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It’s a TRIM-endous view from the
top: the varied roles of TRIpartite
Motif proteins in brain
development and disease
Jane Dudley-Fraser* and Katrin Rittinger*

Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom

The tripartite motif (TRIM) protein family members have been implicated in

a multitude of physiologies and pathologies in different tissues. With diverse

functions in cellular processes including regulation of signaling pathways, protein

degradation, and transcriptional control, the impact of TRIM dysregulation can

be multifaceted and complex. Here, we focus on the cellular and molecular

roles of TRIMs identified in the brain in the context of a selection of pathologies

including cancer and neurodegeneration. By examining each disease in parallel

with described roles in brain development, we aim to highlight fundamental

common mechanisms employed by TRIM proteins and identify opportunities for

therapeutic intervention.
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1 Introduction

The tripartite motif proteins are defined by their eponymous TRIpartite Motif composed
of a RING domain, one or two B-box domains, and a coiled-coil domain, which is followed
by different C-terminal domains that are used to classify TRIMs into 11 classes (I-XI)
(Reymond et al., 2001). The tripartite motif is highly conserved whereas the C-terminal
domains vary and are proposed to offer target binding diversity, (Sardiello et al., 2008;
Hatakeyama, 2017). TRIM proteins have been linked to the regulation of many cellular
functions, including innate immunity, cell-cycle regulation, transcription regulation, and
autophagy (Rajsbaum et al., 2014; Hatakeyama, 2017). Although TRIM protein functions
have been studied across different tissues [e.g., skeletal muscle (Perera et al., 2012), the heart
(Zhang J.-R. et al., 2020), and the digestive system (Chen et al., 2022)] and in multiple
disease settings [e.g., immunity (Kirmaier et al., 2010; Vaysburd et al., 2013) and cancer
(Hatakeyama, 2011, 2017)], here we will focus on the roles of TRIMs in brain health and
disease, which themselves are diverse and extensive, with a multitude of TRIMs implicated
across many different brain areas (Figures 1, 2).

Extensive research has contributed to our current understanding of the roles of each
domain of the TRIM proteins. While it is now widely accepted that the coiled-coil domain is
responsible for forming antiparallel TRIM homodimers, the function of the B-box domain
remains somewhat unclear, though for some TRIMs they have been shown to contribute
to auto-inhibition and higher-order oligomerisation (Li and Sodroski, 2008; Sanchez et al.,
2014; Dickson et al., 2018). The presence of a conserved RING domain, meanwhile, has led
to the assumption that the majority of TRIMs function as E3 ubiquitin ligases. E3 ligases
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perform the final stage in the ubiquitination cascade by facilitating
the transfer of ubiquitin onto a substrate, subsequent to the
sequential action of an E1 ubiquitin-activating enzyme and an E2
ubiquitin-conjugating enzyme (Komander and Rape, 2012). RING-
type E3 ligases function as adaptors to bring the substrate together
with the E2-ubiquitin conjugate to mediate ubiquitin transfer.

The modification of proteins with ubiquitin or ubiquitin-like
proteins [UBLs, e.g., small ubiquitin-like modifier (SUMO)], can
be considered as a modular signaling code that is read by specific
binding proteins to bring about particular downstream functions
(Dikic and Schulman, 2023). Protein ubiquitination largely occurs
through reaction with the amino group of lysine (Lys) residues,
although N-terminal ubiquitination and even modification of
serine and threonine residues have also been described (Wang et al.,
2007; Tatham et al., 2013; Mattiroli and Sixma, 2014; Bhogaraju
et al., 2016). Targets are often modified with polyubiquitin chains,
the architecture of which defines the cellular response, such as
degradation through the 26S proteasome induced by Lys48-linked
polyubiquitin chains or activation of signaling pathways and
autophagy mediated by Lys63-linked chains (Deng et al., 2000;
Wang et al., 2001; Hoege et al., 2002; Xu et al., 2009; Lu et al., 2015;
Ordureau et al., 2015; Yau and Rape, 2016; Grumati and Dikic,
2018).

Interestingly, there are an increasing number of reports
suggesting that some RING-containing TRIM proteins do not
exhibit ubiquitin ligase activity in in vitro assays with recombinant
proteins (Guimarães and Gomes, 2018; Stevens et al., 2019;
Fiorentini et al., 2020; Esposito et al., 2022). Moreover, several
TRIM proteins have been ascribed additional functionalities,
including SUMO ligase activity, RNA or lipid binding properties,
membrane repair and transcriptional regulation, or even repressing
the activity of other, ligase-competent TRIMs, largely through
interactions via their variable C-terminal domains (Chu and Yang,
2011; Herquel et al., 2011; Kim et al., 2012; Lassot et al., 2018;
Williams et al., 2019; Esposito et al., 2022; Randolph et al., 2022;
Ma et al., 2023).

2 Brief overview of common
pathologies of the brain

Neurodegenerative diseases result in the progressive loss of
neurons and cognitive decline, as well as manifesting in a spectrum
of other symptoms. Many of these diseases are characterized by
inflammation, reactive oxygen species (ROS), and aberrant protein
aggregation (e.g., α-synuclein in Parkinson’s disease; amyloid β and
tau in Alzheimer’s disease; huntingtin in Huntington’s disease),
although precise causes remain elusive (Kumar et al., 2016).
Ischemic stroke (i.e., oxygen deprivation) is a major cause of
death but the molecular mechanisms and druggable targets are
still uncertain, although inflammation, mitochondrial dysfunction,
excitotoxicity, and, oxidative stress have been implicated in the
resulting neuronal cell loss (Feigin et al., 2010; Ng and Lee, 2019;
Shi et al., 2019; Feske, 2021). The brain is responsible for ∼20%
of the body’s oxygen demand and requires oxygen levels between
1–5% for normal function as well as to facilitate proper brain
development (Silver and Erecińska, 1998; Tomita et al., 2003;
Vannucci and Hagberg, 2004).

Brain infections of viruses and bacteria are targeted by
microglia, the brain’s resident macrophages, which have also been
shown to have roles in normal brain development (Rock et al.,
2004; Neumann et al., 2009; Reemst et al., 2016; Carroll et al.,
2018). However, innate neuronal and glial cell immunity is also a
important line of defense: not only can they generate inflammatory
cytokines to trigger the recruitment of specialist immune cells, it is
also becoming increasingly understood that neural circuitry exists
to control inflammation (Nair and Diamond, 2015; Pavlov and
Tracey, 2017). As well as the pathogenic effects of the bacterium or
virus themselves, the resulting inflammation can damage neuronal
survival and activity. Infections and inflammation can also have
an impact on the developing brain, with high prenatal levels of
inflammatory cytokines linked with neurological development and
various disorders (Zengeler and Lukens, 2021).

Autoimmunity in the brain can similarly lead to complex and
devastating loss of brain function, also as a result of aberrant
inflammatory signaling (Harris and Hughes, 1985; Karagkouni
et al., 2013; Graus et al., 2016).

Brain cancers can fall into different classifications, but over 50%
are gliomas, which are subclassified from grade 1 (less malignant)
to grade 4 [most malignant, also known as glioblastoma multiforme
(GBM)] (Kleihues and Cavenee, 1997). There is a striking unmet
clinical need for GBM, which makes up half of glioma cases, with
the 5-year survival estimated to still be approximately 5% (Delgado-
López and Corrales-García, 2016). Key features of GBM include
overactive receptor tyrosine kinase signaling, loss of p53, and stem-
like properties that underpin treatment resistance (Venkataramani
et al., 2019; Virtuoso et al., 2021; Wang et al., 2021).

Neurological developmental disorders caused by genetic
mutations can manifest as wide-ranging, pleiotropic affects
including perturbed behavior, motor skills, or learning/intellectual
abilities (Parenti et al., 2020). Understanding the molecular
pathologies of these conditions can inform fundamental biology as
well as clinical management options.

3 The impact of TRIMs on aberrant
cell division and cancer in the brain

In this section we outline roles for TRIM proteins according to
the ‘Hallmarks of Cancer’ with relation to gliomas and highlight
how these, in fact, relate to their functions in normal brain
development (Hanahan and Weinberg, 2011).

3.1 Sustaining proliferative signaling

The proteomic and signaling reprogramming required to drive
cancer cell growth is tightly interconnected with ubiquitination,
as is the stem-like state that confers more malignant properties
(Hanahan and Weinberg, 2011; Batlle and Clevers, 2017; Mansour,
2018; Yang L. et al., 2020; Zou et al., 2023). Similarly, during
development a rapid expansion of neural stem cells is required to
populate the growing brain (Stiles and Jernigan, 2010). It is rational,
therefore, that where TRIM proteins are implicated in regulating
stemness and differentiation in brain development, they may have
parallel roles in gliomagenesis.
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FIGURE 1

TRIM proteins have roles in normal brain development as well as being implicated in an array of neuropathologies. Created with BioRender.com.

FIGURE 2

Diagram of TRIM protein domain organization and classification, with dashed outlines denoting where the domain is found only in some of the
members of that class. The tripartite motif of the RING domain (E3 ubiquitin ligase catalytic domain), B-box domain(s) (functions somewhat unclear
but auto-inhibition and higher-order oligomerisation have been attributed to the B-box domains of some TRIMs), and coiled-coil domain (mediates
anti-parallel homodimers) is conserved throughout the family, whereas the C-terminal domains vary and confer divergent functions, which have
previously been subjected to thorough phylogenetic analyses (Sardiello et al., 2008; Williams et al., 2019). Created with BioRender.com.

Frontiers in Molecular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1287257
https://BioRender.com
https://BioRender.com
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1287257 November 29, 2023 Time: 18:48 # 4

Dudley-Fraser and Rittinger 10.3389/fnmol.2023.1287257

TRIM3 (class VII) is the natural place to start this section,
having originally been identified as BRAin Tumor (BRAT) in
Drosophila melanogaster. Its deletion causes optic neuroblasts and
ganglion progenitors to undergo a dramatic expansion without
differentiation, resulting in brat mutant brains reaching 10 times
their normal size (Gateff et al., 1993; Arama et al., 2000). Therefore,
TRIM3 was defined as a tumor suppressor and, indeed, TRIM3
loss of heterozygosity is seen in approximately a quarter of human
gliomas, correlating with faster tumor growth, whilst in healthy
adults it is highly expressed in the cerebellum (Boulay et al., 2009;
Liu et al., 2014). It also implies a pro-differentiation role for TRIM3,
which is reinforced by its ability to promote neuronal plasticity
via the regulation of γ-actin and motor protein myosin V (El-
Husseini and Vincent, 1999; Schreiber et al., 2015). Moreover,
TRIM3 is implicated in the trafficking of GABAA receptors in
order to generate post-synaptic currents in differentiated cortical
neurons (Cheung et al., 2010). In this context, TRIM3 expression
is regulated by p53, an interplay that has been further explored in
colorectal cancer (Han et al., 2023), but it is unknown whether this
is relevant to its role in brain cancers, despite the p53 pathway being
dysregulated in over 80% of glioblastoma (GBM) patients (Zhang
et al., 2018). TRIM3 suppresses oncogenic C-MYC expression in
GBM, resulting in a lower levels of stem cell markers CD133,
Nestin, and Nanog, and subsequently reducing GBM neurosphere
growth and confirming a pro-differentiation function for TRIM3
(Chen et al., 2014). It would be intriguing to understand whether
these effects of TRIM3 are related to target ubiquitination, as it
does for another cell-cycle regulator, p21, which is bound and
ubiquitinated by TRIM3, thereby repressing cell growth (Liu et al.,
2014; Raheja et al., 2014).

Another class VII member, TRIM71, appears to drive a stem-
like phenotype and has functional redundancy with C-MYC
pathways, as they are interchangeable in the Yamanaka stem
cell reprogramming cocktail, although mechanistic details remain
elusive (Takahashi and Yamanaka, 2006; Worringer et al., 2014).
Despite these links with C-MYC, TRIM71 does not have an
established role in gliomagenesis. However, a neural progenitor-
related function may be inferred by its documented importance in
mouse neural tube closure, in contrast to low levels of TRIM71
expression in adult brains (Maller Schulman et al., 2008; Uhlén
et al., 2015). It is also important to understand whether these
effects are brought about through the mRNA-binding translation
repression function of TRIM71 (Williams et al., 2019), or its
ubiquitination activity, which has been shown in a cellular context
but appears to be lacking in vitro (Chen Y. et al., 2019; Esposito
et al., 2022).

TRIM32 (class VII) is highly expressed in brain tissue, as
well as being linked to neuromuscular pathologies (Kudryashova
et al., 2009; Kumarasinghe et al., 2021). Specifically, TRIM32 levels
are elevated in cortical neurons during development, becoming
increasingly expressed in the cortical layers and depleting from the
ventricular zone of the embryo over time. Mechanistically, TRIM32
has also been shown to bind and ubiquitinate C-MYC, resulting
in its degradation and subsequently affecting transcriptional
re-programming and neuronal differentiation (Schwamborn et al.,
2009). In an intriguing parallel with normal neurogenesis, in
neuroblastoma-initiating cells TRIM32 binds and ubiquitinates
another MYC family member, N-MYC, at spindle poles during
mitosis to drive asymmetric cell division that eventually results

in tumor cell death (Izumi and Kaneko, 2014). TRIM32 also
participates in a complex with Let-7a miRNA, the Argonaute
components of the RISC complex, and the RNA helicase
DDX6 to promote neuronal differentiation (Schwamborn
et al., 2009; Nicklas et al., 2015, 2019). These findings may
help us understand observations that TRIM32 overexpression
promotes a differentiated, less malignant phenotype. In a murine
neuroblastoma model TRIM32 enhances differentiation by
catalyzing the addition of stabilizing ubiquitin chains (linkage
type not defined) to the retinoic acid receptor (RARα), a factor
that has well-known roles in neuronal differentiation (Sato et al.,
2011; Janesick et al., 2015). Moreover, Wang et al. (2020) showed
that TRIM32 also promotes the differentiation of granule neuron
progenitor cells during cerebral development by inducing the
degradation of SHH effector Gli1, and that loss of this regulation
promotes medulloblastoma formation. This, however, can only
occur once the TRIM32:PKCζ complex is disrupted, implicating
this complex in stem cell maintenance (Hillje et al., 2011). In
addition to development and cancer, these findings are also
pertinent in limb-girdle muscular dystrophy 2H, an hereditary
skeletal muscle disorder caused by TRIM32 mutations, where
C-MYC regulation by TRIM32 in myogenic progenitors is
implicated (Kudryashova et al., 2009; Nicklas et al., 2012).

Another TRIM that influences C-MYC is TRIM47 (class
IV), whose knockdown instead reduces levels of C-MYC as well
as β-Catenin and Cyclin-D1 in glioma cells. This attenuates
proliferation, epithelial-to-mesenchymal transition markers, and
invasive phenotypes, translating to reduced tumor burden in vivo
(Chen et al., 2020; Ji et al., 2021). Indeed, TRIM47 expression
is higher in GBM and higher grade gliomas, correlating with
poorer survival rates overall, although it is also reasonably well
expressed in normal brain tissue (Uhlén et al., 2015; Ji et al.,
2021). The molecular mechanisms and how this relates to TRIM47
ubiquitination activity is, however, unknown.

TRIM8 (class V) expression levels also correlate with poor
clinical outcomes in GBM (Micale et al., 2015). TRIM8 re-localizes
from the cytoplasm of healthy neurons to the nucleus in GBM
cells to establish a stem-like phenotype, with an increase in
malignancy and glioblastoma stem cell markers, such as STAT3,
SOX2, Nestin, and Nanog (Zhang C. et al., 2017; Venuto et al.,
2019). Mechanistically, TRIM8 ubiquitinates and degrades the
STAT3 inhibitor, PIAS3, to promote this pro-stem re-programming
(Zhang C. et al., 2017). This is in stark contrast to the role of
TRIM8 in development, where it suppresses proliferation and
promotes differentiation of neural progenitor cells (Ding et al.,
2021). TRIM8 knockdown thereby reduces excitatory synaptic
transmission, perhaps giving context to studies showing that
TRIM8 truncation mutants can result in early-onset epileptic
encephalopathy, a neurodevelopmental disorder characterized by
seizures and limited use of language (Sakai et al., 2016; Assoum
et al., 2018). Additionally, during mouse embryonic development,
TRIM8 localizes to, and therefore may regulate development of,
the cerebellum, hippocampus, and cerebral cortex, which all have
demonstrated roles in speech, language, and learning, and then
continues to be well expressed in adult brains (Uhlén et al., 2015;
Sakai et al., 2016). Better understanding of the cellular contexts and
molecular mechanisms at play, including any potential ubiquitin
ligase activity, may help align these seemingly opposing pro-GBM
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stemness and anti-neuronal stemness roles for TRIM8 and so
inform glioma treatments.

TRIM11 (class IV) also has conflicting roles in neural and
gliomagenic stem cells. During mouse embryogenesis, TRIM11
interacts with the neural stem cell regulator PAX6 to effect its
proteasomal degradation, presumably via ubiquitination, thereby
ablating PAX6-mediated regulation of a suite of neuronal effectors,
as well as the expression of TRIM11 itself in an autoregulatory
feedback loop (Tuoc and Stoykova, 2008; Sansom et al., 2009).
Furthermore, TRIM11 knockdown mice exhibit aggregates of
insoluble PAX6 and apoptosis in the cortex. TRIM11 levels,
contrastingly, positively correlate with CD133+ and Nestin+

neural stem cell marker staining in GBM cells (Di et al., 2013).
TRIM11 knockdown inhibits malignant GBM phenotypes in vitro,
correlating with reduced EGFR/MAPK signaling pathway activity,
although the relevance of TRIM11 ubiquitin ligase function in this
context remains to be explored. Correspondingly, mouse xenograft
models with TRIM11 overexpression exhibit stem-like phenotypes
and enhanced tumor growth, and, importantly, clinical data shows
that TRIM11 expression levels are moderate in normal brains but
correlate positively with tumor grade and worse patient prognosis
(Di et al., 2013; Uhlén et al., 2015).

TRIM28 (class VI), meanwhile, can function in PAX6-mediated
gene expression at sites of H2K9me3 enrichment by forming a
complex with it and Pauper long non-coding RNA (lncRNA), with
impacts on neural stem cell function and proliferation (Pavlaki
et al., 2018). A role for ubiquitin in this process has not been
described. Others have shown an alternative role for TRIM28
in establishing H3K9me3 sites, which then repress endogenous
retroviruses and transposable elements in neural progenitor cells to
maintain stemness, and that without TRIM28 mouse embryos are
not viable (Cammas et al., 2000; Fasching et al., 2015; Brattås et al.,
2017; Miles et al., 2017; Grassi et al., 2019). Moreover, a co-repressor
complex of TRIM28/HATS/DNMT can promote H3K27me3 marks
and methylation of the promoter of SIX3, a differentiation-
inducing transcription factor, which thereby reduces its expression
and promotes a stem-like phenotype (Yu et al., 2020). This is,
therefore, in agreement with other studies that implicate TRIM28
in glioma stemness and increased tumor grade (Jovčevska et al.,
2017; Peng et al., 2019; Porčnik et al., 2021). TRIM28 can also
promote growth of a variety of other cancers and drive resistance to
treatments like temozolomide, although recent studies have shown
this can be offset by combination treatments with DNA damage
response effector inhibitors (e.g., PARP or ATM kinase) (Golding
et al., 2012; Gupta et al., 2016; Czerwińska et al., 2017; Yu et al.,
2020). In addition to these reports of transcription-based functions,
other studies suggest TRIM28 can act as a MAGE protein-
dependent ubiquitin ligase or a SUMO E3 ligase, highlighting the
need for better context-dependent understanding of this protein
(Ivanov et al., 2007; Doyle et al., 2010; Pineda et al., 2015; Stevens
et al., 2019).

TRIM33 (class VI) is implicated in neural stem cell and glioma
regulation via the TGFβ/SMAD4 and β-Catenin signaling
pathways, respectively. In both cases, TRIM33 represses
proliferation: murine cortical neural stem cells undergo
excessive proliferation and fail to differentiate properly when
TRIM33 is knocked out alongside SMAD4, indicative of potential
redundancy in the pathway; whereas in human GBM, β-Catenin
phosphorylation by PKCδ triggers its ubiquitination by TRIM33

and subsequent degradation, leading to suppression of tumor cell
proliferation (Falk et al., 2014; Xue et al., 2015). This is supported
by the observation that TRIM33 expression is lower in glioma
tissue than normal brain tissue (Uhlén et al., 2015; Xue et al., 2015).
However, it would be pertinent to identify the additional factors
that can align the described ubiquitination of β-Catenin with the
lack of detectable TRIM33 ubiquitin ligase activity in vitro (Stevens
et al., 2019).

3.2 Resisting cell death

Recent studies have shown that TRIM17 (class IV) regulates
neuronal cell survival or death decisions. TRIM17 expression
is highest in the brain, specifically in the basal ganglia,
cerebellum, and cortex (Basu-Shrivastava et al., 2021). Conversely,
TRIM17 levels are lower in high grade tumors (Xiao et al.,
2022). In vitro, TRIM17 overexpression ablates glioma cell line
colony formation, aligning with data showing that TRIM17
overexpression in cerebellar neurons induces apoptosis, dependent
on its RING domain (Lassot et al., 2010; Xiao et al., 2022).
TRIM17-mediated neuronal apoptosis in that context is part
of an orchestrated programme required for proper cerebellar
developmental morphogenesis and is responsive to neurotrophic
factor signaling through the PI3K/Akt/GSK signaling axis, which
is, interestingly, also upregulated in glioma (Lassot et al., 2010;
Yamaguchi and Miura, 2015). Understanding and harnessing the
pro-apoptotic function of TRIM17 may be a powerful tool to fight
glioma.

3.3 Evading growth repressors

TRIM45 (class X) is highly expressed in human adult brains,
whilst in normal development it has been seen to be required for
proper formation of the hypothalamus, hindbrain, and retina in
a zebrafish model, via a mechanism that is yet to be uncovered,
with ectopic overexpression resulting in aberrant expansion of
these tissues (Wang et al., 2004; Choe et al., 2020). This is at
odds, however, with the observation that TRIM45 expression
levels are reduced in more aggressive gliomas (Zhang J. et al.,
2017). On a molecular level, in glioma TRIM45 stabilizes tumor
suppressor p53 by modifying it with Lys63-linked ubiquitin chains,
thereby occluding its Lys48-linked ubiquitination by MDM2.
Understanding how and why TRIM45 exerts seemingly both
pro- and anti-proliferative effects may uncover development- or
tumourigenic-dependent mechanisms.

3.4 Activating invasion and metastasis

TRIM67 (class I) is implicated in cytoskeletal regulation in both
developmental and tumourigenic contexts in the brain. It is one of
the most highly expressed TRIMs during cortex development in the
late embryogenesis, particularly in neurons, where it is dispensable
for proliferation but critical for post-mitotic cell functions and
cortex maturation (Boyer et al., 2018, 2019; Bouron and Fauvarque,
2022). TRIM67 knockout mice have impaired spatial memory,
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cognition, and social functions (Boyer et al., 2018). On a molecular
level, it interacts with a range of cytoskeletal, endo- and exocytotic,
and synaptic regulators, with which it co-localizes at the axonal
periphery and the tips of filopodia (Menon et al., 2021). In the case
of the filopodial actin polymerase VASP, TRIM67 antagonizes its
non-degradative ubiquitination by TRIM9 (a closely related class I
family member) by competitively binding to TRIM9 (Boyer et al.,
2019). The knockdown of TRIM67 in this context results in failed
filopodia growth and dynamics and corresponding loss of axon
turning and branching. Similarly, TRIM67 has also been shown to
drive neuronal morphogenesis by regulating the SNAP47-mediated
fusion of vesicles to the plasma membrane, thereby expanding
the leading edge of the neuron, albeit in a ubiquitin-independent
manner (Urbina et al., 2021). Remarkably, although Boyer and
colleagues found that TRIM67 expression is largely restricted
to neuronal cells in healthy brains, Demirdizen et al. (2022)
demonstrated that it becomes aberrantly overexpressed in glial-
derived oligodendrogliomas. In this context, TRIM67 promotes
membrane protrusion and increased cell motility that can drive
tumor growth in mouse models and correlates with alterations
in Rho GTPase/ROCK2 pathway signaling (Boyer et al., 2018;
Demirdizen et al., 2022). Aberrant expression of TRIM67 in non-
neuronal-derived tumors in the brain is also found specifically
in brain metastases from breast cancers, again correlating with
regulation of invasive properties, as well as DNA damage response
markers (Xuan et al., 2022). Why TRIM67 should be important
particularly in non-neuronally-derived tumors, despite its neuronal
functions in development, is not yet clear. Moreover, it is intriguing
that a ubiquitin ligase-dependent mechanism for TRIM67 activity
in the brain has not yet been identified.

TRIM37 (class VIII) is a developmentally important protein,
with truncation mutations leading to MUscle-LIver-BRain-EYe
(MULIBREY) nanism (i.e., individuals with unusually restricted
growth). Although gross morphological brain development is
normal, patients have motor and speech developmental delay,
suggesting a role for TRIM37 in proper neural network formation
(Karlberg et al., 2004). MULIBREY patients also experience
significantly higher tumor rates and TRIM37 has also been
implicated in non-MULIBREY-related cancers (Brigant et al.,
2019). In glioma, for example, TRIM37 has been found to
have aberrantly high expression (Tang et al., 2018). Knockdown
of TRIM37 in this context correlates with reduced PI3K/AKT
signaling, migration, and proliferation. If it can be understood why
TRIM37 overexpression in glioma and truncation in MULIBREY
can similarly lead to tumorigenesis, opportunities to treat both
might be identified. The known ubiquitin ligase activity of TRIM37
has not, however, been attributed to any of these effects and might
shed light on an explanation in this regard (Kallijärvi et al., 2005).

3.5 Inducing angiogenesis

In healthy brains, TRIM47 is developmentally regulated to
facilitate hippocampal synapse development (Sharma and Banerjee,
2022). In adults, however, TRIM47 is more strongly localized to
brain blood vessel endothelial cells, which may impact tumor
growth by delivering oxygen and nutrients to the expanding tumor
mass, thus correlating with increased TRIM47 expression in higher

grade gliomas, although this has not yet been explored (Hanahan
and Weinberg, 2011; Hao et al., 2019; Ji et al., 2021; Mishra
et al., 2022). Moreover, it would be of interest to understand the
differential molecular effects, and perhaps ubiquitination targets,
that TRIM47 exerts in developing neurons versus blood vessel
endothelial cells.

4 Regulation of protein aggregation
by TRIMs

It is critical to turn on and off protein degradation
during brain development to allow for the formation of
different structures, such as axons, but then prevent unchecked
accumulation (Saritas-Yildirim and Silva, 2014). When this is
not kept under control, proteins can form pathogenic aggregates
that lead to neurodegeneration (e.g., α-synuclein in Parkinson’s
disease; amyloid β and tau in Alzheimer’s disease; huntingtin in
Huntington’s disease) (Kumar et al., 2016). Here, we describe
which TRIMs have been implicated in the aggregation of different
pathogenic proteins in the brain and how this may be reflected in
their roles in developmental regulation of those proteins.

4.1 Tau

TRIM1 and TRIM18 (also known as MID2 and MID1, both
class I) are closely related proteins that can interact, localize
to microtubules, and interact with cytoskeletal regulators and
translation factors. Both are highly expressed in the brain during
embryogenesis and are required for proper neural tube closure in
Xenopus (Buchner et al., 1999; Suzuki et al., 2010). Moreover, an
X-linked disease of midline development, Opitz G/BBB syndrome,
is caused by mutations in TRIM18 that result in dysplasia of
the corpus callosum and the vermis (the connection between the
two lobes of the cerebellum), resulting in intellectual disabilities,
as well as hypertelorism, lip-palate-laryngotracheal clefts, and
some congenital heart defects (Trockenbacher et al., 2001; De
Falco et al., 2003; Pinson et al., 2004; Lancioni et al., 2010).
Although causative mutations (found throughout the gene with
the exception of the sequence encoding the RING domain) are
heterogeneous and lead to a spectrum of clinical phenotypes,
dysplasia of midline structures in the brain is a central clinical
feature (Pinson et al., 2004; Fontanella et al., 2008; Li et al.,
2016). There have also been patients identified with TRIM1
mutations, which suggests a potential overlapping mechanism of
action (Li et al., 2016). On a molecular level, mutant TRIM18
protein fails to bind to the α4 subunit of the protein phosphatase
PP2A. This results in reduced TRIM18-mediated ubiquitination
of PP2A, thereby increasing its activity and the subsequent
hypophosphorylation of its downstream microtubule-associated
substrates. One such substrate is tau, whose dephosphorylated
form stabilizes microtubules. In support of this, TRIM18-deficient
neurons have increased axon length and branching propensity,
which then disrupt formation of the corpus callosum (Lu et al.,
2013). The dysregulation of tau is also an important mechanism
in Alzheimer’s (AD) and Huntington’s (HD) diseases, where it
can form cytotoxic aggregates in its hyperphosphorylated form,
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TABLE 1 Proteins with dual roles in brain development and pathologies are regulated by TRIM family members with varying relationships to
ubiquitination, structured according to the sections in the main text.

Target(s) Cellular role
of target

Relevance of target
in brain
development

Relevance of target
in brain pathologies

TRIM(s) that
ubiquitinate
target

Impact of TRIM
on target

Section 3: The impact of TRIMs on aberrant cell division and cancer in the brain

γ-actin
Myosin V

Cytoskeleton,
trafficking regulation

Neuronal plasticity Neurological disease
Oncogenesis

TRIM3 (El-Husseini
and Vincent, 1999;
Yan et al., 2005;
Schreiber et al.,
2015)

Ub-induced degradation

TRIM2 (Ohkawa
et al., 2001)

Ub-induced degradation

p21 Cell cycle repression Differentiation Tumor suppression TRIM3 (Liu et al.,
2014; Raheja et al.,
2014)

Unreported

C-MYC Transcription
regulation

Stemness Limb-girdle muscular
dystrophy 2H
Oncogenesis

TRIM3 (Chen et al.,
2014)

Ub-induced degradation

TRIM32
(Schwamborn et al.,
2009)

Ub-induced degradation

TRIM47 (Chen et al.,
2020)

Ub-induced stabilization

N-MYC Transcription
regulation

Stemness Oncogenesis TRIM32 (Izumi and
Kaneko, 2014)

Ub-induced degradation

Let7a, RISC, DDX6 RNA silencing Differentiation Tumor suppression TRIM32
(Schwamborn et al.,
2009; Nicklas et al.,
2015, 2019)

Unreported

RARα Transcription
regulation

Differentiation Tumor suppression TRIM32 (Sato et al.,
2011)

Ub-induced stabilization

Gli1 Transcription
regulation

Stemness Oncogenesis TRIM32 (Wang
et al., 2020)

Ub-induced degradation

PIAS3 SUMO ligase,
transcription
regulation

Differentiation Tumor suppression TRIM8 (Zhang C.
et al., 2017)

Ub-induced degradation

Section 4: Regulation of protein aggregation by TRIMs

Pax6 Transcription
regulation

Differentiation Neurodegeneration
Neurological disease
Aniridia

TRIM11 (Tuoc and
Stoykova, 2008)

Ub-induced degradation

VASP Cytoskeleton
regulation

Axonogenesis Developmental defects TRIM9 (Boyer et al.,
2019)

Ub-induced stabilization

p53 Cell cycle repression Differentiation Tumor suppression TRIM45 (Zhang J.
et al., 2017)

Ub-induced stabilization

PP2A Cytoskeleton
regulation

Axonogenesis Opitz G/BBB syndrome
Neurodegeneration

TRIM18
(Trockenbacher
et al., 2001)

Ub-induced degradation

LRRK2 Cytoskeleton
regulation

Axonogenesis Neurodegeneration TRIM1 (Stormo
et al., 2022)

Ub-induced degradation

NF-L Cytoskeleton
regulation

Axonogenesis Neuropathy TRIM2 (Balastik
et al., 2008; Khazaei
et al., 2011)

Ub-induced degradation

ZSCAN21 Transcription
regulation

Synaptic transmission Neurodegeneration
Autism spectrum disorders

TRIM41 (Lassot
et al., 2018)

Ub-induced degradation

(Continued)
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TABLE 1 (Continued)

Target (s) Cellular role
of target

Relevance of target
in brain
development

Relevance of target
in brain pathologies

TRIM(s) that
ubiquitinate
target

Impact of TRIM
on target

α-synuclein Vesicular trafficking Synaptic transmission Neurodegeneration
Autism spectrum disorders

TRIM11 (Zhu et al.,
2020)

SUMO/Ub-induced
degradation*

TRIM19 (Guo et al.,
2014)

SUMO/Ub-induced
degradation*

TRIM21 (Mallery
et al., 2010; Zhu
et al., 2020)

Ub-induced degradation

USP14 Proteasome
activation

Differentiation
Synaptic transmission

Neurological disease TRIM11 (Chen et al.,
2018)

Ub-induced activation

Tau Cytoskeleton
regulation,
trafficking

Axonogenesis Neurodegeneration TRIM11 (Zhang
et al., 2023)

SUMO-induced
degradation/disaggregase

TRIM21 (Kondo
et al., 2015; McEwan
et al., 2017)

Ub-induced degradation

TRIM28 (Rousseaux
et al., 2015, 2016,
2018)

SUMO-induced
stabilization

TRIM46 (van
Beuningen et al.,
2015; Bell et al.,
2021; Bell and
Zempel, 2022)

Unreported

Section 5: TRIMs in the regulation of cerebral inflammation

β-TrCP Inflammatory
signaling

Axonogenesis Neurodegeneration
Ischemic stroke

TRIM9 (Shi et al.,
2014)

Blocks interaction with
substrate

PPARγ Transcriptional
regulation

Differentiation Neuroinflammation TRIM37 (Han et al.,
2019)

Ub-induced degradation

TAB2 Inflammatory
signaling

Unreported Neuroinflammation TRIM45 (Xia et al.,
2022)

Ub-induced signaling

TAK1 Inflammatory
signaling

Unreported Neuroinflammation TRIM8 (Li et al.,
2011)

Ub-induced signaling

Section 6: The role of TRIMs in fighting viruses in the brain

AIM2 Inflammatory
signaling

Axonogenesis Neuroinflammation
Neurodegeneration

TRIM11 (Liu et al.,
2016)

Ub-induced degradation

STING Inflammatory
signaling

Unreported Neuroinflammation TRIM13 (Li et al.,
2022)

Ub-induced trafficking

MDA5 Viral RNA sensing Unreported Neuroinflammation TRIM13 (Narayan
et al., 2014)

Unreported

BCL10 Inflammatory
signaling/apoptosis

Neural tube closure Neuroinflammation TRIM41 (Yu et al.,
2021)

Ub-induced signaling

IRF3 Inflammatory
signaling

Unknown Neuroinflammation
Neurodegeneration
Ischemic stroke

TRIM21 (Manocha
et al., 2014)

Unreported

Section 6: Reactive oxygen species (ROS) modulation by TRIMs in the brain

DUSP6 ROS regulation Unknown Neurodegeneration TRIM10 (Huang
et al., 2019)

Ub-induced degradation

TIGAR Metabolic regulation Differentiation Ischemic stroke TRIM31 (Zeng et al.,
2021)

Ub-induced degradation

ERK Pro-growth signaling Differentiation
Axonogenesis

Spinal cord injury
Oncogenic
Neuroinflammation

TRIM32 (Xue et al.,
2020)

Unreported

*TRIM-mediated SUMOylation followed by SUMO-targeted ubiquitination by another ligase.
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FIGURE 3

TRIM proteins have been found in varied brain structures. (A) The expression of many TRIMs has been detected in the cerebral cortex, presented
here from a lateral view with labeling of its four different cerebral lobes. (B) TRIMs have been found across diverse brain structures, which are
highlighted here in brain cut longitudinally and displayed laterally. Created with BioRender.com.

FIGURE 4

The brain is composed of complex array of cells, which express a variety of TRIM proteins. (A) Stylized drawings of the main differentiated cell types
of the brain, as well as the stem cells that they derive from, and which TRIMs have been described in different cell types. (B) A diagram of a how
electrical impulses are transmitted from a pre-synaptic neuron to a post-synaptic cell. Created with BioRender.com.

suggesting that TRIM18-mediated degradation of tau phosphatase
PP2A may contribute to neurodegeneration, although this requires
further study (Schweiger et al., 2017; Rawat et al., 2022).

TRIM11 (class IV), meanwhile, has been attributed roles in
the establishment of tauopathies AD and progressive supranuclear
palsy (PSP, the most common cause of atypical Parkinsonism).
TRIM11 is found in neurons of the cerebellum and basal ganglia
in healthy adults and is also is expressed during development to
regulate stem-like factors, as described in the section above on
cancer, with TRIM11 knockdown resulting in the accumulation of
cytotoxic insoluble aggregates of PAX6 (Tuoc and Stoykova, 2008;

Jabbari et al., 2018). Similarly, in PSP, TRIM11 mutations increase
levels of phosphorylated tau that can then form extensive
neurofibrillary tangles (Jabbari et al., 2018; Valentino et al., 2020).

In a recent paper, TRIM11 was seen to be downregulated in the
brains of AD patients and disease phenotypes in different mouse
tauopathy models could be rescued by TRIM11 overexpression
(Zhang et al., 2023). This was suggested to be achieved by: (a)
tau SUMOylation by TRIM11, which promotes its degradation via
the proteasome (although ubiquitination was not assessed here);
and (b) stabilization of monomeric, non-aggregated tau through a
chaperone-like function of TRIM11 via an undetermined interface.
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A better understanding of such molecular mechanisms of TRIMs
in neurodegeneration might highlight interesting novel treatment
options.

TRIM46 (class I) has been found to be key in axon specification
and polarity of neurons in the cerebellum, cortex, and hippocampus
(van Beuningen et al., 2015). On closer examination, TRIM46 is
seen to localize proximal to the axon in parallel cross-bridged
microtubules, or fascicles, a structure which is dubbed the axon
initial segment (AIS) (van Beuningen et al., 2015; Fréal et al.,
2019; Harterink et al., 2019; Ichinose et al., 2019; Bell et al.,
2021; Bell and Zempel, 2022). Here it co-localized with Ankyrin
G (ANKG) to scaffold microtubule binding proteins and recruit
them to the plasma membrane, thereby facilitating cargo transport
to the proximal axon (van Beuningen et al., 2015; Fréal et al.,
2019). This is important as selective axonal transport is essential
for neuronal polarization and function. During early neuronal
differentiation, TRIM46 accumulates at the AIS via the action
of KIF3/KAP3 microtubule motors, prior to the establishment
of the fasciculated microtubules, requiring properly executed
spatiotemporal resolution (Ichinose et al., 2019). Studies from
primary neurons suggest that without TRIM46, tau is mis-sorted
and improperly trafficked, whilst transformed neurons do not
require TRIM46 or ANKG for axonal tau trafficking, hinting at
a differentially regulated process (van Beuningen et al., 2015; Bell
et al., 2021; Bell and Zempel, 2022). Given the implications of
improper trafficking and accumulation of tau in neurodegenerative
disease, understanding this potentially developmental distinction
may prove vital. Additionally, whether TRIM46 plays simply a
scaffolding platform or an active enzymatic function has not been
fully explored.

4.2 Huntingtin, amyloid, and ataxin-1

TRIM18-induced PP2A ubiquitination increases the
phosphorylation not only of tau, as described above, but also
of translational inducers mammalian target of rapamycin (mTOR)
and S6, thereby driving overall protein production. Moreover,
the TRIM18:PP2A complex interacts with and promotes the
translation of certain mRNAs, as well as interacting with several
mRNA transport factors (Aranda-Orgillés et al., 2008, 2011; Liu
et al., 2011; Krauß et al., 2013; Monteiro et al., 2018). This enhances
the translation of pathogenic Huntingtin CAG repeat expansions
in HD, as well as amyloid pre-cursor protein (APP) in AD (Müller
et al., 2017; Matthes et al., 2018; Monteiro et al., 2018; Heinz et al.,
2021). Indeed, elevated TRIM18 expression is observed in the
temporal lobe of patients with HD (Heinz et al., 2021). Therefore,
the specific depletion or inhibition of TRIM18 may be promising
in helping to tackle these diseases.

Research from the Yang lab has shown that TRIM19 (also
known as PML, class V) mediates the SUMOylation of poly-
Q mutant Ataxin-1 and Huntingtin, thereby triggering their
ubiquitination by RNF4 and subsequent clearance from cells (Guo
et al., 2014; Chen et al., 2017; Zhu et al., 2020). Interestingly,
TRIM11 and TRIM21 can also clear aggregates of Ataxin-1 (Zhu
et al., 2020). This correlates with observations that TRIM19
can clear misfolded proteins in the nucleus, thereby preventing
neurodegeneration in a polyQ expansion model of spinocerebellar

ataxia (Guo et al., 2014). Given the low expression of TRIM19
detected in the brain, the extent to which this defense is employed
is uncertain, unless it can be stimulated by specific triggers (Uhlén
et al., 2015). In the context of cancer, meanwhile, TRIM19 has
been implicated in the clearance of misfolded proteins as part of
a pro-tumourigenic anti-oxidant response, in accordance with its
role as an oncogenic driver as part of the TRIM19/RARα fusion
protein (Chen et al., 2017). Although a developmental role for
TRIM19 in the brain remains to be uncovered, SUMOylation [a
suggested function of TRIM19 (Chu and Yang, 2011; Guo et al.,
2014)] is extensive during brain development, particularly in the
hippocampus, and TRIM19 has been implicated in driving the
stem-like properties in the context of cancer (Henley et al., 2014;
Zhou and Bao, 2014). Connecting these disparate lines of research
and mechanisms involving TRIM19 may offer interesting answers
for each disease challenge.

4.3 α–synuclein

TRIM41-mediated ZSCAN21 ubiquitination and degradation
is inhibited by the competitive binding of TRIM17 to TRIM41
(Lassot et al., 2018). Correspondingly, increased TRIM17 levels
correlate with less ZSCAN21 ubiquitination and higher ZSCAN21-
induced expression of α-synuclein in PD animal models and
patients (Lassot et al., 2018). Furthermore, genetic variants of
TRIM17, TRIM41, and ZSCAN21 are significantly associated with
familial forms of PD (Farlow et al., 2016; Lassot et al., 2018).
The normal function of α-synuclein is to facilitate presynaptic
homeostasis and neurotransmitter release, with perturbed α-
synuclein regulation observed in autism spectrum disorders that
experience synapse dysfunction (Scott and Roy, 2012; Vargas
et al., 2017; Morato Torres et al., 2020). ZSCAN21 induces
α-synuclein expression in primary neuronal cultures, with α-
synuclein expression peaking before birth, and it would be
interesting to know whether TRIM17 or TRIM41 also play a role
in this context (Raghavan et al., 2004; Dermentzaki et al., 2016).
Intriguingly, however, TRIM17, TRIM41, and ZSCAN21 genetic
variants have also been linked to autism (Iossifov et al., 2012, 2014;
Lim et al., 2017; Satterstrom et al., 2020).

Alternatively, the SUMO E3 ligase activity of TRIM11 has
been seen to reduce α-synuclein fibrillar aggregates in PD and
facilitate the recruitment of a SUMO-targeted ubiquitin ligases
to trigger their clearance (Zhu et al., 2020). Moreover, TRIM11
overexpression can mitigate α-synuclein-mediated pathology, loss
of dopaminergic neurons, and lessen PD-related behavioral
phenotypes in a mouse model. Connecting all these instances is
TRIM11-mediated protein degradation, which may plausibly also
be attributable to its enhancement of the proteasome-activating
function of USP14 that could subsequently increase overall protein
turnover in the cell (Chen et al., 2018). Additional research is
needed to unpick these hypotheses and align to the developmental
importance of TRIM11 described in the section above.

Although TRIM21 is only expressed at low levels in the
brain (Zhang et al., 2014; Uhlén et al., 2015), it is sufficient to
clear both α-synuclein and tau aggregates through an antibody-
mediated mechanism reminiscent of its well-documented function
in clearing viral substrates, implicating it in repressing AD and PD
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(Mallery et al., 2010; Kondo et al., 2015; McEwan et al., 2017). It
is difficult to imagine how this might be relevant during normal
development, however, other than in clearing pre-natal infections
(see Section 6 “The role of TRIMs in fighting viruses in the brain”).

Meanwhile, α-synuclein and tau SUMOylation by TRIM28
(class VI) results not in their degradation, but instead in their
stabilization and re-localization to the nucleus, thereby increasing
cytotoxicity and neurodegeneration (Rousseaux et al., 2015, 2016,
2018). The SUMOylation activity of TRIM28 has also been seen
to be required for its role as transcriptional repressor, a function
which is important in neurogenesis and differentiation (Lagutin
et al., 2003; Ivanov et al., 2007; Yu et al., 2020). Indeed, TRIM28
is essential for post-implantation embryogenesis, including for
brain development (Cammas et al., 2000; Brattås et al., 2017).
Considering these lines of research together suggests that inhibition
of TRIM28-mediated SUMOylation as a therapeutic strategy for
neurodegeneration may impart counteracting consequences for
post-mitotic neuronal fitness and function.

TRIM9 (class I) is predominantly expressed in the cerebellum,
hippocampus, and cortex of adult brains, whereas during
development expression is highest in the neocortex, dorsal
thalamus, midbrain, basal area of the hindbrain, and spinal cord,
particularly in regions of proliferation and differentiation (Berti
et al., 2002). TRIM9 knockout disrupts hippocampal neuron
branching, as well as brain morphogenesis more widely, thereby
impairing the development of spatial learning and memory (Winkle
et al., 2016; Boyer et al., 2019). In accordance with this observation,
TRIM9 levels are lower in the cytoplasm of hippocampal and
temporal cortex neurons of PD patients, but are enriched in
intracellular Lewy body aggregates (Tanji et al., 2010). It is unclear
whether this is a correlative or causative link, however, or what
the molecular mechanisms are, and other studies have suggested
another non-aggregation-related role for TRIM9 in PD (see Section
“5 TRIMs in the regulation of cerebral inflammation”).

4.4 LRRK2

LRRK2 is a cytoskeleton remodelling protein that is crucial in
normal neuronal morphogenesis and is one of the most frequently
mutated proteins in familial PD, where it both promotes neurotoxic
protein aggregation and prevents the clearance of aggregates by
autophagy (Jaleel et al., 2007; Parisiadou et al., 2009). TRIM1 is
therefore implicated in both neurodevelopment and PD because
it can drive the ubiquitin-mediated degradation of wild-type or
mutant LRRK2 (Stormo et al., 2022). Given that TRIM1 and
TRIM18 are both expressed in the brain and have been shown
to interact, it would be interesting to investigate whether their
interplay impacts their regulation of tau and LRKK2, respectively.

4.5 Neurofilament

TRIM2 and TRIM3 (class VII), another pair of TRIMs
with high sequence homology that can interact (Esposito et al.,
2022), also have been implicated in protein aggregation-mediated
neuronal pathologies. Although more studies are needed to
understand the observed downregulation of TRIM3 in PD patients,

which correlates with reduced PI3K/AKT pathway signaling (Dong
et al., 2019, 2020), more has been uncovered regarding TRIM2.
Specifically, TRIM2 can interact with and ubiquitinate cytoskeletal
components, including neurofilament light chain (NF-L) (Ohkawa
et al., 2001; Balastik et al., 2008; Khazaei et al., 2011). Mutations in
the coiled-coil and NHL domains of TRIM2 that effect its function
or stability cause Charcot-Marie-Tooth neuropathy, characterized
by progressive early-onset axonal degeneration, particularly in
cranial nerves, resulting in a phenotypic spectrum including muscle
wasting, facial weakness, and breathing difficulties (Ylikallio et al.,
2013; Magri et al., 2020). Mechanistically, TRIM2 mutations
prevent the ubiquitination and degradation of NF-L, leading to
neuropathic accumulations of neurofilaments in axons (Ylikallio
et al., 2013). During development, however, TRIM2-mediated
ubiquitination of NF-L is required for normal axonal growth,
demonstrating a parallel between neurogenesis and degeneration
(Khazaei et al., 2011). In our recent study, we found that TRIM2
and TRIM3 interact at lamellipodia-like membrane protrusions,
reminiscent of nascent axons, and cross-regulate one another’s E3
ligase activities (Esposito et al., 2022). In light of this discovery, it
will be important to interrogate the interplay of TRIM2 and TRIM3
in mediating neurodegenerative phenotypes.

Although another class VII family member, TRIM32 has also
been implicated in neurofilament regulation, its knockout in
fact reduces the number of neurofilaments and the diameter of
myelinated motor axons, but mice present with a sarcotubular
myopathy instead of neurodegeneration (Kudryashova et al., 2009).
However, as TRIM32 knockout results in aberrant differentiation
into excitatory glutaminergic neurons rather than inhibitory
GABAergic neurons, leading to excitotoxicity and reduced overall
neuronal numbers in the hippocampus and cortex, it may
implicated in neurodegeneration by another means (Hillje et al.,
2013; Ntim et al., 2020). Whether these effects can be connected
to TRIM32 ubiquitin ligase function remains to be uncovered.

5 TRIMs in the regulation of cerebral
inflammation

Inflammation of the brain either in adults or during
development can inflict significant damage, resulting in neuronal
degeneration or neurodevelopmental defects, respectively (Aktas
et al., 2007; Bennet et al., 2018). Understanding how this
inflammation is triggered and resolved is therefore critical.

5.1 NF-κB signaling and cytokine release
in the brain

As discussed above, TRIM9 (class I) expression is important
in brain development, particularly in promoting axonal branching,
which may be relevant to axon degeneration in PD. Others
have proposed an alternative role for TRIM9 in repressing PD
through its inhibition of NF-κB signaling and inflammatory
cytokine release, which are known to correlate with PD (Hunot
et al., 1997; Kaltschmidt et al., 1997; Tansey and Goldberg, 2010).
Mechanistically, TRIM9 binds β-TrCP, a component of the Skp-
Cullin-F box (SCF) E3 ligase complex, which blocks SCF-mediated
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ubiquitination of IκBa and p100, thereby stabilizing them and
hence inhibiting NF-κB (Shi et al., 2014). Interestingly, this appears
to be a non-ligase-related function for TRIM9. NF-κB suppression
by TRIM9 is also important during ischemic stroke, where TRIM9
upregulation in the peri-infarct area is anti-inflammatory and
neuroprotective. The ability of TRIM9 to reduce NF-κB signaling
may also feed into its other function in promoting axonal guidance
during development, albeit in a temporally-dependent fashion,
as NF-κB can be inhibitory or stimulatory in driving axonal
growth, according to the developmental stage (Gutierrez and
Davies, 2011). Understanding the interplay between TRIM9, NF-
κB, inflammation, and axonogenesis in more detail may inform
not only neuroprotective mechanisms but also treatment options
in PD.

TRIM37 (class VIII) expression largely localizes to epithelial
tissues in embryos, whereas in adults it is found in central
and peripheral nervous systems (Kallijärvi et al., 2006). The
importance of TRIM37 in regulating these systems is suggested
by the motor and language developmental delays and muscle
hypotonicity documented in MULIBREY patients who harbor
autosomal recessive TRIM37 mutations (Karlberg et al., 2004).
Interestingly, TRIM37 can ubiquitinate and degrade PPARγ, a pro-
differentiation regulator of neural stem cells (Kanakasabai et al.,
2012). However, this was uncovered in the context of intracerebral
hemorrhage, where TRIM37-mediated PPARγ degradation in
microglia promotes pro-inflammatory IL-1β release and apoptosis
rather than a differentiation process (Han et al., 2019). Taken
together, these data suggest that TRIM37 may act as a double-edged
sword, capable of driving both development and inflammation in
the brain.

Similarly to TRIM37, TRIM47 and TRIM62 (both class IV), are
both upregulated and promote inflammation in the hippocampus
in an ischemia/reperfusion (I/R) injury model of stroke. Their
genetic ablation correspondingly reduces inflammatory signaling
and caspase cleavage after I/R injury (Hao et al., 2019; Liu and
Lei, 2020). I/R induces TRIM62 ubiquitination with K63-linked
chains that are required for its interaction with NLRP3 (a key
player in NF-κB pro-inflammatory signaling) (Liu and Lei, 2020).
Unfortunately, this cannot be put into wider perspective as, to our
knowledge, TRIM62 has not yet been studied in other neurological
contexts. TRIM47, however, has been shown to be specifically
expressed in blood vessels in the brain, the damage and rupture
of which can cause stroke and also correlates with dementia
(Marchesi, 2011; Vanlandewijck et al., 2018; Mishra et al., 2022).
It would be interesting to understand the seeming discrepancy,
however, between observed increased vessel permeability but
reduced inflammatory signaling when TRIM47 is ablated, as
previous studies would suggest that inflammation would lead to
break down of vessel boundaries (Ono et al., 2017). Identifying
the molecular mechanisms at play in these different cellular and
environmental contexts may help resolve this issue.

TRIM45 (class X) has also been seen to be pro-inflammatory,
with I/R triggering TRIM45-driven NF-κB signaling and cytokine
production (Xia et al., 2022). This is brought about by the
interaction of TRIM45 with TAB2, which it modifies with Lys63-
linked poly-ubiquitin chains, promoting the formation of the
TAB1/2-TAK1 complex and inducing NF-κB signaling. TRIM45
knockdown, therefore, reduces inflammation and gives more
favorable outcomes after I/R. Elevated TRIM45 levels after I/R are

echoed by higher expression during development so it would be
interesting to understand how TRIM45 functions are determined
according to circumstance (Choe et al., 2020).

Likewise, TRIM8 (class V) is pro-inflammatory after I/R-
or lipopolysaccharide (LPS)-induced cerebral injury (Bai et al.,
2020; Zhao et al., 2020). Upregulated TRIM8 expression after
these challenges causes cerebral damage through elevated ROS or
cognitive deterioration dependent on NF-κB activity, respectively.
This reinforces a previous study documenting Lys63-linked
ubiquitination of TAK1 by TRIM8 in response to IL-1β or
TNFα stimulation, which drives subsequent NF-κB activation (Li
et al., 2011). It would be intriguing to investigate whether the
inflammatory responses documented in the brain also depend on
this mechanism.

In the context of spinal cord injury, meanwhile, knockout of
TRIM32 (class VII) results in elevated pro-inflammatory cytokine
production (e.g., IL-1 and IL-10), increased cell proliferation,
reduced axon initiation, and delayed recovery of motor functions
(Fu et al., 2017). This phenotype finds a parallel in development,
where TRIM32 reduces proliferation and promotes differentiation,
largely brought about through MYC degradation and enhancing
Let-7 miRNA function (Schwamborn et al., 2009). Understanding
and harnessing the anti-proliferative, pro-axogenesis function of
TRIM32 during development offers an opportunity to identify
better treatments after spinal cord injury.

TRIM72 (class IV) has also been implicated in improving
recovery from inflammatory neurological damage. By using
recombinant TRIM72 protein in combination with umbilical cord-
derived stem cells, it is proposed that TRIM72 can alleviate
LPS-induced damage of the brain, correlating with reduced pro-
inflammatory TLF4/NF-κB signaling (Guan et al., 2019b; Ma et al.,
2020). TRIM72 is similarly suggested to serve a neuroprotective
role after I/R injury, where it can promote survival signaling
through AKT/GSK3β (Yao et al., 2016; Wu et al., 2020). In both
cases, however, the specific molecular function of TRIM72 requires
further study and, crucially, it is noted that TRIM72 is not expressed
in the brain but rather is either exogenously delivered or possibly
secreted from muscles and transported through the blood-brain
barrier. This diminishes the likelihood that TRIM72 plays a role
in normal brain development and function, and indeed one has not
yet been described.

5.2 Autoimmune brain inflammation

TRIM21 (class IV) is targeted by autoantibodies in Sjögren’s
syndrome, an inflammatory autoimmune condition (Tetsuka et al.,
2021). Approximately 5% of Sjögren’s syndrome patients have
cerebellar atrophy, with Purkinje cells predominantly affected,
consistent with the observation that TRIM21 expression, whilst
generally low, is enriched in Purkinje neurons of the hippocampus,
cerebral cortex, and cerebellum (Zhang et al., 2014; Uhlén et al.,
2015; Tetsuka et al., 2021). It remains to be understood what
triggers this attack on Purkinje neurons in only a small proportion
of cases.

In mice on a high-fat diet, meanwhile, brain-specific deletion
of TRIM13 (class XI) potentiates insulin resistance and metabolic
dysfunction, causing systematic inflammation (Qian et al., 2020).
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Notably, pro-inflammatory cytokine production and inflammation
in the cortex, hippocampus, and hypothalamus are observed (Qian
et al., 2020). This is supported by a whole-body Trim13−/−

mouse model that results in reduced type I interferon (IFN)
signaling and curbs the ability of macrophages to respond to
viral infection (see Section 6 “The role of TRIMs in fighting
viruses in the brain”) (Narayan et al., 2014; Li et al., 2022).
As TRIM13 is well expressed in the CNS and proper metabolic
regulation and signaling is also critical in neuronal development,
such as in neuronal polarization and axogenesis, understanding the
intersection between TRIM13, metabolism, and inflammation may
offer valuable insights (Williams et al., 2011; Uhlén et al., 2015).

6 The role of TRIMs in fighting
viruses in the brain

Perhaps the most well-known role for TRIM proteins is in the
innate immune response to infections (van Gent et al., 2018). In
this section we outline TRIM-mediated responses to brain viral
infection and draw attention to studies from other perspectives that
may be interconnected.

6.1 HSV-1

Further to its ability to dampen inflammation in metabolic
stress models, TRIM13 (class XI) also curbs NF-κB signaling
during viral infection, offering a more permissive environment
for replication (Li et al., 2022). This is exemplified in a mouse
model of infection by the DNA virus Herpes simplex virus 1
(HSV-1), which accumulates in the brain. In Trim13−/− mice
viral load is reduced, corresponding with upregulated NF-κB
signaling. Mechanistically, TRIM13 was found to add Lys6 poly-
ubiquitin chains to the innate immune signaling trigger STING,
which results in it being held in the endoplasmic reticulum and
promotes its degradation. An alternative mechanism has also been
proposed, albeit to the same effect, for TRIM13 regulation of the
RNA-based encephalomyocarditis virus, which causes neurological
disease (Carocci and Bakkali-Kassimi, 2012; Narayan et al., 2014).
In this model, TRIM13 dampens the activity of the intracellular
viral RNA sensor MDA5 to reduce type I IFN production, with
the result that Trim13−/− mice can more effectively restrict
the virus. TRIM13-mediated regulation of IFNs is a compelling
idea to investigate in the context of neurodevelopment and
degeneration, where type I IFNs also have been seen to play a
key role (Main et al., 2016; Taylor et al., 2018; Hosseini et al.,
2020).

In contrast, TRIM41 represses HSV-1 replication in mouse
brains by generating a signaling hub for NEMO activity (Yu et al.,
2021). TRIM41, which is well-expressed in the brain, interacts
with and adds Lys63-linked ubiquitin chains to BCL10, to which
NEMO is then recruited and subsequently activates NF-κB and
TBK1/IRF3 pathways to induce type I IFNs (Tanaka et al., 2005).
This immune regulatory mechanism can be connected with three
other observations in development and neurodegeneration: (a)
NF-κB has an important role in axon guidance in development
(Gutierrez and Davies, 2011), (b) type I IFNs have additionally

been implicated in development and PD (Main et al., 2016; Taylor
et al., 2018; Hosseini et al., 2020), and (c) the regulation of α-
synuclein by TRIM41 is relevant for presynaptic function in both
development and PD. Therefore, the regulation of α-synuclein and
NF-κB by TRIM41 may have implications for neuronal function
across development, neurodegeneration, and infection.

Alternatively, TRIM11 (class IV) restricts HSV-1 infection
through the binding and ubiquitination of AIM2, an
inflammasome component, after infection, thereby inducing
the autophagic degradation of HSV-1 (Liu et al., 2016). This
dampens inflammatory responses, such as the production of IL-1β

and IL-18. AIM2 has been previously shown to repress dendritic
branching but increase axon extension in murine hippocampal
neurons during development, with an impact on spatial memory
(Chen J. et al., 2019). Whether TRIM11, which is also expressed
in the developing brain, can similarly ubiquitinate AIM2 in this
capacity, remains to be seen (Tuoc and Stoykova, 2008). It is
also interesting to note that TRIM11 both restricts HSV-1 and
negatively correlates with AD pathology, given that latent HSV-1
re-activation in the brain has been suggested to increase AD risk
(see Section 4.1 “Tau”) (Cairns et al., 2022).

6.2 Japanese encephalitis virus

TRIM21 (class IV) has a well-characterized anti-viral role
(Mallery et al., 2010). Conversely, in the context of Japanese
Encephalitis Virus (JEV) infection of the brain, TRIM21 appears to
support viral replication as it interacts with and downregulates IRF-
3 in a RING-dependent manner, thereby reducing virus-restrictive
type I IFN signaling (Manocha et al., 2014). TRIM52 (class V),
however, ubiquitinates and degrades JEV viral protein NS2A,
possibly also supported by its ability to promote NF-κB signaling
(Fan et al., 2016, 2017; Zhang P. et al., 2020). Whilst neither of
these TRIMs have identifiable roles in brain development, IFN
and NF-κB signaling do, as described elsewhere in this article, and
their interplay with TRIM proteins remains to be fully explored in
disease and developmental contexts.

6.3 Endogenous retroviruses

Viruses of a different kind are linked to TRIM5 and TRIM22 in
the context of the brain: human endogenous retroviruses (ERVs).
Multiple sclerosis (MS), which some research has suggested may
have a link to ERVs, is a progressive condition that results in
myelin loss in the nerves of the brain and spinal cord (Hansen
et al., 2011; Nexø et al., 2011; Morris et al., 2019). TRIM5 and
TRIM22, which have been shown to suppress invading viruses, have
genetic variants that correlate with increased MS risk, supporting
the concept of a potential viral element in MS development (Pertel
et al., 2011; Di Pietro et al., 2013; Nexø et al., 2013). However,
the molecular functions of TRIM5 and TRIM22 in this regard are
yet to be interrogated. Alternatively, TRIM28 has been implicated
in silencing ERVs during neuronal differentiation processes, and
which it may be interesting to also assess in the context of MS
(Fasching et al., 2015; Brattås et al., 2017).
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7 ROS modulation by TRIMs in the
brain

Although the etiology of neurodegenerative diseases, such as
PD, remains unclear, reactive oxygen species (ROS) and oxidative
damage have been implicated (Singh et al., 2019). Interestingly,
some TRIMs have been observed to participate in this connection.
TRIMs have also been shown to play a role in regulating ROS in
other contexts, including ischemic or traumatic injuries and after
viral insult, which may connect to their functions in development
and neurodegeneration.

7.1 ROS in neurodegeneration

TRIM10 (class IV) appears to have a pathogenic role in
PD, where its expression is increased and genetic mutations are
associated with disease risk (Witoelar et al., 2017). On a molecular
level, TRIM10 ubiquitinates and degrades the phosphatase DUSP6,
thereby counteracting DUSP6-mediated ERK activation, ROS
suppression, and apoptosis inhibition (Huang et al., 2019). TRIM3
(class VII), meanwhile, upregulates the AKT/PI3K pathway, via
an unknown molecular function, thereby dampening ROS, which
correlates with a reduction in PD symptoms in a mouse model
(Dong et al., 2020). Interestingly, ERK, AKT, and ROS cross-talk
has been demonstrated during neurite outgrowth and neuronal
apoptosis (Subramaniam et al., 2003; Chang et al., 2004; Myhre
et al., 2004; Zeng et al., 2010; Wang et al., 2011; Fu et al., 2020).
Being able to position TRIMs in this picture may help contextualize
the two contrasting outcomes of development and degeneration
that are both stimulated by ERK/AKT/ROS.

As mentioned above, TRIM72 (class IV) is expressed in muscle
and not the brain. However, when recombinant TRIM72 protein
is administered alongside human umbilical-derived mesenchymal
stem cells, oxidative stress is relieved via the activation of NRF2 and
neurogenesis is promoted, thereby increasing cognitive function
in a mouse model of AD (Ma et al., 2022). This is also relevant
for studies of TRIM72 in regulating ROS following brain injury
(see Section 7.2 “ROS in ischemic and traumatic brain and spinal
injuries”).

7.2 ROS in ischemic and traumatic brain
and spinal injuries

The mediation of NRF2 signaling by TRIM72 described above
may also be linked to previous work describing a protective and
regenerative role for TRIM72 in neurons damaged by H2O2, I/R, or
traumatic brain injury (Yao et al., 2016; Guan et al., 2019a). In these
contexts, TRIM72 reduces oxidative damage, promotes neuronal
proliferation and migration, and therefore alleviates brain oedema
and neurological defects. However, this is confounded by studies
from heart muscle, where TRIM72 function in cellular membrane
repair is hindered by oxidative stress conditions, such as elevated
ROS (Cai et al., 2009; Hwang et al., 2011). By connecting research
from different tissues, it may be possible to ascertain a deeper
understanding of the normal and therapeutic functions of TRIM72.

TRIM32 (class VII), meanwhile, has been described to have
both pro- and anti-neuronal regeneration functions. Firstly, after
I/R injury, TRIM32 knockdown promotes hippocampal neuron
survival through elevated NRF2 pathway activity, which protects
cells against ROS-induced apoptosis (Wei et al., 2019). This
is in agreement with observations that TRIM32 hinders motor
function recovery after traumatic brain injury, which is attributed
to increased levels of p53 superfamily member p73 and elevated
apoptosis (Zhang Z.-B. et al., 2017). However, these observations
are at odds with other reports of TRIM32 promoting recovery
from injury. For example, TRIM32 has also been proposed to
interact with ERK following spinal cord injury, resulting in
improved neuronal differentiation and recovery (Xue et al., 2020).
In development, TRIM32 has similarly been shown to have a
role in neuronal differentiation (Sato et al., 2011; Nicklas et al.,
2015, 2019; Wang et al., 2020). In order to effectively develop
new therapies to treat brain injuries, particularly hypoxic damage,
it would be important to disentangle how different contexts can
dictate whether TRIM32 is either beneficial and detrimental to
neuronal cell survival and function.

TRIM31 (class V) supports recovery after I/R by reducing ROS,
driving the pentose-phosphate pathway (PPP), and maintaining
mitochondrial homeostasis (Zeng et al., 2021). This is brought
about by the TRIM31-mediated ubiquitination and subsequent
degradation of TIGAR, a PPP inhibitor. Interestingly, neural stem
cells are particularly dependent on the PPP, which is intrinsically a
reducing system and, therefore, anti-ROS, and TIGAR can inhibit
the PPP to drive neural differentiation (Candelario et al., 2013;
Zhou et al., 2019). Although TRIM31 has been seen to promote
recovery after I/R injury, its potential in regulating neuronal
differentiation has not yet been explored.

8 Conclusion

The roles of TRIM proteins in the brain find numerous
parallels between pathological states and healthy development, with
many common regulatory targets (Table 1). Intriguingly, not only
are there shared functions for TRIM targets across development
and disease, but there also appears to be a level of redundancy
between the TRIMs, with four different TRIMs described to target
MYC paralogs and eleven TRIMs capable of impacting the NF-κB
pathway. Further studies are now required to understand whether
this may reflect cell type- or context-specific expression patterns of
these TRIMs or true functional redundancy. Some of the findings
summarized above may be understood in greater depth, and any
possible discrepancies resolved, by more extensive exploration and
comparisons of the appropriate brain cell types and conditions
in each context where TRIMs function (Figures 3, 4). Whilst the
overall context-dependency of TRIM E3 ubiquitin (or SUMO)
ligase activities across different bodily systems would also benefit
from further scrutiny, given the multitude of physiologically-
relevant putative substrates described here, the brain may prove a
valuable model system to assess regulatory mechanisms. However,
given the difficulty of accurately modeling this complex organ using
in vitro models, coupled with the scarcity of human brain tissue for
analysis, this is likely to pose a significant practical challenge.

It is tempting to consider the extensive number of TRIMs
involved in brain immunity-related processes with respect to

Frontiers in Molecular Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1287257
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1287257 November 29, 2023 Time: 18:48 # 15

Dudley-Fraser and Rittinger 10.3389/fnmol.2023.1287257

evolution. Specifically, the adaptive immune system and the
TRIM family expanded greatly during jawed vertebrate evolution,
coinciding with the emergence of complex nervous systems, which
may suggest a co-dependency between more sophisticated brains
and the immune system, as well as potentially TRIM proteins, as
has been proposed elsewhere (Meroni, 2012; Nataf, 2017; Yang W.
et al., 2020; Kraus et al., 2021).

By highlighting the commonality of different players and
pathways in brain development and pathologies we aimed to
identify areas for future study as well as therapeutic opportunities.
For example, neuronal stemness or differentiation status can be
promoted or repressed by different TRIM family members, which
is not just important during brain development but also during
gliomagenesis, as well as being a factor in recovering from injury.
Alternatively, by determining how TRIMs regulate cytoskeletal
components during neurogenesis we are able to build up a
more complete picture of the molecular dysfunction that leads to
neurogeneration.

With regards to therapeutic development, TRIMs have been
mostly studied in terms of the E3 ligase function of their
RING domains to induce ubiquitin-mediated targeted protein
degradation, such as in PROteolysis Targeting Chimera (PROTAC)
design (D’Amico et al., 2021). However, it is notable that in many
cases described above, ubiquitination is either: (a) not described;
(b) does not induce target degradation; or (c) is not relevant to
the effect of the TRIM (e.g., the TRIM acts an interaction scaffold)
(Table 1). Therefore, rather than employing TRIMs as the ligase in
a PROTAC molecule, it may be more appropriate to consider them
as the target for degradation.

Moreover, given the difficulty in getting PROTACs across the
blood-brain barrier due to their size and chemical properties,
it may be necessary to focus on molecular glues to treat
neurological pathologies (Farrell and Jarome, 2021). However,
given the difficulty of fully understanding the protein-protein
interface required for molecular glue prediction and design, and
that the majority of molecular glues have been identified by
chance, developing such strategies are likely to remain a significant
challenge (Kozicka and Thomä, 2021).

Importantly, we hope that by compiling literature across
different fields we are able to show that considering data
from developmental and disease studies in an integrated and
complimentary manner will aid the development of TRIM-based

therapeutics for brain pathologies and mitigate unintended side
effects (Khan et al., 2020; Békés et al., 2022; Zhang et al., 2022).
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Porčnik, A., Novak, M., Breznik, B., Majc, B., Hrastar, B., Šamec, N., et al.
(2021). TRIM28 selective nanobody reduces glioblastoma stem cell invasion. Molecules
26:5141.

Qian, Y., Lei, G., and Wen, L. (2020). Brain-specific deletion of TRIM13
promotes metabolic stress-triggered insulin resistance, glucose intolerance, and
neuroinflammation. Biochem. Biophys. Res. Commun. 527, 138–145. doi: 10.1016/j.
bbrc.2020.03.076

Raghavan, R., Kruijff, L. D., Sterrenburg, M. D., Rogers, B. B., Hladik, C. L., and
White, C. L. (2004). Alpha-synuclein expression in the developing human brain.
Pediatr. Dev. Pathol. 7, 506–516. doi: 10.1007/s10024-003-7080-9

Raheja, R., Liu, Y., Hukkelhoven, E., Yeh, N., and Koff, A. (2014). The ability
of TRIM3 to induce growth arrest depends on RING-dependent E3 ligase activity.
Biochem. J. 458, 537–545. doi: 10.1042/bj20131288

Rajsbaum, R., García-Sastre, A., and Versteeg, G. A. (2014). TRIMmunity: The roles
of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J. Mol. Biol. 426,
1265–1284. doi: 10.1016/j.jmb.2013.12.005

Frontiers in Molecular Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1287257
https://doi.org/10.1002/glia.23028
https://doi.org/10.4161/cc.7.24.7397
https://doi.org/10.4161/cc.7.24.7397
https://doi.org/10.1073/pnas.1014074107
https://doi.org/10.1073/pnas.1014074107
https://doi.org/10.1186/1742-2094-11-24
https://doi.org/10.1186/1742-2094-11-24
https://doi.org/10.1016/j.biocel.2018.06.001
https://doi.org/10.1096/fj.11-0102ufm
https://doi.org/10.1096/fj.11-0102ufm
https://doi.org/10.1038/s41420-017-0003-8
https://doi.org/10.1038/s41420-017-0003-8
https://doi.org/10.1038/nsmb.2792
https://doi.org/10.1038/nsmb.2792
https://doi.org/10.1073/pnas.1607215114
https://doi.org/10.1091/mbc.E20-10-0622
https://doi.org/10.1007/978-1-4614-5398-7_1
https://doi.org/10.1186/s12885-015-1449-9
https://doi.org/10.1002/stem.2453
https://doi.org/10.1093/brain/awab432
https://doi.org/10.1016/j.neulet.2018.02.061
https://doi.org/10.1007/s12035-018-1255-x
https://doi.org/10.1038/nrn.2017.29
https://doi.org/10.1093/toxsci/kfh166
https://doi.org/10.1016/j.coi.2015.06.011
https://doi.org/10.1128/JVI.02593-13
https://doi.org/10.1093/brain/awn109
https://doi.org/10.1371/journal.pone.0016652
https://doi.org/10.1371/journal.pone.0074063
https://doi.org/10.3389/fncel.2019.00528
https://doi.org/10.3389/fncel.2019.00528
https://doi.org/10.1038/s41418-018-0144-1
https://doi.org/10.1093/nar/gkv138
https://doi.org/10.1371/journal.pone.0030445
https://doi.org/10.1093/cercor/bhaa064
https://doi.org/10.1046/j.1471-4159.2001.00373.x
https://doi.org/10.1186/s41232-017-0042-9
https://doi.org/10.1073/pnas.1506593112
https://doi.org/10.1016/j.tins.2020.05.004
https://doi.org/10.1523/jneurosci.3799-09.2009
https://doi.org/10.15252/embj.201798219
https://doi.org/10.1038/nn.4477
https://doi.org/10.2147/ott.S188101
https://doi.org/10.1007/s10974-012-9288-7
https://doi.org/10.1007/s10974-012-9288-7
https://doi.org/10.1038/nature09976
https://doi.org/10.1016/j.cell.2015.01.034
https://doi.org/10.1136/jmg.2003.014829
https://doi.org/10.1016/j.bbrc.2020.03.076
https://doi.org/10.1016/j.bbrc.2020.03.076
https://doi.org/10.1007/s10024-003-7080-9
https://doi.org/10.1042/bj20131288
https://doi.org/10.1016/j.jmb.2013.12.005
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1287257 November 29, 2023 Time: 18:48 # 20

Dudley-Fraser and Rittinger 10.3389/fnmol.2023.1287257

Randolph, K., Hyder, U., and D’Orso, I. (2022). KAP1/TRIM28: Transcriptional
activator and/or repressor of viral and cellular programs? Front. Cell. Infect. Microbiol.
12:834636. doi: 10.3389/fcimb.2022.834636

Rawat, P., Sehar, U., Bisht, J., Selman, A., Culberson, J., and Reddy, P. H. (2022).
Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci.
23:12841.

Reemst, K., Noctor, S. C., Lucassen, P. J., and Hol, E. M. (2016). The indispensable
roles of microglia and astrocytes during brain development. Front. Hum. Neurosci.
10:566. doi: 10.3389/fnhum.2016.00566

Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., et al. (2001).
The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151.
doi: 10.1093/emboj/20.9.2140

Rock, R. B., Gekker, G., Hu, S., Sheng, W. S., Cheeran, M., Lokensgard, J. R., et al.
(2004). Role of microglia in central nervous system infections. Clin. Microbiol. Rev. 17,
942–964. doi: 10.1128/cmr.17.4.942-964.2004

Rousseaux, M. W. C., de Haro, M., Lasagna-Reeves, C. A., De Maio, A., Jafar-Nejad,
P., Park, J., et al. (2015). TRIM28 regulates the stability and toxicity of alpha-synuclein
and tau through a common mechanism. J. Neurol. Sci. 357, e285–e286. doi: 10.1016/j.
jns.2015.08.996

Rousseaux, M. W. C., de Haro, M., Lasagna-Reeves, C. A., De Maio, A., Park, J.,
Jafar-Nejad, P., et al. (2016). TRIM28 regulates the nuclear accumulation and toxicity
of both alpha-synuclein and tau. eLife 5:e19809. doi: 10.7554/eLife.19809

Rousseaux, M. W. C., Revelli, J.-P., Vaìzquez-Veìlez, G. E., Kim, J.-Y., Craigen, E.,
Gonzales, K., et al. (2018). Depleting Trim28 in adult mice is well tolerated and reduces
levels of α-synuclein and tau. eLife 7:e36768. doi: 10.7554/eLife.36768

Sakai, Y., Fukai, R., Matsushita, Y., Miyake, N., Saitsu, H., Akamine, S., et al. (2016).
De novo truncating mutation of TRIM8 causes early-onset epileptic encephalopathy.
Ann. Hum. Genet. 80, 235–240. doi: 10.1111/ahg.12157

Sanchez, J. G., Okreglicka, K., Chandrasekaran, V., Welker, J. M., Sundquist, W. I.,
and Pornillos, O. (2014). The tripartite motif coiled-coil is an elongated antiparallel
hairpin dimer. Proc. Natl. Acad. Sci. U.S.A. 111, 2494–2499. doi: 10.1073/pnas.
1318962111

Sansom, S. N., Griffiths, D. S., Faedo, A., Kleinjan, D.-J., Ruan, Y., Smith, J., et al.
(2009). The level of the transcription factor pax6 is essential for controlling the balance
between neural stem cell self-renewal and neurogenesis. PLoS Genet. 5:e1000511.
doi: 10.1371/journal.pgen.1000511

Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A., and Meroni, G. (2008). Genomic
analysis of the TRIM family reveals two groups of genes with distinct evolutionary
properties. BMC Evol. Biol. 8:225. doi: 10.1186/1471-2148-8-225

Saritas-Yildirim, B., and Silva, E. M. (2014). The role of targeted protein degradation
in early neural development. Genesis 52, 287–299. doi: 10.1002/dvg.22771

Sato, T., Okumura, F., Kano, S., Kondo, T., Ariga, T., and Hatakeyama, S.
(2011). TRIM32 promotes neural differentiation through retinoic acid receptor-
mediated transcription. J. Cell Sci. 124(Pt 20), 3492–3502. doi: 10.1242/jcs.08
8799

Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J.-
Y., et al. (2020). Large-scale exome sequencing study implicates both developmental
and functional changes in the neurobiology of autism. Cell 180, 568.e23–584.e23.
doi: 10.1016/j.cell.2019.12.036

Schreiber, J., Végh, M. J., Dawitz, J., Kroon, T., Loos, M., Labonté, D., et al. (2015).
Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating
synaptic γ-actin levels. J. Cell Biol. 211, 569–586. doi: 10.1083/jcb.201506048

Schwamborn, J. C., Berezikov, E., and Knoblich, J. A. (2009). The TRIM-NHL
protein TRIM32 activates MicroRNAs and prevents self-renewal in mouse neural
progenitors. Cell 136, 913–925. doi: 10.1016/j.cell.2008.12.024

Schweiger, S., Matthes, F., Posey, K., Kickstein, E., Weber, S., Hettich, M. M.,
et al. (2017). Resveratrol induces dephosphorylation of Tau by interfering with the
MID1-PP2A complex. Sci. Rep. 7:13753. doi: 10.1038/s41598-017-12974-4

Scott, D., and Roy, S. (2012). α-synuclein inhibits intersynaptic vesicle mobility
and maintains recycling-pool homeostasis. J. Neurosci. 32, 10129–10135. doi: 10.1523/
jneurosci.0535-12.2012

Sharma, G., and Banerjee, S. (2022). Activity-regulated E3 ubiquitin ligase TRIM47
modulates excitatory synapse development. Front. Mol. Neurosci. 15:943980. doi: 10.
3389/fnmol.2022.943980

Shi, K., Tian, D.-C., Li, Z.-G., Ducruet, A. F., Lawton, M. T., and Shi, F.-D. (2019).
Global brain inflammation in stroke. Lancet Neurol. 18, 1058–1066. doi: 10.1016/
S1474-4422(19)30078-X

Shi, M., Cho, H., Inn, K.-S., Yang, A., Zhao, Z., Liang, Q., et al. (2014). Negative
regulation of NF-κB activity by brain-specific TRIpartite Motif protein 9. Nat.
Commun. 5:4820. doi: 10.1038/ncomms5820
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