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Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, 
followed by a secondary phase, leading progressively to severe collapse of the 
nerve tissue. Compared to the peripheral nervous system, injured spinal cord is 
characterized by weak axonal regeneration, which leaves most patients impaired 
or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the 
expansion of secondary injuries and promoting functional connections between 
rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 
10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts 
a wide spectrum of positive effects in the treatment of SCI. The mechanisms 
underlying therapeutic effects mainly include anti-oxidative stress, limiting 
excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, 
IL-10 displays synergistic effects when combined with cell transplantation or 
neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic 
mechanisms underlying IL-10-mediated neuroprotection after SCI, which may 
offer fresh perspectives for clinical translation.

KEYWORDS

IL-10, neuroprotective effects, spinal cord injury, anti-inflammatory effects, 
antinociceptive effects

1. Introduction

According to the analysis from the Global Burden of Disease Study 2019, the incidence, 
prevalence, and years lived with disability (YLD) rate of SCI have increased worldwide (Ding 
et al., 2022). Globally, there were 0.9 million incident cases, 20.6 million prevalent cases and 6.2 
million YLDs of total SCI in 2019. Noticeably, the incidence of SCI among older adults has 
sharply increased in recent decades, making the burden of disease even worse in industrialized 
and aging countries (Frontera and Mollett, 2017). After the pathway through which information 
flows, conveying locomotor, sensory, and autonomic signals, is disrupted, patients may 
experience dysfunctions such as difficulty standing, walking, and more. This ultimately positions 
SCI as the second leading cause of paralysis worldwide (Sofroniew, 2018). Although there are 
now many strategies trying to augment recovery following SCI, there has been no fully 
restorative therapy for it as yet.

SCI is artificially divided into two stages: primary and secondary injury. Initial impact causes 
the primary injury of spinal cord, which includes cell death, axon rupture, disruption of the 
blood–brain barrier, ischemia. Then, secondary injury is triggered by signaling molecules from 
the primary damage, such as the excitatory neurotransmitter glutamate, calcium ions, and 
peroxide substances. Accompanied by neutrophil infiltration, the released cytokines rapidly 
amplify the cascade, which induce oxidative stress, apoptosis, metabolic disturbance, and 
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inflammation in an acute/subacute process; microenvironment 
imbalance, demyelination, and scar formation in the chronic phase 
(Anjum et al., 2020). Considering the primary injury can no longer 
be  undone, limiting the secondary injury has become a decisive 
strategy and method to preserve the most structure possible, which 
currently offers the least loss of function.

Interleukin-10 (IL-10), first described in 1989 as cytokine 
synthesis inhibitory factor, controls the synthesis and releases of 
pro-inflammatory cytokines such as interleukin 1, tumor necrosis 
factor (Moore et  al., 2001). As a prototypical anti-inflammatory 
mediator, IL-10 plays an essential role in protection from over-
exuberant responses to pathogens and microbiota in autoimmunity, 
cancer, and homeostasis (Saraiva et al., 2020). Furthermore, IL-10 has 
been shown the beneficial effects in the nervous system, like 
autoimmune encephalomyelitis (Grace et al., 2017), depression (Yang 
et al., 2021), stroke (Cai et al., 2022), and SCI (Sabirzhanov et al., 
2019). The deletion of the IL-10 gene worsened the recovery of limb 
function compared to IL-10 wild-type mice (Genovese et al., 2009). 
Although the organism would produce some endogenous IL-10 after 
SCI, this does not cover the needs of systemic and local 
immunoregulation for rapid termination of an excessive inflammatory 
storm and initiation of tissue repair and regeneration, especially 
reduced IL-10 expression with age (Zaaqoq et al., 2014; Zhang et al., 
2015). It is worth mentioning that certain therapies for SCI, including 
exercise (Rodas et al., 2020), transcranial direct current stimulation 
(Tan et  al., 2023), and transplantation of mesenchymal stem cells 
(Burchfield et al., 2008), has been shown to stimulate the production 
of IL-10. This suggests that the induction of IL-10 could potentially 
serve as a therapeutic mechanism for these treatments.

In this review, we  mainly focus on describing and discussing 
results from experimental and clinical studies about IL-10-based 
treatment of SCI and explore its underlying mechanisms, though 
other cytokines also exhibit beneficial action in SCI repair, for example 
interleukin-4 (Francos-Quijorna et al., 2016), interferon-gamma (Sun 
et al., 2018). Given synergistic effects produced by IL-10 with other 
therapies, particular attention will be paid to combined application of 
cell transplantation, biomaterials in neuroprotection, and recovery 
after SCI, which holds therapeutic promise.

2. Expression of IL-10 (its receptor) 
and in SCI

IL-10 is a symmetric homodimer, which exerts biological functions 
by binding to its receptor, interleukin-10 receptor (IL-10R). Although 
IF-10 was found to be  produced by cells of both the myeloid and 
lymphoid lineages including macrophages/monocytes and T cell 
subsets, it was discovered to function in the nervous system later, 
secreted by microglia, astrocytes, oligodendrocytes and neurons 
(Ledeboer et  al., 2002; Zhou et  al., 2009a; Saraiva et  al., 2020). 
Specifically, it is produced mainly by activated astrocytes and 
macrophages/monocytes in the central nervous system (CNS), which 
modulate glia-mediated inflammatory responses via attaching to the 
high-affinity IL-10R by paracrine and autocrine interactions (Ledeboer 
et  al., 2002). IL-10R is observed on microglia, astrocytes, 
oligodendrocytes and neurons (Molina-Holgado et al., 2001; Hulshof 
et al., 2002; Zhou et al., 2009a). The intracellular signaling cascades 
downstream of the IL-10R mainly include JAK1-TYK2-STAT3 and 

PI3K-Akt-mTORC pathway, which besides engaging in classical anti-
inflammatory activity, regulate nonclassical organism homeostatic 
processes. For example, Zhou et al. (2009a) reported the IL-10R existed 
in spinal cord neurons and IL-10 played an anti-oxidative stress and an 
anti-apoptotic role by activating the JAK-STAT3 and PI3K/AKT 
pathways. Additionally, they also found wide distribution of the IL-10 
receptor in embryonic spinal cord neurons. Combined with signaling 
cascades downstream of the IL-10R, IL-10 may provide not only 
neuroprotective but regenerative and plastic cues to neurons during 
development, such as regulating adult neurogenesis (Pereira et al., 2015).

When tissue suffers damage, IL-10 and its receptor responds 
quickly, which is identified by both in vitro and in vivo experiments. 
For example, in LPS-treated mixed glial cultures, the rise of IL-10 
mRNA peaked around 1 h. Three hours after SCI, IL-10 mRNA was 
upregulated, however, it returned to basal levels at 7 d postinjury 
(Didangelos et al., 2014). Meanwhile, there is a significant increase of 
IL-10 protein production at 24 h after SCI, and peaked at 
approximately 1 or 2 weeks (Genovese et al., 2009; Mukhamedshina 
et al., 2017). Unfortunately, the expression of IL-10 mRNA and IL-10 
protein maintained low levels in the chronic phase. Relatively, the 
IL-10R was found significantly labeled in motor neurons of the 
anterior horn after SCI, which provides structural foundation for 
determining whether IL-10 might have effects on neurons 
independent of those mediated through microglia and astrocytes 
(Zhou et al., 2009b). However, the more specific dynamic changes and 
distribution of IL-10R after SCI at different stage is still unknown. 
Collectively, both IL-10 and its receptor were briefly elevated in the 
acute phase after SCI. Nevertheless, the endogenous supply of IL-10 
is not enough to repair the organism when the secondary damage 
storm hits. Thus, exogenous supplementation of IL-10 may suppress 
secondary injury and limit the damage of the SCI, which has been 
explored and confirmed by a great deal of studies, with the 
mechanisms discussed below (Figure 1).

3. Multi-neuroprotective effects of 
IL-10 in SCI

3.1. Anti-oxidative stress effects

In the acute phase of SCI, a spinal cord suffering mechanical or 
chemical damage confronts cellular necrosis, infiltration of 
inflammatory cells, disruption of calcium homeostasis, and glutamate-
mediated excitotoxicity. Those pathological process cause 
mitochondrial dysfunction and production of extensive reactive 
oxygen/nitrogen species, which further increase the cascade reaction 
of secondary injury, leading to cell death (Visavadiya et al., 2016). 
According to an enormous amount of research, the possible 
mechanisms of IL-10  in the process of anti-oxidative stress is as 
follows. First, IL-10 enhances mitochondrial homeostasis, promotes 
mitophagy, and eliminates dysfunctional mitochondria characterized 
by low membrane potential and a high level of reactive oxygen species 
(Ip et  al., 2017). In this research, when IL-10 signaling is absent, 
damaged mitochondria accumulate in macrophages which results in 
inflammatory storms, in turn inducing oxidative stress and reducing 
cellular antioxidant capacity. Furthermore, IL-10 was proved to 
decrease lipid peroxidation, which is the complex chain of reactions 
involved in oxidative damage to cellular structures and toxic processes 
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causing cell death (Repetto et al., 2012). Vascular oxidative stress and 
lipid peroxidation was significantly decreased by IL-10 in an aortic 
remodeling model through inhibiting activation of vascular p38 and 
NF-κB Pathways (Qiu et  al., 2022). Finally, IL-10 inhibits the 
production of peroxides and inflammatory cytokines, but the specific 
mechanism is not yet clear. For example, IL-10 treatment after SCI 
significantly downregulated the expression of IL1, iNOS mRNA, and 
iNOS protein, which effectively limited neuronal apoptosis and 
improved behavior function (Plunkett et al., 2001). In contrast, iNOS 
expression was significantly increased in spinal cord sections of IL-10 
deficient mice (Genovese et  al., 2009). Moreover, in a complete 
transection SCI mouse model, IL-10 combined with a biomaterial 
scaffold greatly suppressed proinflammatory cytokine production, 

such as iNOS, IL-1β, and TNF-α, which led to neural regeneration and 
axon growth (Shen et al., 2022). Interestingly, depletion of NOX2 
promotes IL-10 expression following SCI, which contributes to 
improved functional recovery (Sabirzhanov et al., 2019). Meanwhile, 
Nrf2, as a chief regulator of the transcription of diverse antioxidant 
genes, also regulates the production of IL-10 to increases 
neuroprotection (Segev-Amzaleg et al., 2013). In addition to the above 
in vivo experiments, previous cell culture experiments have also 
showed that IL-10 counteracted proinflammatory mediators evoked 
by oxidative stress in Caco-2 and hepatic stellate cells through 
activating the mTOR-STAT3 pathway (Latorre et al., 2014; Chen et al., 
2022). Collectively, oxidative stress insult plays an important role in 
the pathogenesis of SCI, which triggers severe and disastrous 

FIGURE 1

Simplified schematic representation- underlying mechanisms of IL-10 in the treatment of SCI. Binding to its receptor, IL-10 phosphorylates JAK1 and 
Tyk2, which activate cascaded signaling of STAT3 and PI3K/Akt/mTOR pathways. In the IL-10/STAT3 axis, the expression of SOCS3 exerts an obvious 
immune-inflammatory regulation and efficiently inhibits P38 MAPK pathway. This leads to a decrease of IL-1β, IL-6, TNFα, caspase 3, iNOS, which 
ultimately limits the secondary injury. Additionally, STAT3 activation drives the expression of β-endorphin, resulting in an antinociceptive effect. The 
expression of Ddit4 suppresses the activity of mTORC1 and promotes dysfunctional mitophagy, which plays an important role in the anti-oxidative 
stress effect. The IL-10/PI3K/Akt/mTOR pathway promotes cell survival, migration by regulating the transcription of ULK1, S6K1, BAD, MDM2 which 
improve the expression of anti-apoptotic protein (Bcl-xl, Bcl-2), and the surface adhesion molecules/chemokine receptors, MMP, CCR5. These events 
facilitate the migration of adult neural stem cells. Through these mechanisms, IL-10 demonstrates multi-neuroprotective effects in SCI. The pathway 
was drawn by Pathway Builder Tool 2.0.
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consequences including disruption of the normal cellular signaling, 
the breakdown of cellular structure, secretion of proinflammatory 
cytokines, and horribly, cell death. Therefore, restricting oxidative 
stress reactions will largely prevent damage from spreading, which 
partly can be achieved by application of IL-10.

3.2. Anti-inflammatory effects

Inflammation after SCI, initiates cleaning cellular debris and 
limiting the spread of damage. However, excessive, inappropriate 
inflammatory responses can exacerbate tissue injury, cause repair 
failure, and delayed impairment. In addition to hyper response of 
neutrophils, which peaked around 24 h, microglia/macrophages 
gradually infiltrated and peaked 7-day post-injury, followed by T-cells 
peaking at 9-days after injury (Hellenbrand et al., 2021). Even though 
microglia/macrophages decrease as the course of the disease prolongs, 
activated microglia/macrophages remain in the injured spinal cord for 
at least half a year, which may also be a potential mechanism for 
delayed injury (Hawthorne and Popovich, 2011). Interestingly, vast 
evidence shows that resisting those inflammatory cells could reduce 
neuroinflammation and enhance neurological function (Li et al., 2020; 
Poulen et al., 2021), but many studies have argued that the clearance 
of inflammatory cells may aggravate tissue damage (Bellver-Landete 
et al., 2019; Deng et al., 2022). This is due to the fact that inflammatory 
cells can play either a restorative or destructive role depending on 
specific cell subsets. It is generally accepted that M1 microglia/
macrophages may exhibit harmful properties and create secondary 
tissue damage, whereas the M2 type may be reparative and promote 
tissue repair. In the acute phase of injury, neutrophils are one source 
of endogenous IL-10 production, but they can be suppressed by IL-10 
overexpression (Sun et al., 2009). Through systemic delivery of IL-10, 
neutrophil proliferation and activity is reduced in SCI models; on the 
contrary, neutrophil activity was significantly enhanced in the SCI 
IL-10 deficient group (Genovese et al., 2009). The polarization of M2 
microglia/macrophages is also regulated by IL-10, which means that 
IL-10 can even play a therapeutic role in the chronic phase. 
Hellenbrand et al. reported the delivery of IL-10 had significantly less 
“M1” cells and more “M2” cells than controls, which created a benign 
local microenvironment for axonal regrowth, remyelination, and 
functional recovery (Park et  al., 2018). Shen et  al. (2022) also 
convinced this phenomenon that IL-10-releasing hydrogel promoted 
the M2 macrophage/microglia phenotype, and led to neural 
regeneration and axon growth. Sequentially, M2 macrophages 
produced higher levels of IL-10 at injury spinal segments to decrease 
spinal cord lesion volume and resulted in increased myelination of 
axons and preservation of neurons, which appeared with ameliorative 
locomotor function (Ma et al., 2015). Lymphocytes, as executors of the 
immune system, maintained chronically at the injury site, which may 
cause trauma-induced autoimmunity after SCI (Beck et  al., 2010; 
Jones, 2014). However, IL-10 can induce regulatory T cells, which 
suppressed microglia activation, decreased recruitment of peripheral 
monocytes, stabilized local inflammatory storm, and reduced 
neurodegeneration (Ishii et  al., 2013; Mayo et  al., 2016). While 
affecting inflammatory cell subtypes, IL-10 correspondingly affects the 
release of cytokines. IL-10 remarkably reduced TNF-a, and IL-1β 
production, which significantly improved functional recovery 
following traumatic SCI in rats (Bethea et al., 1999; Hellenbrand et al., 
2019). Conversely, positive staining for TNF-α and IL-1β was 

significantly increased in spinal cord sections of IL-10 deficient mice 
(Genovese et al., 2009). In summary, the modulating-inflammatory 
activities of IL-10 may not only contribute to reduced secondary 
injury during acute and intermediate phases, but also supports neural 
regeneration and axon growth during the chronic stage.

3.3. Anti-apoptotic effects

In contrast to necrosis, a form of traumatic cell death mediated by 
primary injury, apoptosis signaling after SCI can be initiated by two 
pathways, the intrinsic pathway, which is also known as the 
mitochondria pathway, and the extrinsic pathway which is induced by 
the TNF receptor (TNFR) family (Wajant, 2002). The intrinsic 
pathway can result from mitochondrial dysfunction triggered by 
glutamate excitotoxicity, excitotoxic calcium overload, free radical-
induced damage (Scholpa and Schnellmann, 2017; Slater et al., 2022), 
and release of harmful proinflammatory factors, such as IL-1 andTNF 
(Wajant, 2002). Previous reports revealed anti-apoptotic effect of 
IL-10 in many cells, such as those in liver (Fioravanti et al., 2017), islet 
(Zhu et al., 2008), nervous system (Bachis et al., 2001; Ooboshi et al., 
2005). In vitro studies of glutamate-induced excitotoxicity revealed 
adult and embryonic spinal cord neurons were protected by IL-10 
through Jak-Stat3 and PI3K-AKT signaling via transcription of Bcl-2 
and Bcl-xL which prevented cytochrome c release and caspase 3 
activation (Zhou et al., 2009a). Furthermore, another study of this 
research team showed that overexpression of IL-10 increased neuronal 
survival in the anterior quadrant of the spinal cord and improved 
motor function using a hemisection injury model, which correlated 
with increased expression of Bcl-2 and Bcl-xL in anterior quadrant 
neurons (Zhou et  al., 2009b). In contrast, when undergoing SCI 
suffering, absence of IL-10 in IL-10 KO mice resulted in a significant 
augmentation of apoptotic cells measured by TUNEL assay, decreased 
Bcl-2 expression, and poorer motor function compared with IL-10 
wild-type mice (Genovese et al., 2009). Given that another mechanism 
of apoptosis is involved in TNF-induced signaling, inhibitory effects 
on the production and release of TNF through IL-10 has become 
another anti-apoptotic pathway of IL-10 (Armstrong et al., 1996). 
Therefore, IL-10 may exert its anti-apoptotic effects in both direct way 
through Jak-Stat3 and PI3K-AKT signaling which involved in the 
regulation of cell cycle progression, and indirect ways by limiting 
release of harmful proinflammatory factors. Unnecessary apoptosis 
causes irreversible damage to structure and function of organism, 
which is one of the determining and final part of secondary injury 
events and also a potential target to implement therapy.

3.4. Anti-glial scar effects

Glial scar, mainly formed around the lesion after SCI, consists of 
reactive astrocytes, microglia/macrophages, and extracellular matrix 
molecules, especially chondroitin sulfate proteoglycan (CSPG) 
(Bradbury and Burnside, 2019). In the acute phase after injury, glial 
scarring is required for limiting the secondary injury and initiating 
early repair process. However, this fibrotic barrier impeded axonal 
regeneration and recruited immune cell, making for delayed injury in 
the chronic phase (Rolls et al., 2009). IL-10 was proved to attenuate 
astroglial reactivity by binding to its receptors on astrocytes and 
inhibiting the pro-inflammatory profile of activated astrocytes 
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(Norden et  al., 2014; Mayo et  al., 2016) as well as inhibiting the 
expression of proinflammatory factors which are mediators of 
astroglial reactivity (Balasingam and Yong, 1996). Besides, previous 
reports have shown that IL-10 also can down-regulate microglial 
activation (Villacampa et al., 2015; Shanaki-Barvasad et al., 2022), 
which secretes IL-1β involving glial scar formation. Furthermore, 
injection of IL-10-releasing hydrogel scaffold decreased production of 
CSPG and suppressed formation of glial scars, with accelerated neural 
regeneration and axonal growth (Shen et al., 2022). Interestingly, the 
expression of IL-10 was promoted when glial scars were removed 
using ChondroitinaseABC by a p38-dependent mechanism, which 
offered new insight into the beneficial effects of ChABC treatment 
after SCI. As mentioned above, there is a dynamic equilibrium 
relationship between local microenvironment and glial scars, which 
also provides deeper insights for future SCI treatment.

3.5. Neurogenic and oligogliogenic effects

One of the reasons why there is no effective treatment after SCI is 
the limited capacity for nerve regeneration. Thus, generally, 
neurogenic and oligogliogenic effects of IL-10 mainly depend on 
neuroprotection like anti-neuronal apoptosis, as described above. 
However, the cell transplantation technique breaks through the 
limited capacity of the nervous system to regenerate; even transplanted 
cells face problems of survival, migration, differentiation, and 
functional integration in harsh microenvironments. Excitingly, 
overexpression of IL-10 provided a friendly microenvironment for cell 
transplantation therapy, which promoted 8.1% spinal progenitors’ 
survival (11.5-fold difference than control group) in a C5 lateral 
hemisection SCI model (Ciciriello et al., 2021). Yang et al. (2009) also 
showed that adult neural stem cells expressing IL-10 converted a 
hostile environment to one supportive of neurons/oligodendrocytes, 
which provided remyelination, and neuronal repair. This effect is even 
more prominent in autoimmune diseases (Klose et  al., 2013). 
Furthermore, IL-10 also upregulates the expression of the surface 
adhesion molecules/chemokine receptors LFA-1, CXCR4, and CCR5, 
thereby enhancing adult neural stem cells migration (Guan et al., 
2008). In summary, IL-10 combined with regenerative therapy may 
offer fresh perspectives for inflammation and immune regulation, 
especially at trauma-induced autoimmunity after SCI.

3.6. Antinociceptive effects

Neuropathic pain (NP) in SCI patients is very common, and its 
prevalence ranges from 18 to 96% (Li et al., 2018). This distressing and 
debilitating symptom results in sleep disturbances, movement 
disorders, and poor quality of life. Because of vague mechanisms of 
NP, it is very difficult to treat effectively. IL-10, as a pivotal anti-
inflammatory and immunoregulatory cytokine, also exhibits 
antinociceptive effects in various rodent models, such as neuropathic 
pain (Ahmad et al., 2021), osteoarthritis (Watkins et al., 2020), and 
cancer pain (Apryani et al., 2020). The analgesic mechanism of IL-10, 
has been previously thought to inhibit the release of inflammatory 
factors, which have been identified as agents of pain generation. For 
example, IL-10 treatment resulted in a significant downregulation of 
IL1-β and iNOS, and limited the progression of injury-induced pain 
behaviors following SCI in rats (Plunkett et  al., 2001). Moreover, 

depletion of NADPH oxidase significantly reduced mechanical/
thermal cutaneous hypersensitivity and motor dysfunction after 
moderate contusion SCI in mice, with up-regulated expression of 
IL-10 (Sabirzhanov et al., 2019). Furthermore, current studies reveal 
that IL-10 produces antinociception in neuropathy through microglial 
β-endorphin expression, which is independent of the anti-
inflammatory effect (Wu et  al., 2018). This was confirmed by the 
pharmacological mechanism of gabapentin, which is recommended 
as a first-line treatment for neuropathic pain. Ahmad et al. (2021) 
illustrated that gabapentinoids alleviate NP through stimulating 
expression of spinal microglial IL-10 and consequent β-endorphin. 
Furthermore, IL-10 was also proved to reduce dorsal root ganglion 
neuron excitability, which is essential for controlling NP (Durante 
et  al., 2021). In brief, NP, as an unavoidable complication in the 
chronic stage of spinal cord injury, needs attention. The outcome of 
IL-10 treatment may be unexpected and/or enticing.

4. Strategies to deliver IL-10 in SCI

Given that the pathophysiological process of SCI is a 
multimolecular and multicellular interaction event, multi-mechanism-
based combination strategies with IL-10 are the most desirable and 
efficient (Figure 2).

4.1. Using in a single modality approach

The earliest research on the use of IL-10 to treat SCI was more 
than 20 years ago. Due to the technical limitations, IL-10 was almost 
always administered systemically, mainly by intraperitoneal (Bethea 
et al., 1999; Pearse et al., 2004) and intraspinal injection (Brewer et al., 
1999; Plunkett et al., 2001). In addition to being used alone (Brewer 
et al., 1999; Plunkett et al., 2001), it was also used in combination with 
other therapeutics, like methylprednisolone (Takami et al., 2002), and 
transplantation of Schwann cells and olfactory glia (Pearse et  al., 
2004). However, the results of those studies were very controversial. 
For example, IL-10 administered intraperitoneally reduced TNF-α 
production and significantly improved functional recovery following 
traumatic SCI in rats (Bethea et al., 1999), while another study of 
intraperitoneal IL-10 in the treatment of SCI showed no significant 
functional recovery (Takami et al., 2002). There are too many factors 
influencing the production of such controversial results. At first, the 
effective therapeutic dose for IL-10 seems to be very narrow. SCI rats 
receiving a single dose of IL-10 intervention exhibited a significant 
improvement in locomotor function two weeks after injury, whereas 
two doses of IL-10 failed to promote functional recovery (Bethea et al., 
1999). The therapeutic window of IL-10 also matters. It significantly 
inhibits TNF-α production when added at 6 and 24 h after spinal cord 
injury, but has no effect on controlling TNF-a levels when added at 3 
and 7 post-injuries (Bethea et al., 1999).

In addition, it’s worth noting that the route of administration also 
needs to be considered. Given that IL-10 cannot cross the blood–brain 
barrier (Kastin et al., 2003) and has a short half-life (Huhn et al., 1997) 
(2.7 to 4.5 h), single doses and cumulative doses for the treatment of SCI 
are huge, which can cause drug side effects and limit the clinical use of 
IL-10. Thereupon, with the mature application of gene editing 
technology, local administration of IL-10 has become the mainstream 
research method, such as herpes simplex virus-based vectors and 
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FIGURE 2

Strategies involving IL-10 have been widely explored and some more strategies will be applied in SCI research. (A) Systemic Administration: IL-10 has 
been administered systemically through intraperitoneal and intraspinal injections. However, due to its rapid metabolism, the unmodified form of IL-10 
may not effectively reach the site of injury. (B) Local Administration: To enhance the delivery of IL-10 to the injury site, various methods have been 
employed. This includes using overexpressed viral vectors or combining IL-10 with biomaterials such as hydrogels, mineral-coated microparticles, 
nanoparticles, and scaffolds. These techniques enable localized administration and targeted release of IL-10. (C) Modification for Improved Stability: 
Modification of IL-10 can be done to improve its stability, half-life, and targeting ability. This modification allows IL-10 to focus more on the injury site. 
Systemic administration remains one of the most convenient methods, especially during the early stages of SCI. (D) Biomaterial-Based Delivery: 
Loading IL-10 onto biomaterials such as scaffolds, hydrogels, and nanoparticles enables a sustained and controlled release of IL-10 at the injury site. 
When combined with cell transplantation or epidural stimulation, IL-10 can exhibit neuroprotective and synergistic effects. It promotes the survival and 
migration of transplanted cells, reduces local inflammation, and may even have analgesic properties. EES, electrical epidural stimulator.
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poliovirus-based vectors to express IL-10 in the spinal cord in vivo 
(Jackson et al., 2005; Zhou et al., 2009b). Considering the enhanced 
efficacy of multilateral mechanisms-based treatments and extraordinary 
properties of biological materials, advanced exploration has focused 
more on those combinations, and this will be elaborated on below.

4.2. Combined with cell or biomaterials 
therapy

Novel approaches to improve the therapeutic efficacy of SCI 
mainly include cell transplantation-based regenerative medicine and 
epidural electrical stimulation (EES) in neuroprosthetic technology. 
Though EES has made a breakthrough progress leveraging the brain-
computer interface to read cortical motor information to achieve free 
walking (Lorach et al., 2023), cell transplantation seems to be  the 
promising candidates to reconstruct connections of physiological-
structure. However, in addition to prove the feasibility and long-term 
safety of cell transplantation into the injured spinal cord in clinical 
trials, the clinical efficacy is vague and unreproducible changed by 
small sample sizes, low immune suppression, and low sensitivity study 
designs (Zipser et al., 2022).

As early as 1995, IL-10 was introduced as an aspect of 
immunosuppression to prolong graft survival (Bromberg, 1995). 
Excitingly, when it comes to spinal cord injury studies, overexpression 
of IL-10 provided a friendly microenvironment for cell transplantation 
therapy, which promoted 8.1% spinal progenitors’ survival (11.5-fold 
difference than control group) in a C5 lateral hemisection SCI model 
(Ciciriello et al., 2021). In another study, transplantation of IL-10-
overexpressing in clinical grade mesenchymal stromal cells markedly 
decreased lesion volume, improved regeneration of axons, and 
preserved survival of neurons, accompanied with reinforced 
locomotor improvement in completely transected SCI, compared with 
naïve unmodified mesenchymal stromal cells (Gao et al., 2022). It is 
worth mentioning that the secretion of IL-10 by mesenchymal stem 
cells is considered to be one of its major therapeutic benefits in the 
treatment (Burchfield et al., 2008). Hence, the effect may be even 
better with the appropriately increased secretion of IL-10. Meanwhile, 
overexpression of IL-10  in mesenchymal stem cells also showed 
excellent neuroprotective effects and improved survival of engrafted 
mesenchymal stem cells in model of muscular dystrophy (Nitahara-
Kasahara et al., 2021), acute ischemic stroke (Grace et al., 2017) and 
traumatic brain injury (Maiti et al., 2019). In the one hand, IL-10 
mediated immune regulation seems to create more tolerance for those 
grafts (Zhang and Hill, 2019). For example, adult neural stem cells 
engineered to express IL-10 enhanced differentiation of transplanted 
cells, remyelination, and neuronal repair in experimental autoimmune 
encephalitis (Yang et al., 2009). In the other hand, not as a simple 
immunosuppressive molecule, IL-10 modulates the local 
microenvironment by its multipotent neuroprotective mechanisms, as 
already noted, to support the survival and integration with host of 
transplanted cell.

In addition to using vectors to overexpress IL-10 in transplanted 
cells, it is also designed to load into the bioengineered materials to 
deliver. With the advance rapidly progresses of bioengineered 
materials in the medical field, the sustained, stable and prolonged 
release of IL-10 can be achieved from the hydrogels (Ciciriello et al., 
2021; Shen et al., 2022), mineral coated microparticles (Hellenbrand 
et al., 2019) and nanoparticles (Duncan et al., 2019). Hellenbrand et al. 

(2019) compared systemic administration with topical biomaterial 
loading of IL-10, and found that systemic IL-10 treatment attenuated 
TNFα and IL-1β production at 24 h post-SCI, but failed to reach 
significance at 7 days post-SCI, which were similar to the results of 
previous studies. However, IL-10 loading in the coated microparticles 
did remarkably attenuate the production of TNFα at 7 days post-SCI, 
consistent with a notable decrease in the number of M1 microglia/
macrophages. IL-10 also packs with other substances into biological 
materials for treatment of SCI, like neurotrophins NT3 (Smith et al., 
2020), as well as endogenous dangerous molecule scavenger. For 
example, Shen et al. (2022) developed an immunoregulatory hydrogel 
scaffold which can slowly release IL-10 in a complete transection SCI 
model. This strategy reconstructed the inflammatory balance of the 
immune microenvironment by combining the removal of danger 
signals and the addition of anti-inflammatory cytokines, leading to 
significantly enhanced neuroprotection and neural regeneration after 
SCI compared with using each of these treatments alone. Moreover, 
besides wrapping IL-10 proteins, recently emerged messenger RNA 
(mRNA)-based therapy also showed positive therapeutic effect, which 
sent human interleukin-10 (hIL-10)-encoding nucleoside-modified 
mRNA by lipid nanoparticle to the lesion cavity (Gál et al., 2023). In 
contrast to genetic editing that overexpresses IL-10, biomaterial 
loading is protected from unnecessary genetic material contamination, 
uncontrolled expression, and off-target problems. Nevertheless, 
biomaterial loading also face a series of challenges, including weak 
biomechanics, inappropriate degradation rate and high price 
(Nikolova and Chavali, 2019).

In brief, IL-10 manifests a powerful inflammation regulation and 
immunomodulation. Though, systemic administration of IL-10 
exposes some weaknesses because of negative adjust induced by 
megadose, non-target and instability (Herfarth and Schölmerich, 
2002; Wang et  al., 2021). With application of genetic editing and 
biomaterials, IL-10 can be implemented locally, more targeting of the 
lesion and modified local environment which optimize the survival 
rate of endogenous and transplanted cells.

5. Toward to clinical applications in 
SCI recovery

Actually, IL-10 has been studied for more than 30 years, since it 
was first discovered in 1989. As early as the end of the 20th century, 
IL-10 entered clinical experimental research. When recombinant 
human IL-10 is intravenously administered in healthy volunteers, the 
side effects mainly consisted of mild-to-moderate flu-like symptoms 
which were characterized by fever with chills, headache, myalgias at 
the highest dose (100.0 micrograms/kg), transient decreases of 
lymphocyte counts, decreased platelet counts, which returned after 
discontinuation of the IL-10 (Huhn et al., 1996; Sosman et al., 2000). 
Because TNF-α and IL-1 β production were substantially and long-
term inhibited during IL-10 treatment, it was previously tested in the 
clinical treatment of inflammatory diseases such as rheumatoid 
arthritis, psoriasis, and inflammatory bowel disease (Wang et al., 
2019). Unfortunately, compared with placebo groups, systemic 
administration of IL-10 failed to result in beneficial clinical outcomes, 
particularly with severe dose-dependent side effect. The excellent 
therapeutic effect acquired from animal experiments has not been 
replicated in clinical patients. Despite this, Roberti et al. (2014) were 
the first to use low-dose cytokine therapy – Guna-Interleukin 4, 
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Guna-Interleukin 10 and Guna-Interleukin 11- at the concentration 
of 10 fg/mL in psoriasis patients, and showed us the safety and 
efficacy of this kind of low-dose cytokine combination therapy in 
2014. After that, the low-dose cytokine combination [IL-4, IL-10, and 
anti-IL-1 antibodies (10 fg/mL)] therapy also exhibited the promising 
prospect in rheumatoid arthritis, at a randomized, open, active-
controlled, prospective, phase IV trial (Martin-Martin et al., 2017).

At present, there is no study of IL-10 treating SCI patients in the 
clinic, especially dose-dependent side effects when administered 
systemically, and maintenance in the preclinical stage with local 
delivery. The developing applications of cell and biomaterial on SCI 
patients occurred in recent 5 years, overcoming technical difficulties 
and addressing safety concerns, and achieved some positive therapeutic 
efficacy (Zipser et al., 2022; Lorach et al., 2023). Up to now, the first 
clinical study involving the transplantation of genetically modified cells 
into human spinal cord, is about amyotrophic lateral sclerosis at 2022, 
overexpressing glial cell line-derived neurotrophic factor (GDNF) 
(Baloh et al., 2022). Overall, it seems that there is still a long way to go 
before the SCI patients get benefits from application of IL-10.

Targeted delivery of IL-10 in animal models of spinal cord injury 
(SCI) has demonstrated significant achievements, indicating the 
potential application of IL-10  in clinical settings for SCI patients. 
However, several important considerations need to be  addressed 
through further research. Firstly, although systemic administration of 
IL-10 with high doses may appear unsuitable, it remains one of the 
most convenient methods for treating early stages of SCI. By 
enhancing the structural stability and targeting of IL-10, the dosage 
required can be reduced. Encapsulation of IL-10 with pluronic-based 
nano-carriers, for example, has shown promising results with 
increased elimination half-life and sustained release capabilities (Kim 
et al., 2020). Combining IL-10 with other cytokines can also reduce 
the necessary dose while allowing coordinated actions with other 
cytokines. Additionally, utilizing biomaterials for localized delivery of 
IL-10 holds therapeutic promise, particularly for modulating the 
dysregulated local microenvironment in the intermediate-chronic 
phase of SCI. This approach allows for sustained, stable, and prolonged 
release of IL-10, enabling its pleiotropic effects (Hellenbrand et al., 
2019; Shen et  al., 2022). Secondly, an important consideration is 
determining the optimal timing for administering IL-10 treatment. 
Although there is no consensus on the specific duration of the 
treatment window, it appears that early administration of IL-10 after 
the injury yields greater benefits, as observed in both systemic and 
local administration studies (Bethea et al., 1999; Shen et al., 2022). 
Early administration of IL-10 has the potential to suppress an 
inflammatory storm, similar to the early use of tocilizumab in 
preventing cytokine release syndrome (CRS) (Kadauke et al., 2021). 
Additionally, IL-10 has the ability to regulate the phenotype of 
microglial cells, facilitating the shift from pro-inflammatory M1 
phenotype to anti-inflammatory M2 phenotype, and inducing 
immunosuppression. Therefore, selecting the timing for IL-10 
intervention based on the specific emphasis of the local 
microenvironment, such as debris clearance or tissue repair, or 
according to the treatment plan, is scientifically rational.

Finally, considering the complex molecular and cellular 
interactions involved in SCI, combining IL-10 with other therapeutic 
strategies is likely to lead to better treatment outcomes. Various 
technologies have been developed to bridge the functional 
communication between the areas above and below the injury site, 
such as cell transplantation and epidural stimulation (Harkema et al., 

2011; Curtis et al., 2018; Rowald et al., 2022). When IL-10 is combined 
with cell transplantation technology, it has the potential to create a 
favorable and immunosuppressive microenvironment. Furthermore, 
in conjunction with epidural stimulation, IL-10 can be  used in 
combination with stimulation devices to reduce local inflammation 
and provide analgesic effects, addressing the limitations and 
disadvantages associated with epidural stimulation techniques 
(Taccola et al., 2020). In conclusion, although clinical research on the 
use of IL-10  in SCI treatment is limited, promising results from 
corresponding basic research suggest its potential efficacy.

6. Summary

In this review, changes of IL-10 and its receptors after SCI are 
described. Further elucidated are the multiple-neuroprotective effects 
and underlying mechanisms of IL-10 in the treatment of SCI. With 
the application of cell and bioengineered materials, more hope has 
been brought to SCI patients. Since SCI is a multimolecular and 
multicellular interaction event which has different phases, a single 
approach is not a satisfactory endeavor and a meaningful combination 
of therapeutics is the way to go. IL-10, characterized by anti-
inflammation, neuroprotection and antinociception, exhibits 
exceptional compatibility, which can be flexibly combined with other 
technologies to better achieve individualized treatment at different 
stages of SCI, such as anti-inflammatory in the acute phase, 
neuroprotective and immunosuppressive effect in association with cell 
transplantation at a later stage, and immunomodulatory and analgesic 
in the chronic stage. Although leveraging the multiple therapeutic 
effects of IL-10 still needs work, the research of IL-10 in SCI provides 
a new strategy to conquer the bottleneck of advanced 
treatment technology.
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