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Emerging perspectives of synaptic
biomarkers in ALS and FTD

Karrthik Krishnamurthy* and Raj Kumar Pradhan

Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Je�erson

University, Philadelphia, PA, United States

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are

debilitating neurodegenerative diseases with shared pathological features like

transactive response DNA-binding protein of 43 kDa (TDP-43) inclusions and

genetic mutations. Both diseases involve synaptic dysfunction, contributing to

their clinical features. Synaptic biomarkers, representing proteins associated

with synaptic function or structure, o�er insights into disease mechanisms,

progression, and treatment responses. These biomarkers can detect disease early,

track its progression, and evaluate therapeutic e�cacy. ALS is characterized

by elevated neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF)

and blood, correlating with disease progression. TDP-43 is another key ALS

biomarker, its mislocalization linked to synaptic dysfunction. In FTD, TDP-43

and tau proteins are studied as biomarkers. Synaptic biomarkers like neuronal

pentraxins (NPs), including neuronal pentraxin 2 (NPTX2), and neuronal pentraxin

receptor (NPTXR), o�er insights into FTD pathology and cognitive decline.

Advanced technologies, like machine learning (ML) and artificial intelligence (AI),

aid biomarker discovery and drug development. Challenges in this research

include technological limitations in detection, variability across patients, and

translating findings from animal models. ML/AI can accelerate discovery by

analyzing complex data and predicting disease outcomes. Synaptic biomarkers

o�er early disease detection, personalized treatment strategies, and insights

into disease mechanisms. While challenges persist, technological advancements

and interdisciplinary e�orts promise to revolutionize the understanding and

management of ALS and FTD. This review will explore the present comprehension

of synaptic biomarkers in ALS and FTD and discuss their significance and

emphasize the prospects and obstacles.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two

serious neurodegenerative conditions that cause significant suffering andmorbidity globally.

ALS, also known as Lou Gehrig’s disease, primarily affects the neurons responsible for

voluntary muscle control, resulting in gradual muscle weakness and eventually respiratory

failure (Zarei et al., 2015). In contrast, FTD is a group of disorders that cause a gradual loss

of nerve cells in the brain’s frontal and temporal lobes, leading to problems with language,

behavior, and motor skills (Boxer and Miller, 2005; Wen et al., 2014). While FTD and

ALS are distinct disorders, they share some common pathological features, including the

presence of transactive response DNA-binding protein of 43 kDa (TDP-43) inclusions and
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similar genetic mutations (Lillo and Hodges, 2009). In particular,

synaptic dysfunction is increasingly recognized as a key element in

ALS/FTD pathogenesis (Laszlo et al., 2022; Mora and Allodi, 2023).

There is currently no cure for these diseases and limited

treatment options are available, making it urgent to improve our

understanding of their underlying mechanisms and identify new

therapeutic targets. Biomarkers play a crucial role in providing

insights into disease mechanisms, progression, and therapeutic

responses. Lately, there has been a focus on a particular type

of biomarker known as synaptic biomarkers. These biomarkers

consist of proteins related to synaptic function or components of

synaptic structure, which shed light on the integrity of synapses

(Camporesi et al., 2020). Synapses are essential junctions where

neurons communicate, playing a vital role in cognitive and motor

functions (Batool et al., 2019). Any alterations that occur at the

synaptic level can indicate the beginning and advancement of

neurodegenerative diseases.

The exploration of synaptic biomarkers in ALS and FTD brings

about both possibilities and obstacles. These biomarkers have

the potential to detect the disease early, monitor its progression,

and evaluate therapeutic responses. However, studying these

biomarkers is not without challenges. From the limitations in

detecting and measuring them to the difficulty of translating

findings from animal models to humans, there are significant

hurdles to overcome.

Synaptic dysfunction as a converging
mechanism in ALS/FTD

Synaptic dysfunction is increasingly recognized as a converging

mechanism in various genetic forms of ALS and FTD (Ling et al.,

2013; Krishnamurthy et al., 2021; Gelon et al., 2022). Several genes

linked to familial forms of ALS and FTD encode proteins that

have roles at the synapse or are associated with synaptic function

(Sephton and Yu, 2015; Gan et al., 2018; Casci et al., 2019; Ionescu

et al., 2023).

TDP-43

The TDP-43 protein has also been implicated in synaptic

function (Ling, 2018; Strah et al., 2020; Broadhead et al., 2022).

Abnormal aggregation of TDP-43 in the cytoplasm of neurons is

a key pathological feature of most ALS cases and a subset of FTD

cases (Mackenzie and Rademakers, 2008). In a study by Feiler

et al. (2015), TDP-43 was shown to undergo synaptic intercellular

transmission and prion-like seeding.

Fused in sarcoma

FUS is another RNA-binding protein associated with familial

forms of ALS and FTD (Da Cruz and Cleveland, 2011; Daigle

et al., 2016). It has been implicated in the regulation of synaptic

activity and local protein translation at synapses (Sephton et al.,

2014). Super-resolution imaging and CLIP-seq revealed that FUS

localizes near the vesicle reserve pool at synapses, influencing

synapse organization and plasticity. Increased synaptic FUS during

early ALS disease in a mouse model led to altered GABAergic

synapses, indicating that synaptic FUS accumulation may trigger

neurodegeneration (Sahadevan et al., 2021).

C9orf72

The most common genetic cause of both familial ALS and

FTD is a hexanucleotide repeat expansion in the C9orf72 gene

(Balendra and Isaacs, 2018). Recently, in a zebrafish model with

reduced C9orf72 function, synaptic vesicle trafficking and release

at the neuromuscular junction were affected, shedding light on its

role in synaptic function (Butti et al., 2021). Evidence from studies

on C9orf72 models indicates pathological changes, including

altered dendritic spines, enhanced excitotoxicity, and increased

activity of extrasynaptic NMDA receptors, suggesting that synaptic

disturbances may be involved in FTD (Huber et al., 2022).

Tau

While more commonly associated with Alzheimer’s disease,

mutations in theMAPT gene, which encodes the Tau protein, have

been linked to some cases of FTD (Mackenzie andNeumann, 2016).

Tau is known to regulate synaptic function and plasticity (Brunello

et al., 2020; Robbins et al., 2021) and Tau pathology is associated

with synaptic loss (Coomans et al., 2021; Wu et al., 2021).

In summary, multiple lines of evidence suggest that synaptic

dysfunction may be a converging mechanism in various genetic

forms of ALS and FTD. However, further research is needed to

fully elucidate the roles of these and other synaptic proteins in

disease pathogenesis and to understand how synaptic dysfunction

contributes to the clinical features of these diseases.

Overview of synaptic biomarkers

Synaptic biomarkers represent quantifiable indicators of

synaptic function or structure (Colom-Cadena et al., 2020).

Synapses are critical for neurotransmission and are essential for

the cognitive and motor functions of the CNS. Proteins involved

in the transmission of signals across synapses, as well as those

forming the synaptic architecture, can serve as synaptic biomarkers.

Alterations in the concentration or activity of these biomarkers can

offer valuable information on the functional integrity of synapses

and the overall neuronal network (Camporesi et al., 2020).

The significance of synaptic biomarkers in understanding

disease pathogenesis is multi-fold. First, synaptic dysfunction

is often an early feature in many neurodegenerative diseases,

preceding neuronal loss. Therefore, synaptic biomarkers can

potentially provide early indicators of disease onset (Galasko et al.,

2019). Second, they can shed light on the mechanisms of synaptic

damage in disease conditions, offering a deeper understanding of

disease pathogenesis (Taoufik et al., 2018). Finally, the correlation

of synaptic biomarkers with disease progression can help to map

the trajectory of the disease, contributing to better prognostic
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models. Synaptic biomarkers can play a critical role in the

development of therapeutics for ALS and FTD (Krishnamurthy and

Pasinelli, 2021; Das et al., 2023).

Methods for studying synaptic
biomarkers in ALS/FTD

Our understanding of synaptic dysfunction in ALS is mainly

based on post-mortem immunohistochemistry (Aousji et al., 2023)

but this approach cannot be applied in living subjects. Synaptic

biomarkers are studied in ALS either through non-invasive or

invasive methods. Broadly these methods can be classified as

imaging-based or fluid-based. Through these methods we can gain

valuable insights into synaptic changes in living individuals with

ALS/FTD and track disease progression over time (Sturmey and

Malaspina, 2022; Mead et al., 2023). Table 1 presents an overview of

various methods to study synaptic biomarkers in ALS/FTD, along

with their advantages and limitations.

Imaging-based biomarker analysis

Neuroimaging techniques either report a specific biomarker

or can reveal the overall status of synaptic structure and function

in living subjects (Young et al., 2020). For example, Magnetic

Resonance Imaging (MRI) can reveal changes in brain anatomy

associated with synaptic loss or degeneration in ALS/FTD (Trojsi

et al., 2012; Rajagopalan et al., 2013). Functional magnetic

resonance imaging (fMRI) on the other hand can assess functional

connectivity between brain regions related to synaptic activity (Peet

et al., 2021). Diffusion Tensor Imaging (DTI) can investigate the

integrity of white matter tracts connecting brain regions involved

in synaptic transmission (Alruwaili et al., 2019). Positron Emission

Tomography (PET) uses specific radiotracers to measure synaptic

density or the presence of abnormal protein aggregates such as

tau (Ni and Nitsch, 2022). PET imaging using radiotracers that

bind to synaptic markers, such as synaptic vesicle glycoprotein 2A

(SV2A) or synaptic density markers, can help visualize and quantify

synaptic density and alterations in ALS/FTD (Serrano et al., 2022).

Fluid-based biomarker analysis

Fluid based biomarker analysis involves the use of bodily

fluids such as blood and cerebrospinal fluid (CSF) that can be

used to study levels of certain synaptic proteins or biomarkers

that may correlate with synaptic dysfunction. Lumbar puncture

allows the collection of CSF, which can be analyzed for synaptic

biomarkers, neurotransmitters, or protein aggregates (Camporesi

et al., 2020). Enzyme-Linked Immunosorbent Assay (ELISA)

is one of the most commonly used technique used to study

biomarkers associated with ALS and FTD allowing for the sensitive

and quantitative measurement of specific proteins or molecules

in biological samples. Magnetic Resonance Spectroscopy (MRS)

allows researchers to measure the levels of various metabolites,

including neurotransmitters like glutamate and GABA, which are

essential for synaptic function (Pasanta et al., 2023). Another

method of significant potential is targeted mass spectrometry

(MS) which was recently utilized to explore 15 candidate synaptic

biomarkers in CSF from patients with Parkinson’s disease,

corticobasal degeneration, progressive supranuclear palsy, multiple

system atrophy, and Alzheimer’s disease (Nilsson et al., 2023).

Synaptic biomarkers in ALS

Numerous studies have been carried out to discover synaptic

biomarkers that could be indicative of ALS. A growing body of

studies suggests elevated levels of neurofilament light chain (NfL)

in the CSF and blood of ALS patients. The levels of NfL were found

to correlate with the progression of the disease, indicating that it

could be a valuable biomarker for ALS (Sun et al., 2020; Dreger

et al., 2021; Zhou et al., 2021; Thompson et al., 2022). The elevation

of NfL is believed to reflect axonal damage resulting from motor

neuron degeneration (Verde et al., 2021). Furthermore, TDP-43

has emerged as another important biomarker in ALS (Kasai et al.,

2009). TDP-43 forms pathological inclusions in neurons in most

ALS cases and its mislocalization may be associated with synaptic

dysfunction (Lépine et al., 2023).

Research has shown the usefulness of synaptic biomarkers in

understanding the progression and severity of ALS. For instance,

individuals with higher NfL levels at diagnosis experienced a

faster rate of disease progression (Lu et al., 2015; Sugimoto

et al., 2020). This highlights the potential of this biomarker

in monitoring disease progression and predicting prognosis.

Additionally, evidence suggests that the amount of TDP-43

pathology is linked to the clinical symptoms of the disease, making

it a promising biomarker for determining disease severity.

NfL and TDP-43 are two examples of biomarkers that are

present in both ALS and other disorders like FTD (Katzeff et al.,

2022). However, the particular characteristics of these markers,

such as the pattern of TDP-43 pathology, suggest that they

may be unique to ALS. Moreover, there are newly discovered

potential synaptic biomarkers that could be specific to ALS,

such as vesicle-associated membrane-protein-associated protein B

(VAPB) which was absent in Parkinson’s disease patient peripheral

blood mononuclear cells (Cadoni et al., 2020). In a recent study,

researchers used unbiased discovery-based methods along with

targeted quantitative comparative analyses on CSF samples from

ALS patients and healthy control individuals leading to the

identification of 53 differential proteins between the two groups

after CSF fractionation. These proteins included both previously

known ones, validating the approach, and novel proteins with

potential as new biomarkers (Oh et al., 2023). Next, the researchers

used parallel reaction monitoring (PRM) mass spectrometry to

further examine the identified proteins. Fifteen proteins were found

to show significant differences between ALS and control groups.

These proteins are: APOB, APP, CAMK2A, CHI3L1, CHIT1,

CLSTN3, ERAP2, FSTL4, GPNMB, JCHAIN, L1CAM, NPTX2,

SERPINA1, SERPINA3, and UCHL1. Among these CLSTN3,

NPTX2, CAMK2A have synaptic roles. Further investigation is

necessary to verify these biomarkers and comprehend their precise

functions in ALS pathology.
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TABLE 1 Overview of methods to study synaptic biomarkers in ALS/FTD.

Method Advantages Limitations

Immunohistochemistry Provides direct visualization of protein
expression and distribution in brain tissue.
Allows examination of protein aggregates
and inclusions characteristic of ALS/FTD.

Invasive and requires post-mortem brain tissue.
Limited to studying fixed tissue, not dynamic
changes.

Enzyme-linked immunosorbent assay (ELISA) Quantitative measurement of protein levels
in cerebrospinal fluid (CSF) or blood.
Non-invasive and easily accessible
sample collection.

May not reflect synaptic-specific changes and can be
influenced by overall protein levels in the sample.
Limited spatial resolution and cannot distinguish
changes in specific brain regions.

Mass spectrometry (MS) Comprehensive profiling of proteins in
biological samples.
Can identify novel proteins or changes in
protein expression that may be relevant
to ALS/FTD.

Requires sophisticated equipment and expertise in
data analysis.
May not provide information on the functional state
of proteins.

Single-molecule array (SIMOA) Extremely sensitive and can detect low
concentrations of proteins in CSF or blood.
Potential for early detection of
disease-specific changes in
synaptic biomarkers.

Requires specialized equipment and expertise in data
analysis.
Limited to known proteins and may not identify
novel markers.

Positron emission tomography (PET) Provides insights into related pathological
processes or protein accumulations in
the brain.
Non-invasive imaging technique with the
ability to study brain regions affected
by ALS/FTD.

Requires specialized radiotracers and may not
directly visualize specific synaptic biomarkers.
PET tracers for disease-specific synaptic biomarkers
are still under development.

Neuroimaging
(a) Functional magnetic resonance imaging
(fMRI)
(b) Diffusion Tensor Imaging (DTI)

fMRI provides information on brain activity
and functional connectivity related to
synaptic function.
DTI measures white matter integrity, which
is critical for synaptic communication.

Cannot directly measure synaptic proteins and offers
indirect information on synaptic dysfunction.
Changes in brain activity and connectivity may not
specifically indicate synaptic dysfunction.

Bioinformatics Allows integration and analysis of complex
datasets, including genomic, proteomic, and
imaging data.
Can identify potential associations and
correlations between synaptic biomarkers
and disease progression.

Requires specialized computational skills and may
involve complex data processing.
Results need to be validated using independent
datasets and experimental approaches.

Synaptic biomarkers in frontotemporal
dementia

As with ALS, several studies have aimed to identify potential
synaptic biomarkers in FTD. Of these, TDP-43 has been the

most studied, given its presence in neuronal inclusions in the
majority of FTD cases (Neumann et al., 2006). Mislocalization and
accumulation of TDP-43 in neurons are thought to disrupt synaptic

function, potentially contributing to the cognitive and behavioral
symptoms observed in FTD. Additionally, tau proteins, particularly

in their hyperphosphorylated form, have been implicated in certain
subtypes of FTD, known as tauopathies (Schraen-Maschke et al.,

2008). The balance between phosphorylated tau (p-tau) and

total tau (t-tau) in the CSF has been suggested as a potential

biomarker for these cases (Hampel et al., 2010). Recent research

has attempted to correlate synaptic biomarker levels with disease
progression and severity in FTD. Interestingly, one study found
that changes in CSF tau levels correlated with the progression of
symptoms in tau-positive FTD, suggesting its potential role as a

disease progression marker (Katzeff et al., 2022). More research

is needed to understand how these and other potential synaptic

biomarkers may correlate with disease progression and severity

in FTD.

While FTD shares several potential synaptic biomarkers with

ALS, such as TDP-43 and NfL, others are more unique to FTD.

For example, tau proteins, especially in their hyperphosphorylated

form, are particularly relevant to certain subtypes of FTD but

not ALS (Bodea et al., 2016). Understanding these unique and

common synaptic biomarkers can improve our understanding

of these diseases, provide diagnostic and prognostic tools, and

possibly highlight new therapeutic targets.

Neuronal pentraxins (NPs) are a family of proteins that play

a crucial role in synaptic remodeling and homeostasis. They are

named after the complement proteins due to their similar structure

(Zhou et al., 2023). The family includes neuronal pentraxin 1

(NP1), neuronal pentraxin 2 (NPTX2), and neuronal pentraxin

receptor (NPTXR). They have been shown to cluster at excitatory

synapses and play a role in synaptic plasticity (Gómez de San José

et al., 2022).

Lower levels of NPTX2 have been reported in the CSF of

patients with FTD, suggesting a potential role as a synaptic

biomarker (van der Ende et al., 2020). NPTXR, an integral

component of the NP complex, is expressed primarily in

neurons. Its expression level has been shown to correlate with

cognitive function in FTD. Changes in NPTXR expression

could therefore potentially serve as a marker of synaptic
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integrity in diseases like FTD (Sogorb-Esteve et al., 2022). In

a recent study, Single-cell transcriptomics revealed a set of

misregulated RNA targets shared by TDP-43 overexpressing

neurons and patient brains with TDP-43 pathology, with the

synaptic protein NPTX2 being consistently misaccumulated in ALS

and FTD patient neurons providing a direct link between TDP-43

misregulation and NPTX2 accumulation (Hruska-Plochan et al.,

2021).

Opportunities for synaptic biomarkers
in ALS and FTD

One of the significant opportunities presented by synaptic

biomarkers lies in their potential for early detection of ALS and

FTD. Given that synaptic dysfunction often precedes neuronal loss,

the presence of altered synaptic biomarkers could signal disease

onset before the appearance of clinical symptoms. Additionally,

biomarkers like NfL that correlate with disease progression

could provide valuable prognostic information, guiding patient

care and management (Swift et al., 2021; Vignaroli et al.,

2023).

Synaptic biomarkers could pave the way for personalized

medicine in ALS and FTD. By understanding how specific

biomarkers correlate with disease progression and severity,

treatments could be tailored based on a patient’s unique

biomarker profile (Das et al., 2023). This individualized

approach could potentially lead to improved outcomes,

mitigating disease progression and enhancing the quality of

life for patients.

The study of synaptic biomarkers can also significantly

contribute to drug development and clinical trials. By serving as

objective measures of disease state or response to therapy, these

biomarkers can provide critical insights into a drug’s mechanism

of action or efficacy (Colom-Cadena et al., 2020). For instance,

reductions in biomarker levels following drug administration could

indicate therapeutic effect, while no change might suggest a lack of

efficacy. In this way, synaptic biomarkers can play a crucial role in

the design and evaluation of clinical trials.

Perhaps one of the most exciting opportunities provided by

synaptic biomarkers is the chance to further unravel the complex

disease mechanisms underlying ALS and FTD. By exploring how

these biomarkers change in response to disease progression and

how they relate to one another, scientists can build a more complete

picture of the molecular and cellular changes that drive these

neurodegenerative diseases. This deeper understanding could, in

turn, drive the development of new therapeutic strategies aimed

at mitigating disease progression or even preventing disease onset.

Table 2 provides a summary of the utility of synaptic biomarkers in

therapeutic Development.

Challenges in synaptic biomarker
research in ALS and FTD

One of the primary challenges in synaptic biomarker research

is the technological limitation in detection and measurement.

Synaptic biomarkers often require sensitive and specific assays for

accurate detection. However, these biomarkers are usually present

in minute quantities, and their levels may vary based on various

factors, including the time of sample collection, sample handling,

and patient-specific factors. This necessitates the development of

more sensitive and robust assays for their detection (Klyucherev

et al., 2022).

There is considerable variability in biomarker levels across

different patients and stages of diseases, adding to the complexity of

interpreting these markers. Factors such as genetic heterogeneity,

disease subtype, age, gender, and comorbidities can influence

biomarker levels, making it challenging to establish universally

applicable cut-offs or reference values. Moreover, understanding

how biomarker levels change over the course of the disease and

correlating these changes with clinical progression is a complex task

(Mayeux, 2004; McDermott et al., 2013).

While animal models have greatly contributed to our

understanding of ALS and FTD, translating these findings to

humans has been challenging. The pathophysiology of these

diseases in animal models may not perfectly mimic the human

condition, and hence, the biomarkers identified in these models

may not be relevant in humans. Thus, findings from animal studies

must be interpreted cautiously and validated in human populations

(Bonifacino et al., 2021).

Many biomarker studies are based on small sample sizes,

and their findings may not be generalizable to larger, more

diverse patient populations. Therefore, there is a pressing need for

larger, multi-center studies to validate these markers. Additionally,

replication studies are crucial to ensure the reliability of these

findings (Freidlin et al., 2010). As biomarker research is a rapidly

evolving field, continuous re-evaluation and updating of these

markers based on the latest evidence is necessary.

Machine learning and artificial
intelligence approaches in synaptic
biomarker discovery

ML andAI have the potential to significantly accelerate synaptic

biomarker discovery and therapeutic development for ALS and

FTD. These advanced computational approaches can process large

datasets and identify patterns and relationships that may be difficult

to uncover with traditional methods.

For example, ML/AI algorithms can analyze complex multi-

omics data, including genomic, proteomic, and neuroimaging

data, to find novel synaptic biomarkers associated with ALS/FTD

(Grollemund et al., 2019). By integrating diverse datasets, ML/AI

models can reveal previously unknown connections between genes,

proteins, and disease features, as has been shown in cancer research

(Arjmand et al., 2022).

ML/AI techniques can also analyze clinical, imaging, and

biomarker data to predict disease progression and estimate the

likelihood of developing ALS/FTD (Rajagopalan et al., 2023). Early

and accurate diagnosis and prognosis can inform personalized

treatment strategies to improve patient outcomes.

Additionally, ML/AI can efficiently screen chemical libraries

to identify potential ALS/FTD drug candidates and repurpose

existing medications that may have therapeutic effects (Vatansever
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TABLE 2 Summary of the utility of synaptic biomarkers in therapeutic development.

Utility of synaptic biomarkers in
therapeutic development

Examples Limitations

Disease understanding TDP-43 pathology in ALS and FTD.
NfL as a marker of axonal damage.
Tau proteins in tauopathies.

Complexity of disease pathogenesis makes it challenging
to establish causality between biomarkers and disease.
Biomarkers may be influenced by confounding factors
such as age, gender, and comorbidities.
Biomarker levels may vary at different stages of the
disease, requiring longitudinal studies.

Disease progression and severity NfL levels correlating with ALS progression.
TDP-43 pathology correlating with clinical
symptoms in ALS.
Changes in tau levels reflect FTD progression.

Variability in biomarker levels across individuals and
disease stages makes it challenging to define universal
reference values or cut-offs.
Biomarker levels may be influenced by factors unrelated
to disease progression, affecting interpretation.
Limited availability of validated biomarker assays may
hinder widespread use.

Drug targets Identifying TDP-43 as a target for
ALS therapeutics.
Targeting synaptic proteins to improve
synaptic function.
Potential for drug development aimed at
modulating synaptic biomarkers.

Not all synaptic biomarkers are directly modifiable drug
targets, limiting their immediate application.
Modulating synaptic biomarkers may have unintended
consequences on other synaptic processes.

Patient stratification Identifying subgroups of ALS or FTD patients
based on unique synaptic biomarker profiles.
Enabling more targeted therapeutic approaches.

Biomarkers may not be specific to certain subgroups and
may not accurately stratify patients.
Small sample sizes in some studies can limit
generalizability.
Replication studies are essential to confirm the utility of
synaptic biomarkers for patient stratification.

Treatment response Biomarker changes indicating response to therapy
in clinical trials.

Biomarkers may respond differently to various
therapeutic approaches, requiring careful interpretation.
Some synaptic biomarkers may not show immediate
changes following treatment, necessitating long-term
monitoring.

Early detection NfL as a potential early diagnostic marker for ALS.
Early changes in synaptic biomarkers in
FTD subtypes.
Enabling early therapeutic Intervention.

Biomarker levels may not be significantly altered in the
very early stages of the disease.
Biomarkers’ diagnostic accuracy may vary in different
patient populations or disease subtypes.

Personalized Medicine Tailoring treatment based on individual
biomarker profiles.
Stratifying patients based on unique
synaptic biomarkers.
Improving treatment outcomes.

Biomarker profiles may not completely encompass the
heterogeneity of ALS and FTD.
Identifying the most informative biomarkers for
personalized treatment may be challenging.

Clinical trial endpoints Using synaptic biomarkers as surrogate endpoints
in clinical trials.
Accelerating drug development process.

Establishing the validity of synaptic biomarkers as
reliable clinical trial endpoints may require extensive
validation and regulatory approval.

et al., 2021). By integrating molecular and genetic data, ML/AI can

predict themost promising targets involved in synaptic dysfunction

to prioritize for drug development. ML/AI can also optimize

clinical trial design, including patient selection and treatment

dosing, to increase the probability of success (Davenport and

Kalakota, 2019). Analyzing patient-specific data with AI algorithms

allows for personalizedmedicine by predicting individual responses

to treatments.

Finally, ML/AI can quantify synaptic density and structural

changes in the brain from neuroimaging data to track disease

progression and monitor treatment efficacy (Boyle et al.,

2021; Monsour et al., 2022). In summary, ML/AI has diverse

applications that can accelerate nearly every aspect of ALS/FTD

research and drug development, from biomarker discovery to

personalized therapeutics.

Future directions

Emerging technologies offer new avenues for improving the

detection and measurement of synaptic biomarkers. Advances in

genomics, proteomics, and metabolomics, coupled with powerful

bioinformatics tools, are enabling the identification and validation

of biomarkers at an unprecedented scale and speed. Additionally,

the development of more sensitive and specific immunoassays,

such as single-molecule array (SIMOA) technology, can greatly

enhance our ability to detect minute quantities of these biomarkers

(Wilson et al., 2016; Wu et al., 2022). Continued technological

innovation will undoubtedly play a crucial role in the future of

synaptic biomarker research.

Looking forward, there are several exciting new areas of

synaptic biomarker research. For instance, exploring the interplay
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between synaptic biomarkers and other pathophysiological

processes, such as inflammation or oxidative stress, could provide

novel insights into disease mechanisms. Additionally, the emerging

field of neuroimaging biomarkers could complement biochemical

biomarker studies, providing a more holistic picture of disease

progression. Lastly, research into biomarkers of synaptic resilience

or compensatory mechanisms could open new avenues for

therapeutic intervention.

Addressing the current challenges in synaptic biomarker

research could significantly shape the future direction of this field.

For example, overcoming technological limitations could allow

for the detection of previously unidentified biomarkers or more

accurate quantification of known ones. Tackling variability issues

could lead to the development of personalized biomarker profiles,

providing more precise diagnostic and prognostic information.

Successfully translating findings from animal models to humans

could accelerate the clinical application of these biomarkers,

and large-scale validation studies could solidify their place in

clinical practice. Thus, the future of synaptic biomarker research

is contingent upon overcoming the present challenges, offering a

promising and exciting path forward.
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