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Altered expression of
glycobiology-related genes in
Parkinson’s disease brain
Jay S. Schneider* and Garima Singh

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia,
PA, United States

The precise mechanisms initiating and perpetuating the cellular degeneration

in Parkinson’s disease (PD) remain unclear. There is decreased expression

of the main brain gangliosides, and GM1 ganglioside in particular, in the

PD brain along with decreased expression of the genes coding for the

glycosyltranferase and the sialyltransferase responsible for the synthesis

of these brain gangliosides. However, potentially important pathogenic

mechanisms contributing to the neurodegeneration in PD may also include

altered levels of expression of genes involved in glycosylation, sialylation

and sphingolipid synthesis and metabolism. Although various studies have

described pathological lipid and glycolipid changes in PD brain, there have

been limited studies of expression of glycobiology-related genes in PD

brain. The current study was performed as an initial attempt to gain new

information regarding potential changes in glycoprotein and glycolipid-

related genes in PD by investigating the gene expression status for select

glycosyltransferases, sialyltransferases, sialidases, sphingosine kinases, and

lysosomal enzymes in the substantia nigra and putamen from patients with

PD and neurologically normal controls. Results showed altered expression

of glycosyltransferase genes (B3GALT2 and B4GALT1) potentially involved in

microglial activation and neuroinflammation, sphingosine-1-phosphate (S1P)

modulators (SPHK1, SPHK2, and SGPL1) involved in sphingolipid synthesis

and metabolism, polysialyltransferase genes (ST8SIA2 and ST8SIA4) that

encode enzymes responsible for polysialic acid (polySia) biosynthesis, and

the sialidase NEU4, expression of which has been linked to the clearance

of storage materials from lysosomes. The data presented here underscore

the complexity of the glycolipid/sphingolipid dysregulation in the PD brain

and continued and expanded study of these processes may not only provide

a greater understanding of the complex roles of aberrant glycosylation

sialylation, and sphingolipid synthesis/metabolism in the pathophysiology of

PD but may identify potential druggable targets for PD therapeutics.
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Introduction

Parkinson’s disease (PD) is a complex progressive
neurodegenerative disorder primarily characterized by the
loss of nigrostriatal dopamine-producing neurons in the
substantia nigra. Although the majority of cases of PD are
idiopathic in origin, several mechanisms have been proposed to
explain the onset and progression of the neurodegeneration in
PD including mitochondrial dysfunction, increased oxidative
stress and oxidative damage, α-synuclein aggregation and
associated toxicity, and lysosomal and autophagic dysfunction,
among other potential contributing factors (Doria et al.,
2016). In addition, various abnormalities in the content and
composition of various lipids, including gangliosides, have
been reported in PD brain [ex. (den Jager, 1969; Riekkinen
et al., 1975; Seyfried et al., 2018)]. Recently, dysregulation of
ceramide synthesis and metabolism have been suggested to
play a role in PD-associated neurodegeneration (Plotegher
et al., 2019) and lipdomic studies have reported PD-specific
lipid alterations detected in brain and in plasma that have
been suggested to promote PD-associated neurodegeneration
at least in part through promoting α-synuclein aggregation,
neuroinflammation, and dysfunction of autophagic processing
[see Alecu and Bennett (2019) for review].

In addition to changes in lipid content and metabolism
in the PD brain, some studies have also reported altered
glycosylation and sialylation in PD brain (Videira and Castro-
Caldas, 2018; Wilkinson et al., 2021). Altered levels of sialylation
and fucosylation have also been reported in serum samples
from PD patients and interestingly, mainly in male patients
(Varadi et al., 2019). Additionally, many proteins are synthesized
in the endoplasmic reticulum (ER) where many of them
undergo glycoslylation and functionalization. ER stress has
been suggested to be one of the pathological mechanisms
contributing to PD (Mercado et al., 2013; Tsujii et al., 2015),
and aberrant glycosylation has been suggested to contribute
to an overload of the ER in PD brain with underglycosylated
proteins (Videira and Castro-Caldas, 2018). Oxidative stress and
inflammation have also been suggested to potentially trigger
abnormal glycosylation in PD (Videira and Castro-Caldas,
2018).

Although various studies have described pathological
lipid and glycolipid changes in PD brain, there have been
limited studies of expression of glycobiology-related genes in
PD brain (see (Alecu and Bennett, 2019) for review) and
how dysregulation of the expression of these genes may
contribute to PD-like neurodegeneration. In contrast, genes
related to glycobiology have been examined in Huntington’s
disease (HD) transgenic mice as well as in the caudate
nucleus from human HD subjects (Desplats et al., 2007)
where a number of glycosyltransferases and sialyltransferases
were found to be significantly changed compared to normal
controls. In particular, ganglioside metabolism genes ST3GAL5,
ST8SIA3, B4GALNT1, and ST3GAL2 had significantly decreased

expression in HD caudate compared to control caudate
(Desplats et al., 2007). We previously described significantly
decreased expression of gene B3GALT4 and ST3GAL2 in
residual dopaminergic neurons in the PD substantia nigra
(Schneider, 2018), consistent with an earlier finding of decreased
expression of the main brain gangliosides (GM1, GD1a, GD1b,
and GT1b) in PD substantia nigra (Seyfried et al., 2018). The
current study was performed to gain additional information
regarding potential changes in glycoprotein and glycolipid
metabolism in PD by investigating the gene expression status for
select glycosyltransferases (B3GALT4, B4GALT1, B4GALNT1,
and B4GALT5), sialyltransferases (ST6GALNAC4, ST8SIA2,
ST8SIA4, and NCAM1 (substrate for ST8SIA2, ST8SIA4),
sialidases (NEU1, NEU3, and NEU4), sphingosine kinases
(S1P modulators) (SPHK1, SPHK2, and SGPL1) (S1P lyase),
and lysosomal enzymes (GBA (β-glucocerebroside), GLB1 (β-
galactosidase)) in the substantia nigra and putamen in patients
with PD and neurologically normal controls. These genes
were chosen to expand upon limited previous preliminary
data that suggested potential abnormal expression levels of
some glycosyltransferases, sialyltransferases, sialidases, and S1P
modulators in PD brain (Schneider and Singh, 2019).

Materials and methods

Human brain tissue collection

Coded/anonymous substantia nigra-containing tissue
blocks were obtained through the NIH NeuroBioBank
and sourced from the NICHD Brain and Tissue Bank for
Developmental Disorders at the University of Maryland,
Baltimore, MD, the Harvard Brain Tissue Resource Center,
which is supported in part by HHSN-271-2013-00030C, and
from the Human Brain and Spinal Fluid Resource Center, VA,
West Los Angeles Healthcare Center, 11301 Wilshire Blvd.,
Los Angeles, CA, which is sponsored by NINDS/NIMH, the
National Multiple Sclerosis Society, and the Department of
Veterans Affairs. Coded/anonymous putamen samples were
obtained solely from the Human Brain and Spinal Fluid
Resource Center, VA, West Los Angeles Healthcare Center.
The clinical diagnosis of Parkinson’s disease was confirmed
at autopsy by presence of gross depigmentation of the SN
and microscopic confirmation of SN cell loss and presence
of Lewy bodies in the SN and normal findings in other brain
regions sampled. Frozen tissue blocks containing the SN were
stored at −80◦C and warmed to −20◦C for dissection of
samples. Dissected substantia nigra samples (containing the
pars compacta region (SNc)) and dissected putamen samples
(taken from dorsal putamen) were placed in sterile Eppendorf
tubes and were rapidly refrozen in powdered dry ice. Standard
BL2 procedures for handling human tissues were observed.
Coded/anonymous non-neurological disease control tissues
were obtained from the same sources mentioned above. Subject
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characteristics are described in Table 1 regarding substantia
nigra samples and Table 2 regarding putamen samples.

Ribonucleic acid isolation and
quantitative real-time polymerase
chain reaction

Ribonucleic acid (RNA) was extracted from the frozen SN
and putamen samples using Zymo Direct-zol RNA miniprep
Plus. During RNA isolation the DNase digestion step was
performed with RNase-free DNase I (included in the kit) to
eliminate genomic DNA contamination. To determine RNA
quality, all the RNA samples were analyzed on an Agilent
2100 Bioanalyzer using the Agilent RNA 6000 Nano kit per
the manufacturer’s instructions. The RNA integrity (RIN)
numbers for the samples are reported in Tables 1, 2. cDNA
was prepared using NEB Protoscript II First strand cDNA
synthesis, and Real-Time PCR was performed using a Roche

TABLE 1 Subject and tissue characteristics: Substantia nigra.

Control Age (yrs) Sex PMI (hrs) RIN

SN1 65 M 8.8 2.7

SN2 71 M 7 2.5

SN3 83 F 8.6 3.3

SN4 65 F 8.8 4.8

SN5 70 M 18.2 2.5

SN6 77 F 6 5.7

SN7 83 F 17.6 6.1

SN8 67 F 11.8 3.1

SN9 83 M 19.5 5.9

SN10 68 M 20.3 5.9

SN11 81 F 16.3 5.9

SN12 82 M 14 6.1

Control mean ± SEM 74.6 ± 2.2 6 M, 6 F 13.1 ± 1.5 4.5 ± 0.5

PD Age (yrs) Sex PMI (hrs) RIN

SN1 76 F 8.8 4.9

SN2 79 F 9.1 4

SN3 74 M 17 4.9

SN4 79 M 27 5.5

SN5 82 F 8 6

SN6 71 M 21.5 5.7

SN7 84 M 12.7 5.5

SN8 74 M 11.4 5.7

SN9 81 F 14.8 5.6

SN10 81 F 2 2.8

SN11 67 F 22.9 5.2

SN12 78 M 9.5 3

SN13 81 M 3.5 5.5

SN14 83 M 6.7 5.4

SN15 65 M 20.3 2.8

PDmean ± SEM 77.0 ± 1.5 9 M, 6 F 13.0 ± 1.9 4.8 ± 0.3

LightCycler 480 with Roche LightCycler 480 SYBR Green I
Mastermix. Real-Time PCR was carried out using commercially
sourced and validated primers from GeneGlobe Qiagen against
human genes B3GALT2, B4GALT1, B4GALT5, B4GALNT1,
GLB1, GBA, NCAM1, NEU1, NEU3, NEU4, SGPL1, SPHK1,
SPHK2, ST6GALNAC4, ST8SIA2, and ST8SIA4 (GeneGlobe IDs
are provided in Supplementary Table 1). The 11Ct method
was used to calculate mRNA expression change relative to
GAPDH (housekeeping gene) expression.

Statistical analyses

Raw data were subjected to outlier analysis using Grubbs
test to identify and remove values that were significant outliers
from the other values in each dataset. Statistical analyses were

TABLE 2 Subject and tissue characteristics: Putamen.

Control Age (yrs) Sex PMI (hrs) RIN

P1 53 M 15 6.1

P2 75 M 11.5 6.0

P3 76 M 11 6.2

P4 80 M 14 7.7

P5 61 F 26 6.2

P6 93 F 17 6.2

P7 52 M 19 5.6

P8 81 F 14.5 6.1

P9 75 F 15.4 7.3

P10 72 F 14 5.4

P11 70 M 12 5.9

P12 93 F 20.3 4.8

P13 57 M 12.6 5.0

Control mean ± SEM 72.2 ± 3.7 7 M, 6 F 15.6 ± 1.2 6.0 ± 0.2

PD Age (yrs) Sex PMI (hrs) RIN

P1 75 M 5.5 5.0

P2 72 M 5.5 4.1

P3 81 M 7 5.0

P4 75 M 5 7.1

P5 95 M 10 5.3

P6 72 F 14.7 5.7

P7 83 M 6.7 4.9

P8 67 M 9.8 6.8

P9 82 F 19 5.5

P10 70 M 22.5 5.7

P11 70 M 21.5 5.0

P12 71 M 17.5 5.2

P13 82 M 13.7 3.3

P14 81 F 12 3.0

P15 89 M 13.8 6.7

P16 73 M 30.6 5.4

P17 77 M 18.6 6.8

P18 71 M 21.5 5.3

PDmean ± SEM 77.0 ± 1.7 15 M, 3 F 14.2 ± 1.7 5.3 ± 0.3
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then performed using unpaired t-test using GraphPad Prism
software (v9) with significance for gene expression change set
at P < 0.05 (GraphPad Software, San Diego, California USA).
Data were converted to fold change relative to control for
graphical presentation.

Results

Subjects and controls were well matched for age, post-
mortem interval (PMI), and RNA integrity number (RIN)
for both substantia nigra (Table 1) and putamen (Table 2)
samples. There were no statistically significant differences
between subjects and controls on any of these measures for
either tissue type. Male/female ratios for substantia nigra
samples were 50:50 for controls and 60:40 for subjects
with PD. For putamen samples, male/female ratios were
54:46 for controls and 83:17 for subjects with PD. There
were no significant sex-related differences in any of the
gene expression data in either brain structure (data not
shown).

Significant differences in gene expression were found in the
substantia nigra from patients with PD compared to controls.
Fold changes relative to control are shown in Figure 1 for
the genes assayed. Gene expression for glycosyltransferases
B3GALT2 and B4GALT1, the S1P modulator SGPL1, and
the lysosomal enzyme GBA were significantly upregulated
in PD substantia nigra. Alternatively, gene expression for
polysialyltransferases ST8SIA2 and ST8SIA4, sialidase NEU4,
and sphingosine kinases SPHK1 and SPHK2 were significantly
downregulated in PD substantia nigra.

Gene expression data from the putamen were overall more
variable than data from the substantia nigra. Although a
number of genes trended toward being downregulated in the PD
samples, none of these reached statistical significance compared
to the controls (Figure 2). Only one gene, the lysosomal
enzyme GLB1, was significantly upregulated in the PD putamen
(Figure 2).

Discussion

Over the last several years, there has been an increasing
appreciation for the role that gangliosides and sphingolipids
in general may play in the pathogenesis and progression of
neurodegenerative diseases (Maglione et al., 2010; Di Pardo
and Maglione, 2018; Lansbury, 2022) and PD in particular
(Chiricozzi et al., 2020; Ledeen et al., 2022; Schneider, 2022).
However, less attention has been paid to the roles that possible
alterations in expression of genes involved in glycosylation,
sialylation, and S1P regulation may play in the development
and progression of PD. The current results show significant
changes in gene expression of several key molecules involved

FIGURE 1

Gene expression changes in substantia nigra from patients with
Parkinson’s disease (N = 15) relative to normal, age-matched
controls (N = 12). Data are presented as fold change relative to
control. Gene expression for glycosyltransferases B3GALT2 and
B4GALT1 was significantly higher in patients with PD than in
normal controls, while polysialyltransferase genes ST8SIA2 and
ST8SIA4 were significantly down-regulated in the PD substantia
nigra along with the gene for sialidase NEU4. Genes involved
with sphingodine-1-phosphate (S1P) metabolism were
significantly dysregulated in PD substantia nigra with expression
of sphingosine kinases necessary for S1P synthesis, SPHK1 and
SPHK2, significantly down-regulated and gene expression for
S1P lyase, SGPL1, involved in the degradation of S1P, was
significantly up-regulated. Gene expression for glucosidase beta
acid 1 (GBA) was also significantly up-regulated in the PD
substantia nigra. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001 vs. control.

in glycosylation, sialylation, and other process relevant to
sphingolipid structure and function in the PD substantia nigra.

Glycosyltransferases

Glycosyltransferases are enzymes that catalyze the addition
of polysaccharides to proteins, lipids, or nucleic acids to form
glycoconjugates during glycosylation, a critical posttranslational
process (Lv et al., 2017). Glycosyltransferases play important
roles in the nervous system where they not only promote
the development of neurons and glial cells and mediate the
development of the myelin sheath (Angata et al., 2006; Lv
et al., 2017) but are also critically involved in processes
relevant to neurodegeneration including inflammation and
microglial function, mitochondrial function, and autophagic
processing (Chen et al., 2009; Videira and Castro-Caldas,
2018; Wang et al., 2020). There are various structural classes
of glycosyltransferases that relate to their diverse biological
functions. We previously showed that gene expression for
the glycosyltransferase B3GALT4, an important enzyme in the
synthesis of brain gangliosides GM1 and GD1b, was significantly
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FIGURE 2

Gene expression changes in putamen from patients with
Parkinson’s disease (N = 18) relative to normal, age-matched
controls (N = 13). Data are presented as fold change relative to
control. In contrast to the numerous changes in gene
expression observed in the PD substantia nigra, expression of
only one of the genes examined, the lysosomal hydrolytic
enzyme β-Galactosidase (GLB1), was significantly altered in the
PD putamen. *P < 0.05 vs. control.

reduced in residual dopaminergic neurons in the PD substantia
nigra (Schneider, 2018). Currently, we show that B3GALT2 and
B4GALT1 gene expression is significantly increased in the PD
substantia nigra, compared to age-matched controls. This may
be potentially significant for the expression and potentiation
of PD-related pathology as protein glycosylation regulated
by B4Galt1 has been suggested to be related to microglial
activation and neuroinflammatory responses (Yang et al., 2020),
with increased expression of B4Galt1 related to increased
microglial inflammatory responses (Yang et al., 2020). Increased
levels of B3GALT2 are also associated with neuroinflammation
and knockdown of B3GALT2 reduced levels of inflammatory
cytokines TNFα and IL-6 (Lv et al., 2017). This is significant
as microglia activation and neuroinflammatory processes have
been suggested to play important roles in the pathophysiology
of PD (McGeer et al., 1988; Mogi et al., 1994; Ouchi et al.,
2005; Gerhard et al., 2006; Zhang et al., 2017). Further, high
levels of B4GALT1 have been suggested to suppress autophagic
processes (Wang et al., 2020). Impaired autophagic processing
is believed to play a significant role in the accumulation of
toxic α-synuclein aggregates in dopaminergic neurons in the
substantia nigra and the ensuing neurodegeneration (Karabiyik
et al., 2017; Miki et al., 2018; Hou et al., 2020). In contrast to the
significant changes observed in the substantia nigra, there were
no significant changes in glycosyltransferase gene expression in
the PD putamen.

Sialyltransferases and sialidases

Sialic acids are acidic sugars mostly found as terminal
residues in glycan structures of glycoconjugates including
glycoproteins and glycolipids (Rawal and Zhao, 2021). The
highest levels of sialic acids are expressed in the brain where
they regulate a diverse range of processes including neuronal
sprouting, plasticity, myelination and myelin stability (Rawal
and Zhao, 2021). Sialylation is the process mediated by
sialytransferase enzymes, though which sialic acid is added
to a glycoconjugate. Removal of sialic acid from sialoglycan
is mediated by lysosomal, cytoplasmic, or plasma membrane
bound sialidase enzymes (Schnaar et al., 2014; Rawal and Zhao,
2021). Gangliosides, sialylated glycosphingolipids that contain
over 75% of the brain’s sialic acid, are the most abundant
sialoglycans in the nervous system (Schnaar et al., 2014). We
previously showed that gene expression for the sialyltransferase
ST3GAL2, the enzyme responsible for the synthesis of brain
gangliosides GD1a from GM1 and GT1b from GD1b, was
significantly reduced in residual dopaminergic neurons in the
PD substantia nigra (Schneider, 2018).

The current study also shows that there are
significantly decreased levels of gene expression for two
polysialyltransferases, ST8SIA2 and ST8SIA4, genes that encode
enzymes responsible for polysialic acid (polySia) biosynthesis.
PolySia plays important roles in brain development with
neural cell adhesion molecule (NCAM) as the major polySia
acceptor protein (Schnaar et al., 2014). While ST8SIA2 and
ST8SIA4 are important for the addition of polySia to NCAM,
gene expression for NCAM1 was not altered in the PD
substantia nigra. In developing and mature brains, polySia
plays roles in modulating the function of neurotrophic factors
including BDNF and FGF2, NMDA and AMPA receptors,
and potentially also influences dopamine and norepinephrine
neurotransmission through regulating the interactions of these
transmitters with their receptors (Sato et al., 2016). In addition
to these functions, polySia plays a role in inhibiting innate
immunity reactions, inflammation, and microglia activation
(Liao et al., 2021). Thus, abnormal polysialyation could play
an important role in various physiological mechanisms of
relevance to the development or progression of PD. The
expression of polySia is highly correlated with gene expression
of ST8SIA2 and ST8SIA4 (Sato and Hane, 2018). ST8SIA2 has
been implicated in myelin formation and ST8SIA2 deficiency
leads to myelin deficits, thinning axons, and age-related white
matter degeneration (Szewczyk et al., 2017). Interestingly,
St8sia2−/− mice have reduced polysialylation and display
schizophrenic-like behaviors including cognitive and behavioral
deficits and it was proposed that genetic variation in ST8SIA2 in
humans may have the potential to confer a neurodevelopmental
predisposition to schizophrenia (Krocher et al., 2015). It is not
possible to know if the ST8SIA2 gene down-regulation observed
in the PD substantia nigra is a consequence of the disease
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or whether defects in the polytransferase gene expressions
detected in our study predispose to the development of PD.
While both sialyltransferases are present in the adult brain
albeit at relatively low levels, ST8SIA4 appears to be the
predominant polysiayltransferase in the adult brain where it
has been suggested to be important for neuronal plasticity
(Curto et al., 2019), with ST8SIA4 deficiency related to memory
deficits in mice (Nacher et al., 2010). While the functional
significance of the decreased expression of ST8SIA2 and
ST8SIA4 genes in the PD substantia nigra are not entirely clear
at this time, their dysregulation may signal a more widespread
impairment in sialo-conjugate metabolism that is worthy of
further study.

In addition to the decreases in mRNA expression of the
polysialyltransferases discussed above, sialylation could also be
influenced by the decrease expression of the sialidase gene
NEU4. There are four main mammalian sialidases, NEU1,
NEU2, NEU3, and NEU4 (Glanz et al., 2019). NEU1 is a
lysosomal sialidase that participates in lysosomal exocytosis,
NEU2 is primarily a cytoplasmic sialidase and plays a role
in neuronal differentiation, NEU3 is a plasma membrane
sialidase involved in ganglioside metabolism and regulation of
transmembrane signaling, and NEU4 is located to lysosomes,
mitochondria, and endoplasmic reticulum, has broad substrate
specificity against sialylated glycoconjugates, and its expression
has been linked to the clearance of storage materials from
lysosomes, among other functions (Miyagi and Yamaguchi,
2012). In the present study, NEU4 gene expression was
significantly decreased in PD substantia nigra. In Neu4−/−

mice, NEU4 has been shown to be a ganglioside metabolizing
enzyme, increasing relative amounts of GD1a ganglioside while
substantially decreasing GM1 levels (Seyrantepe et al., 2008).
Additionally, NEU4 has been suggested to regulate neuronal
function through the degradation of polySia and may also play a
role on immune function in microglia (Seyrantepe et al., 2008;
Takahashi et al., 2012). Together, the data presented in the
current paper suggest a dysregulation of sialylation in the PD
substantia nigra that could have multiple negative influences on
dopaminergic neuronal function and survival. In contrast to the
significant changes observed in the substantia nigra, there were
no significant changes in sialylation-related gene expression in
the PD putamen.

Sphingosine-1-phosphate metabolism

Sphingosine-1-phosphate (S1P) is one the most potent
signaling lipids, regulating several molecular events underlying
cellular homeostasis and viability (Di Pardo and Maglione,
2018). S1P is normally synthesized by sphingosine kinase-1
and sphingosine kinase-2 (SPHK1 and SPHK2) and degraded
by S1P phosphate phosphatase (SGPP) or S1P lyase (SGPL1).
A balance between S1P synthesis and degradation is required

for cellular homeostasis and normal cell functions (Di
Pardo and Maglione, 2018). Decreased SPHK1/2 levels and
increased SGPL1 levels are expected to decrease S1P levels,
potentially impairing autophagic mechanisms, down-regulating
pro-survival pathways, and promoting neurodegeneration (Di
Pardo et al., 2019). Up-regulation of SGPL1 and reduced
expression of SPHK1, with a subsequent decrease in S1P, has
been associated with neurodegeneration in Alzheimer’s disease
(He et al., 2010; Ceccom et al., 2014; Couttas et al., 2014)
and has also been described in animal models of Huntington’s
disease (HD) as well as in post-mortem brain tissues from
patients with HD (Di Pardo et al., 2017). Interestingly, in HD
transgenic mice, abnormally increased SGPL1 expression was
observed at a very early stage of disease while SPHK1 and
SPHK2 levels were not affected, suggesting that the process
of dysregulation of S1P metabolism may begin very early in
the disease process with alterations in expression SPHK1 and
SPHK2 appearing as the disease progresses (Di Pardo et al.,
2017). Importantly, pharmacological interventions aimed at
modulating S1P metabolism were neuroprotective, suggesting
modulation of S1P-metabolizing enzymes as potential druggable
therapeutic targets for neuroprotection (Di Pardo et al., 2017).
Although previous studies have demonstrated alterations in S1P
metabolism using cellular and animal models of PD (Pyszko
and Strosznajder, 2014; Sivasubramanian et al., 2015; Badawy
et al., 2018; Motyl and Strosznajder, 2018; Zhang et al., 2018;
Pepin et al., 2020) we believe the current report is the first to
demonstrate this in post-mortem tissue from patients with PD.
In contrast to the significant changes observed in the substantia
nigra, there were no significant changes in expression of genes
related to S1P metabolism in the PD putamen.

Lysosomal enzymes

Of the lysosomal-related genes examined, only GBA was
affected in the PD substantia nigra and only GLB1 was affected
in the PD putamen. GBA encodes for the lysosomal hydrolase
β-glucocerebrosidase (GCase), that catalyzes the conversion
of glucosylceramide into glucose and ceramide. Our finding
of increased expression of GBA mRNA in the PD substantia
nigra was surprising as others have reported decreased GBA
gene expression in the substantia nigra in patients with
sporadic PD (Chiasserini et al., 2015) and reduced GBA gene
expression in brain regions with and without pathological
synuclein aggregates and in early and late-stage sporadic
PD (Murphy et al., 2014). The activity of GBA can be a
ceramide source (Giussani et al., 2014) and ceramides play
important roles in modulating membrane protein dynamics and
signaling as well as modulating processes related to autophagy
and mitochondrial-mediated apoptosis (Ferrazza et al., 2016).
However, it is a decrease in GBA activity that is typically
associated with increased ceramide levels and inhibition of
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autophagy and accumulation of synuclein. It is uncertain what
the significance of an increase in GBA expression might be and
how this may affect ceramide metabolism and accumulation as
the relationship between GBA and ceramide levels is complex
(Kurzawa-Akanbi et al., 2021).

β-Galactosidase (GLB1), a lysosomal hydrolytic enzyme,
catalyzes the degradation of galactosylceramide to galactose and
ceramide within the lysosome and GLB1 mutation causes a
deficiency in β-galactosidase-1 resulting in abnormal lysosomal
accumulation of GM1 (GM1 gangliosidosis). GLB1 has not
been studied extensively in PD and the significance of the
increase in GLB1 gene expression in the PD putamen is
uncertain at this point.

Study limitations

There are some potential limitations of the current study.
This study utilized whole tissue extracts of substantia nigra and
putamen and thus interpretation of potential gene expression
changes such as the ones observed in substantia nigra
homogenates from PD brain could be complicated due to loss
of dopaminergic neurons and signals from other cell types
(i.e., microglia). While it is not possible to know in which
cell types in the substantia nigra the observed gene expression
changes originated, we observed both increases and decreases
in expression of specific genes and thus our data are likely not
attributed solely to neuronal loss in the PD substantia nigra.
There was only one gene in the PD putamen that showed a
significant change in expression. This may reflect the relative
contributions of the genes assessed to the pathological process
that occur in the substantia nigra and not in the putamen,
although the putamen gene expression data were more variable
than the data derived from the substantia nigra, potentially
obscuring some significant gene expression changes in the
putamen. The reasons for the higher level of variability in levels
of gene expression in the putamen are not entirely clear but
could relate at least in part to the anatomy of the putamen and
the samples made available to us for this study. The human
putamen is a very large structure and although we made an
effort to take all samples from the dorsal putamen, the samples
came from different rostro-caudal levels of the putamen and
it is possible that there are sub-regionally specific patterns of
expression of the genes examined in this study in different
regions of the putamen. Regional heterogeneity in expression
of various neuropeptides and in dopamine innervation and
gradients of dopamine transporter loss in the PD putamen are
well known and this regional heterogeneity may also apply to the
expression of genes currently examined. Also, a relatively small
number of patient samples were examined in the current study
and only a relatively small number of genes were examined.
Based on the consistency of the gene expression changes
observed in the substantia nigra, it is unlikely that the data are

related to a potentially different gene mutation status of different
patients. However, additional studies using a larger number of
cases with verified gene mutation status and examining a more
extensive array of genes are indicated.

Conclusion

In summary, the current study shows significant changes
in gene expression for several key molecules involved in
glycosylation, sialylation, and S1P metabolism in the PD
substantia nigra. Abnormal regulation of these processes
has also been described in other neurodegenerative
diseases including Alzheimer’s disease and Huntington’s
disease, suggesting that dysregulation of processes involving
glycosylation, sialylation, and sphingolipid metabolism such as
those described here may transcend different brain disorders
and neurodegenerative diseases.
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