbent assay (ELISA) indicated that “Bovine serum

albumin (BSA)-advanced glycation end (AGE)” enhanced IL-6

expression through MAPK-ERK action (MAPK-ERK and MyD88

transduced NF-κB signaling pathways), and studies (both in vitro

and in vivo) have demonstrated that IL-6 played a crucial role in

regulating the immune response in MS (Janssens et al., 2015; Shen

et al., 2019). The EBV infection have also been reported to increase

the risk of developing MS approximately 32-fold (Bjornevik et al.,

2022). EBV infected of B cells and T cells, leading to infected B

cells infiltrated of the CNS and T cell exhaustion, where CD8T

cell deficiency contributed to the decreased CD8T cell response

to EBV-infected B cells and with functional declined in aged

MS patients (Pender et al., 2012; Soldan and Lieberman, 2023).

Note worthily, the perpetuation of “forbidden” autoreactive B-cell

clone by EBV immortalization have been suggested as a potential

mechanism for triggering MS (Pender, 2011). For example, in

the context of inflammaging and immunosenescence, EB-virus

immortalized B lymphocytes model have been shown to produce

higher levels of IL-6, which was associated with the pathogenesis of

MS (Olivieri et al., 2003; Janssens et al., 2015). In short, a series of

key risk factors in MS were identified based on inflammaging, and

even could be confirmed by relative experiments.

Studies had shown that the risk of cancer was increased

in people with MS (Ragonese et al., 2017; Bosco-Lévy et al.,

2022). It was well known that MS and cancer shared a
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TABLE 6 Top 10 most enriched BP pathways.

BP Enriched
shortest paths

Functions Experimental method Reference

VIRAL PROCESS (GO:0016032) 53 EBV was an important factor in the cause of MS. EB-virus immortalized B

lymphocytes model

Olivieri et al., 2003; Bjornevik et al.,

2023; Soldan and Lieberman, 2023

BIOLOGICAL PROCESS INVOLVED IN SYMBIOTIC

INTERACTION (GO:0044403)

52 Symbiosis related to metabolism and immunity Synchrotron micro-X-ray

fluorescence

Nick, 2019

HOMOPHILIC CELL ADHESION VIA PLASMA

MEMBRANE ADHESIONMOLECULES (GO:0007156)

49 1) For synaptogenesis, not only stabilizes intercellular

contacts at excitatory synapses but also assembles

synaptic molecules at synaptic sites.

2) Involved in synaptic plasticity.

3) influences cell migration, neurite extension,

and fasciculation.

Flow Cytometry Rønn et al., 1998; Suzuki and

Takeichi, 2008

CELL CELL ADHESION VIA PLASMAMEMBRANE

ADHESIONMOLECULES (GO:0098742)

49 Involved in the regulation of synaptic plasticity and the

formation of neuronal networks.

Flow Cytometry Lasky, 1991

IMMUNE RESPONSE REGULATING CELL SURFACE

RECEPTOR SIGNALING PATHWAY (GO:0002768)

48 Associated with activation, perpetuation, or suppression of

immune responses.

Vély and Vivier, 2005

IMMUNE RESPONSE REGULATING SIGNALING

PATHWAY (GO:0002764)

48 Associated with activation, perpetuation, or suppression of

immune responses.

Immunostaining and X-gal

staining

Yan et al., 2018

REGULATION OF IMMUNE EFFECTOR PROCESS

(GO:0002697)

47

SENSORY ORGANMORPHOGENESIS (GO:0090596) 46 They were responsible for helping maintain homeostasis in

the body and for allowing the body to best react to internal

and external events.

Marzvanyan and Alhawaj, 2023

HUMORAL IMMUNE RESPONSE (GO:0006959) 45 The humoral immune system played a role in the initiation

and regulation of the inflammatory response.

Shishido et al., 2012

LEUKOCYTE MEDIATED IMMUNITY (GO:0002443) 42 IL-6 was associated with the pathogenesis of MS Animal model of MS: IL-6R

blockade

Janssens et al., 2015
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TABLE 7 Top 10 genes with the highest betweenesses.

Before sensitive analysis After sensitive analysis

Gene Symbol Betweenness p-value Gene Symbol Betweenness p-value

TARDBP 21 0 TARDBP 6 0

VWA1 12 0 RNF207 3 0

GABRD 12 0 SCNN1D 2 0

RER1 11 0 PUSL1 2 0

RNF207 11 0 FAM43B 2 0

SAMD11 10 0 KLHL17 1 0

SCNN1D 9 0 VWA1 1 0

KCNAB2 6 0 GABRD 1 0

PUSL1 4 0 RER1 1 0

TP73 4 0 PHF13 1 0

FIGURE 4

The top Network marker with the maximum betweeness. (A) Before sensitivity analysis; (B) after sensitivity analysis.

series of common risk factors such as immunity, inflammation,

cellular homeostasis, neurodevelopment, and protein homeostasis

(Davidson et al., 2017; Przygodzka et al., 2019; Singh et al.,

2019; Miller and Thorburn, 2021). Our findings also demonstrated

that inflammation, neurodevelopment and cellular homeostasis

were common risk factors in cancer [Figure 6B, i.e., “NERVOUS

SYSTEM PROCESS” (GO:0050877), “SYNAPTIC SIGNALING”

(GO:0099536) and “CELL CELL SIGNALING” (GO:0007267)].

Additionally, the key roles of inflammaging markers in different

cancer types were further confirmed by survival analysis.

Inflammation was increasingly recognized as an important factor

impairing normal functions in CNS, which in turn affected both

cancer and MS (Deverman and Patterson, 2009; Jiang et al.,

2018). In addition, chronic inflammation disrupted the cellular

homeostasis, which played an important role in the development

of both MS and cancer (Kotas and Medzhitov, 2015). In short,

various risk factors associated with inflammaging had also been

demonstrated in cancer.

As with other research articles on MS (Denissen et al., 2021;

Aslam et al., 2022) and other neurodegenerative diseases [e.g.,

Alzheimer’s disease (Chang et al., 2021; Li J. et al., 2022) and

Parkinson’s disease (Boutet et al., 2021; Oliveira et al., 2023)],

machine learning was utilized to build high accuracy models or

predictive biomarkers, which were then subjected to enrichment

analysis network analysis and so on. In addition, our study

identified an integrative model based on machine learning to

further explore the underlying mechanisms of MS in the context of

inflammaging. As a result, a series of relative key risk factors were

summarized at system level, and even validated across different

cancer types. These results indicated that our results were with

enough reliability and accuracy.

According to the inflammaging theory, the chronic

inflammation was accumulated during the aging process,

along with a series of dysregulated pathways (Fang et al., 2018).

In addition, the immunosenescence was also accompanied with

a series of molecular dysfunctions in both innate and adaptive

immune systems, and even interacted with aging (Rodrigues

et al., 2021; Liu et al., 2023). Both inflammation and aging were

wellknown to affect microglia and astrocytes, which in turn

impaired normal neurons (Neumann et al., 2019; Kwon and

Koh, 2020; Diaz-Castro et al., 2021). Inflammation also affects

the protein metabolism and cellular homeostasis (Antonangeli
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FIGURE 5

Survival results across di�erent cancer types. BLCA, KICH, KIRC, PRAD, READ, STAD, THCA, and UCEC are based on aging markers; BRCA, COAD,

ESCA, HNSC, KIRP, LIHC, LUAD, and LUSC are based on gene the whole di�erential co-expression pattern (by using Equations 9, 10 in Section 5.3).

(A) BLCA; (B) BRCA; (C) COAD; (D) ESCA; (E) HNSC; (F) KICH; (G) KIRC; (H) KIRP; (I) LIHC; (J) LUAD; (K) LUSC; (L) PRAD; (M) READ; (N) STAD; (O)

THCA; and (P) UCEC.

et al., 2021; Cibrian et al., 2022). In addition, these risk factors

interplayed with each other to promote the development of MS.

For example, dysregulations in cellular homeostasis can interact

with the protein homeostasis, energy metabolism, etc., which in

turn aggravated the MS progression (Huang et al., 2022). With the

help of the integrated inflammaging model, our study highlighted a

series of risk factors closely related to inflammaging in MS, such as

protein homeostasis, cellular homeostasis, neurodevelopment and

energy metabolism. These results also further confirmed both the

theories of inflammaging and immunosenescence (Figure 7). In

short, we integrated the potential mechanisms of MS in the context

of inflammaging (Figure 7).

Despite the exploration of the underlying mechanisms in

MS based on the inflammaging, there were still shortcomings

as follows: (1) This paper only used 445 samples of microarray

profiles, where the single-cell profiles should investigated in

further analysis; (2) The biological experiments were still

vital to performed to further validate relative conclusions

in human cell line, if with proper permissions; (3) The

potential mechanisms of MS were identified only based on

inflammaging, without considering other key risk factors (e.g.,

oxidative stress or neuroendocrine). After all, a series of

investigations were still needed to further explore underlying

mechanisms in MS (or other neuroinflammatory diseases),
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FIGURE 6

Enrichment analysis shared by cancers. (A) KEGG pathways enriched in 16 cancers; (B) BP terms enriched in 16 cancers.

where our work presented a novel thought to study relative

molecular mechanisms.

4 Conclusion

In this study, machine learning was used to construct models

for predicting aging and disease (MS) and to identify relative

biomarkers. The important relationship between inflammaging

and MS was further explored by building the integrated

inflammaging model. Relative inflammaging characteristics in

MS patients were investigated holistically through sensitivity,

enrichment, network and pan-cancer analyses. In summary,

our study integrated protein homeostasis, cellular homeostasis,

neurodevelopment and energy metabolism as risk factors in MS

based on inflammaging indices, also presenting a novel thought to

other aging-related diseases.

5 Materials and methods

5.1 Data and preprocessing

The gene expression data were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/), including GSE190847, GSE131281, GSE126802,

GSE108000, GSE78244, GSE37750, GSE62584, GSE41890, and

GSE14895. These datasets were from eight different microarray

platforms: GPL23126, GPL10558, GPL13497, GPL17077, GPL570,

GPL571, GPL6244, and GPL96.

The gene expression profiles were processed as follows:

(1) Only the samples with both the age and phenotype indices

(MS or control) were retained; otherwise, they were excluded.

(2) The gene expression matrix for each dataset was integrated

by summarizing the probe number within the gene symbol.
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FIGURE 7

Summarized mechanisms in multiple sclerosis in the context of inflammaging. Rectangular genes represent aging markers, diamond genes represent

disease markers, rhombic genes represent disease markers, and oval genes represent high median network markers. Orange arrows indicate that the

gene was associated with neurodevelopment, green arrows indicate that the gene was associated with energy metabolism, blue arrows indicate that

the gene was associated with protein homeostasis, pink arrows indicate that the gene was associated with cellular homeostasis, and red arrows

indicate that the gene was associated with inflammation.

(3) The total data matrix was integrated, and the missing gene

expression values were filled with values of 0.

(4) Data processing was performed on the summary matrix to

remove genes with ≥30% missing values.

(5) The gene expression matrix was logarithmically transformed

if it contained outliers.

(6) Based on the mean and standard deviation of gene

expression for the control individuals, z-score normalization

was performed for both the MS and control samples.

(7) The singular value decomposition (SVD) method was

performed to eliminate the inter sample variation based on the

top three principal components of the control samples.

(8) The z-score was then utilized to normalize all samples

based on the mean and the standard deviation of the

control samples.

(9) The gene expression profiles were further transformed using

the hyperbolic tangent (Tanh) method, so that it takes values

between−1 and 1.

(10) The training set and the test set were randomly divided at a

ratio of approximately 2:1.

As a result, a total of 445 samples were obtained

(Supplementary Table S1), including 66 samples of healthy aged

people (aged ≥ 50 years, 45 training datasets +21 test datasets),

118 samples of healthy young people (aged <50, 80 + 38), 94

samples of MS aged people (aged ≥ 50, 65 + 29) and 167 samples

of MS young people (aged < 50, 115+ 52), containing 16,275 gene

symbols (Supplementary Table S2). Further, comparison results

based on the inter-sample normalization step (i.e., z-score, SVD,

and another z-score) have been show in Supplementary Figure S2,

including boxplots and scatter plots. These results indicated that

the normalization could treat relative profiles from different

platforms with enough efficiencies, indicating that the profiles were

clustered with each dataset before the normalization, comparable

after the normalization, and even distinguishable between different

phenotypes (i.e., MS or control) if combining with machine

learning methods.

We also obtained paired gene expression (RNAseq) profiles

(“Batch effects normalized mRNA data”) and clinical data from the

TCGA database through the xena platform (https://xenabrowser.

net/hub/). Cancer types with ≥10 adjacent normal samples were

retained. There were 16 cancer types included in this study: BLCA

(408 cancer samples and 19 adjacent normal samples), BRCA (1,102

+ 113), COAD (451 + 41), ESCA (185 + 11), HNSC (522 + 44),

KICH (66+ 25), KIRC (534+ 72), KIRP (291+ 32), LIHC (373+

50), LUAD (517+ 59), LUSC (504+ 51), PRAD (498+ 52), READ
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(160 + 10), STAD (414 + 35), THCA (513 + 59), and UCEC (533

+ 22). Genes with ≥30% missing values were deleted.

5.2 Modeling the aging model and disease
model

The ReliefF algorithm was used to select key features, and

then the first 100 models were studied to train the predictors. The

optimal model was selected by 10-fold cross-validation. To verify

the accuracy of the aging predictor, the selected model was verified

in the test dataset.

(1) In the aging model, the normal aged group (age ≥ 50) was

labeled 1, and the young healthy group (age < 50) was labeled

0; in the disease model, the MS group was labeled 1, and the

control group was labeled 0.

(2) The ReliefF algorithm was used to sort 16,275 genes for the

aging and disease models;

(3) The predictor of the model was used to select the key

markers with the help of the k-nearest neighbors (kNN, k= 9,

correlation) algorithm. The model with the highest accuracy

was also selected with the help of 10-fold cross-validation,

where the identified features were considered aging markers

and disease markers.

As a result, the optimal k-nearest neighbor (kNN, k = 9,
correlation) algorithmwas used, and a total of 70 agingmarkers and
19 diseasemarkers were identified. In addition, thesemarkers could
be summarized as the aging score and disease score for further
analyses (i.e., comparison in Section 5.1 or sensitive analysis in
Section 5.4).

aging_score =

5
∑

k=1

distance_of_nearst_neighbor_in_normal_young

−

5
∑

k=1

distance_of_nearst_neighbor_in_normal_old (1)

disease_score =

5
∑

k=1

distance_of_nearst_neighbor_in_control

−

5
∑

k=1

distance_of_nearst_neighbor_in_MS (2)

As a result, the ROC curve could be designed based on the aging

and disease score, respectively.

5.3 Identifying essential relationships in MS
by integrating inflammaging models

An integrated inflammaging model was built to identify the

essential relationships among aging, inflammation and MS. The

computational pipeline used was MR, although it was not as

rigorous as MR (Burgess et al., 2020, 2023).

In this model, the aging-related inflammatory markers were

considered inflammaging markers, where candidate aging/disease

markers were identified in Section 5.2 to be further select relate to

these inflammaging markers. Ultimately, the essential relationships

among aging, inflammation, and disease (MS) markers were

identified as key “aging-inflammation-disease” triples in MS.

Here, the aging markers were used as the auxiliary

variables (similar to the instrumental variables in MR), and

the inflammatory markers were used as the candidate risk

factors. Then, inflammatory (“inflammaging”) markers were

identified as the risk factors, and disease markers were used

as the outcome variables. That is, the integrated inflammaging

model aimed to explore the essential relationships among aging,

inflammation and disease markers in MS. The objectives of the

“aging-inflammation-disease” triples were as follows:

(1) There was a correlation between the aging marker and the

inflammatory marker.

(2) There was a correlation between the inflammatory marker

and the disease (MS) marker.

(3) There was a correlation between the aging marker and the

disease (MS) marker.

(4) There was a strong correlation between the agingmarker and

the disease marker, if through the inflammatory marker.

The methodological steps of the model were as follows:

(1) The inflammatory markers used as candidate risk factors

were obtained through the Gene Set Enrichment Analysis

(GSEA) platform based on the biological process (BP)

of gene ontology (GO) (http://www.gsea-msigdb.org/gsea/

downloads.jsp, version 2023.1, with “INFLAMMATORY” as

keywords). As a result, 745 candidate inflammatory markers

were selected.

(2) The correlation (differential co-expression) pattern was

used to select aging markers that strongly correlated with

candidate inflammatory markers with the help of the Kruskal–

Wallis test. Here, the differential co-expression was calculated

as follows:

p = Kruskal−Wallis test
(

aging_marker.∗inflammation_marker, phenotype
) (3)

where the phenotype could be defined as 1 (MS) or 0 (control).

Furthermore, both a p-value< 0.05 and a Benjamini–Hochberg

false discovery rate (FDR) < 0.1 were used to select strongly

correlated aging markers.

(3) The correlation (differential co-expression) was used to

select inflammatory markers that strongly correlated with

disease markers with the help of the Kruskal–Wallis test. Here,

the differential co-expression was calculated as follows:

p = Kruskal−Wallis test
(

inflammation_marker.∗disease_marker, phenotype
) (4)

where the phenotype could be defined as 1 (MS) or 0 (control).

Furthermore, both a p-value< 0.05 and a Benjamini–Hochberg

false discovery rate (FDR) < 0.1 were used to select strongly

correlated inflammatory markers.
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(4) The correlation (differential co-expression) was used to

select disease markers that strongly correlated with aging

markers with the help of the Kruskal–Wallis test. Here, the

differential co-expression was calculated as follows:

p = Kruskal−Wallis test
(

disease_marker.∗aging_marker, phenotype
)

(5)

where the phenotype could be defined as 1 (MS) or 0 (control).

Furthermore, both a p-value< 0.05 and a Benjamini–Hochberg

false discovery rate (FDR) < 0.1 were used to select strongly

correlated disease markers.

(5) To filter out the effect of horizontal pleiotropy, the aging–

disease relationship was further examined by comparing the

correlation between each aging marker and disease marker

through the inflammatory marker or otherwise. Here, steps

①-③ were used to calculate the correlations between auxiliary

variables and outcome variables without the background of the

risk factor, and step ④ was used to calculate the correlations

between auxiliary variables and outcome variables with the

context of the risk factor.

① The residual of each disease marker (“residual A”) was

calculated based on the inflammatory marker:

residual_A = disease_marker− b1∗inflammation_marker (6)

where b1 was the regression coefficient.

② The residual of each aging marker (“residual B”) was

calculated based on the inflammatory marker:

residual_B = aging_marker− b2∗inflammation_marker (7)

where b2 was the regression coefficient.

③ The abovementioned two residuals were further compared,

and the residual of the disease marker was calculated (as

“residual C”):

residual_C = residual_A− b3∗residual_B (8)

where b3 was the regression coefficient.

④ The residual disease marker (“residual D”) was calculated

based on the aging marker.

⑤ The difference (between “residual C” and “residual D”)

between the MS and control subgroups was tested using the

Kruskal–Wallis test (P < 0.05 and FDR < 0.1).

Finally, the essential relationships among aging markers,

inflammatory markers and disease markers were determined.

Thus, 5,599 “aging-inflammation-disease” triplets were identified,

including 65 aging markers, 107 inflammatory markers (as the 107

inflammaging markers) and 19 disease markers. Thus, these 107

inflammatory markers were used as inflammaging markers (risk

factors), and 19 disease markers were also used to discriminate the

MS phenotype.

In addition, the whole differential co-expression pattern among

aging, inflammation and disease markers could be calculated based

on these triples.

inflammationi

=
∑

corr (inflammation
j
i.∗aging

j, phenotype) (9)

where i and j was the i-th inflammation marker and the j-

th aging marker, corr was the Pearson’s correlation coefficient,

and the phenotype could be defined as 1 (MS) or 0 (control).

The differential co-expression of a inflammation marker was

summarized based the related aging markers in the triples.

diseasek

=
∑

corr (diseaseik.∗inflammationi, phenotype) (10)

where k and iwas the k-th diseasemarker and the i-th inflammation

marker, corr was the Pearson’s correlation coefficient, and the

phenotype could be defined as 1 (MS) or 0 (control). The

differential co-expression of a disease marker was summarized

based the related inflammation markers in the triples.

5.4 Sensitivity analysis using the MCMC
method

To further explore crucial relationships among aging,

inflammation and MS, sensitivity analysis was performed based

on the Markov Chain Monte Carlo (MCMC) method, where

“aging-inflammation-disease” triples were further evaluated as a

candidate relationship. The MCMC method was used to sample

certain posterior distributions in a high-dimensional space based

on a given probabilistic background. The key step of MCMC

was to construct a Markov chain whose equilibrium distribution

was equal to the target probability distribution. The steps were

as follows:

(1) Constructing the transfer cores of the ergodic Markov

chain. The prior distribution of each parameter was normally

distributed based on all identified markers in each group (i.e.,

MS or control), respectively.

(2) Simulate the chains until equilibrium was reached. The

Metropolis–Hastings sampling method was used to determine

whether the new sample (θ ∗) was acceptable based on

the α value.

α =
p

(

θ
∗
|X

)∗

q (θn → θ
∗
)

p (θn|X)∗ q (θ
∗
→ θn)

(11)

where P (θn | X) and P (θ∗ | X) were the posterior

probability of the nth accepted sample, the new sample q

(θn → θ∗) was the transition probability from the nth
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accepted sample to the new sample, and q (θ∗ → θn) was

the transition probability from the new sample to the n-th

accepted sample.

In this work, the disease score was used to evaluate the

simulated samples, with 1,000 random samples used as candidate

samples for each group (i.e., MS or control). The disease

score was calculated by comparing the distance between normal

and MS training samples based on the 19 disease markers

identified by the integrated inflammaging model, by using the

Equation (2).

(3) Performing the global sensitivity analysis

The correlation index was used to evaluate each of the “aging-

inflammation-disease” triples in the accepted samples (both MS

and control):

correlation_index =
disease_marker− aging_marker

inflammation_marker− aging_marker
(12)

Therefore, the correlation indices were calculated for each

“aging-inflammation-disease” triple for all accepted samples.

Then, the Kruskal–Wallis test was used to evaluate each

correlation index in each “aging-inflammation-disease”

triple, where p-value < 0.05 and FDR < 0.1 were set as

the threshold. Finally, a total of 35 “aging-inflammation-

disease” triples were identified as sensitive relationships,

including 16 aging markers, 28 inflammatory markers, and 9

disease markers.

5.5 Constructing the di�erential
co-expression network

To further reveal potential mechanisms between

“inflammaging” and MS, a differential co-expression network

was constructed via the following steps:

(1) The Pearson correlation coefficient for each pair of genes was

calculated based on the MS and control groups.

(2) The Benjamini–Hochberg FDR method was used to adjust

the p-values of the correlation coefficients.

(3) The relationship between each gene pair was retained if the

coefficient value in MS had the opposite sign (i.e., + or –) to

that in the control, as well as if p < 0.05 and FDR < 0.1.

(4) The shortest path between each pair of inflammaging and

disease markers was selected based on the differential co-

expression network using the Dijkstra algorithm.

5.6 Enrichment analysis

The gene functions were further explored by enrichment

analysis of the shortest pathway. Gene Ontology (GO) terms and

KEGG pathways for the GSEA platform were obtained from gene

set enrichment analysis (http://software.broadinstitute.org/gsea/

downloads.jsp, version 2023.1). The hypergeometric distribution

was used to test the degree of enrichment of the GO BP and KEGG

pathways. Hypergeometric test formula:

P (X ≥ x) = 1−

x−1
∑

k=0

Ck
M × Cn−k

N−M

Cn
N

(13)

where N was the total number of genes in the gene set, M was the

number of known genes (such as the KEGG pathway or BP terms),

which was the number of genes identified in each shortest pathway,

and k was the number of common genes between known genes

and candidate genes identified in each “inflammation-disease”

shortest pathway. The p-value of each path was controlled using the

Benjamin–Hochberg method. Finally, pathways with p < 0.05 and

FDR < 0.1 were retained.

5.7 Identifying network markers

The subnetwork with the shortest pathways among the selected

“inflammation-disease” pairs was constructed, and genes in the

subnetwork were sorted by their betweennesses in descending

order. To test whether the top betweenness genes were hubs in the

background network, we ran a permutation to count the occurrence

time of the top genes in the shortest paths between randomly

selected genes (containing the same numbers of “inflammation-

disease” triples, based on the identified “aging-inflammation-

disease” triples) when they had greater betweennesses than those in

our study. We repeated this process 1,000 times, and the p-value

was calculated as the proportion of occurrence times of the top

betweenness genes in 1,000 permutations.

5.8 Pan-cancer analysis

The survival analysis was performed based on the

inflammaging markers (identified by the integrated inflammaging

model in Section 5.3) for each cancer using the Kaplan–Meier

method. The first principal component of the triples set of key

markers for each cancer was taken, and then they were categorized

into two groups based on the mean values. Then, the Kaplan–Meier

method was used to evaluate the survival difference between these

two groups, and the significance was estimated by the log-rank test.

A p-value < 0.05 was considered statistically significant.

Genes were considered differentially expressed if they satisfied

the following criteria:

(1) Fold change > 2;

(2) p-value < 0.05 according to the Kruskal–Wallis test;

(3) Benjamin-Hochberg false discovery rate (FDR) < 0.1.

Then, the differential expression networks were constructed for

each cancer, where the details were also the same as Section

5.5. As a result, each shortest pathway was selected from each

pair of inflammaging markers and differentially expressed genes

(as disease markers in cancer) using the Dijkstra algorithm.

Furthermore, the enrichment analysis was performed in each

cancer (p < 0.05 and FDR < 0.1).
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SUPPLEMENTARY FIGURE S1

Enrichment analysis of the shortest paths of KEGG and BP, before

combining overlap shortest paths. (A) KEGG with the most shortest

enriched paths; (B) BP with the most shortest enriched paths; (C) KEGG with

the minimum FDR; (D) BP with the minimum FDR. The orange nodes

represent the inflammaging markers, the blue nodes represent the genes

connecting inflammaging markers and disease markers, the green nodes

represent the disease markers, and the genes in the red square frames

coincide with those genes in the enriched functions.

SUPPLEMENTARY FIGURE S2

Comparison results based on the inter-sample normalization step. (A, B)

The boxplot of the control samples in each dataset, based on the first

principal component; (C, D) the scatter plot in each dataset, based on the

first two principal component; (E, F) the scatter plot in each dataset, based

on the aging score and diease score; (A, C, E) before the normalization; (B,

D, F) after the normalization.
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ReliefF ranking of aging markers.
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ReliefF ranking of disease markers.
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Top 10 most enriched KEGG pathways containing inflammatory markers.
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The top 10 KEGG pathways with minimum FDR containing

inflammatory markers.
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The top ten BP terms with minimum FDR containing inflammatory markers.
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