
fnmol-15-1036552 December 6, 2022 Time: 10:5 # 1

TYPE Original Research
PUBLISHED 06 December 2022
DOI 10.3389/fnmol.2022.1036552

OPEN ACCESS

EDITED BY

Safikur Rahman,
Babasaheb Bhimrao Ambedkar Bihar
University, India

REVIEWED BY

Anurag Kumar Singh,
Alabama State University, United States
Hareram Birla,
Rutgers, The State University
of New Jersey, United States

*CORRESPONDENCE

Mohamed M. Abdel-Daim
abdeldaim.m@vet.suez.edu.eg
Rohit Sharma
rohitsharma@bhu.ac.in

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Molecular Signaling and Pathways,
a section of the journal
Frontiers in Molecular Neuroscience

RECEIVED 04 September 2022
ACCEPTED 21 October 2022
PUBLISHED 06 December 2022

CITATION

Mukerjee N, Al-Khafaji K, Maitra S,
Suhail Wadi J, Sachdeva P, Ghosh A,
Buchade RS, Chaudhari SY, Jadhav SB,
Das P, Hasan MM, Rahman MH,
Albadrani GM, Altyar AE, Kamel M,
Algahtani M, Shinan K, Theyab A,
Abdel-Daim MM, Ashraf GM,
Rahman MM and Sharma R (2022)
Recognizing novel drugs against
Keap1 in Alzheimer’s disease using
machine learning grounded
computational studies.
Front. Mol. Neurosci. 15:1036552.
doi: 10.3389/fnmol.2022.1036552

Recognizing novel drugs against
Keap1 in Alzheimer’s disease
using machine learning
grounded computational studies
Nobendu Mukerjee1,2, Khattab Al-Khafaji3†, Swastika Maitra4†,
Jaafar Suhail Wadi5, Punya Sachdeva6, Arabinda Ghosh7,
Rahul Subhash Buchade8, Somdatta Yashwant Chaudhari9,
Shailaja B. Jadhav9, Padmashree Das10,
Mohammad Mehedi Hasan11, Md. Habibur Rahman12,
Ghadeer M. Albadrani13, Ahmed E. Altyar14,
Mohamed Kamel15, Mohammad Algahtani16, Khlood Shinan17,
Abdulrahman Theyab16,18, Mohamed M. Abdel-Daim19,20*,
Ghulam Md. Ashraf21, Md. Mominur Rahman22 and
Rohit Sharma23*
1Department of Microbiology, West Bengal State University, Kolkata, India, 2Department of Health
Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia, 3College
of Dentistry, The University of Mashreq, Baghdad, Iraq, 4Department of Microbiology, Adamas
University, Kolkata, India, 5Department of Pharmacy, Al-Rafidain University College, Baghdad, Iraq,
6Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India,
7Microbiology Division, Department of Botany, Gauhati University, Guwahati, India, 8Department
of Pharmaceutical Chemistry, SCES’s Indira College of Pharmacy “Niramay”, Pune, India,
9Department of Pharmaceutical Chemistry, Progressive Education Society’s Modern College
of Pharmacy, Pune, India, 10Center for Biotechnology and Bioinformatics, Dibrugarh University,
Dibrugarh, India, 11Department of Biochemistry and Molecular Biology, Faculty of Life Science,
Mawlana Bhashani Science and Technology University, Tangail, Bangladesh, 12Department of Global
Medical Science, Wonju College of Medicine, Yonsei University, Wonju-si, South Korea,
13Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh,
Saudi Arabia, 14Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University,
Jeddah, Saudi Arabia, 15Department of Medicine and Infectious Diseases, Faculty of Veterinary
Medicine, Cairo University, Giza, Egypt, 16Department of Laboratory and Blood Bank, Security
Forces Hospital, Mecca, Saudi Arabia, 17Department of Computer Science, College Computer
Science in Al-Leith, Umm Al-Qura University, Mecca, Saudi Arabia, 18College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia, 19Department of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, Jeddah, Saudi Arabia, 20Department of Pharmacology, Faculty
of Veterinary Medicine, Suez Canal University, Ismailia, Egypt, 21Department of Medical Laboratory
Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates,
22Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University,
Dhaka, Bangladesh, 23Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda,
Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

Alzheimer’s disease (AD) is the most common neurodegenerative disorder

in the world, affecting an estimated 50 million individuals. The nerve cells

become impaired and die due to the formation of amyloid-beta (Aβ) plaques

and neurofibrillary tangles (NFTs). Dementia is one of the most common

symptoms seen in people with AD. Genes, lifestyle, mitochondrial dysfunction,

oxidative stress, obesity, infections, and head injuries are some of the factors
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that can contribute to the development and progression of AD. There are just

a few FDA-approved treatments without side effects in the market, and their

efficacy is restricted due to their narrow target in the etiology of AD. Therefore,

our aim is to identify a safe and potent treatment for Alzheimer’s disease.

We chose the ursolic acid (UA) and its similar compounds as a compounds’

library. And the ChEMBL database was adopted to obtain the active and

inactive chemicals against Keap1. The best Quantitative structure-activity

relationship (QSAR) model was created by evaluating standard machine

learning techniques, and the best model has the lowest RMSE and greatest

R2 (Random Forest Regressor). We chose pIC50 of 6.5 as threshold, where

the top five potent medicines (DB06841, DB04310, DB11784, DB12730, and

DB12677) with the highest predicted pIC50 (7.091184, 6.900866, 6.800155,

6.768965, and 6.756439) based on QSAR analysis. Furthermore, the top five

medicines utilize as ligand molecules were docked in Keap1’s binding region.

The structural stability of the nominated medications was then evaluated using

molecular dynamics simulations, RMSD, RMSF, Rg, and hydrogen bonding.

All models are stable at 20 ns during simulation, with no major fluctuations

observed. Finally, the top five medications are shown as prospective inhibitors

of Keap1 and are the most promising to battle AD.

KEYWORDS

Alzheimer’s disease, neurodegeneration, QSAR, molecular docking and dynamics
simulation, Keap1, oxidative stress, amyloid-beta, phytochemicals

Introduction

Alzheimer’s disease (AD) is the most common type of
dementia and the sixth greatest cause of mortality in Western
societies, posing a serious public health threat (Isaacson
et al., 2018). Late-onset AD is now recognized to begin
decades before a dementia diagnosis, with a long prodromal
period that commonly starts in midlife (Frisoni et al., 2011).
Preclinical AD is the first stage of this prodromal phase,
which has no visible cognitive symptoms but provides a
huge possibility for early intervention (Ghosh S. et al., 2022;
Sharma et al., 2022). A few individuals with AD will exhibit
neuropsychiatric symptoms, also known as behavioral and
psychological symptoms of dementia (Sharma et al., 2019).
People who have dementia often have AD, which is followed
by vascular dementia and a number of other conditions that
affect the brain. AD has been hard to tell apart from all
the other dementia-causing neuropathology that have come
up in recent years, even though there has been a lot of
research and new brain imaging technology. Neuropathological
disorders and the gradual start of AD are almost impossible
to tell apart and diagnose at an early stage because they
both happen simultaneously. It’s become more common for
people to write about how to separate “AD” from the
pathological traits often found in people with the disease,
which is called a diagnostic (Hyman et al., 2012). Because a

lot of research has shown that many people with AD have
neuropathological problems after they die, this distinction
between clinical and pathological concepts is correct. Even
though modern imaging methods can show amyloid load
in vivo, it is hard to figure out how much synaptic loss, gliosis,
Lewy bodies, neuron loss, granulovacuolar degeneration, and
cerebral amyloid angiopathy there is before death. In people
with AD, many other illnesses follow up, like Lewy body
disease and vascular traumas, that can worsen their cognitive
abilities. In light of this, new drugs with antidepressant and
neuroprotective properties are urgently needed (Lanoiselée
et al., 2017; Sharma et al., 2018, 2021). AD is caused by
mutations in the genes that make the amyloid precursor
protein, presenilin 2 (PSEN2) and presenilin 1 (PSEN1) (Chiu
et al., 2013). To make things even better, the treatment
plan should include pharmaceutical and non-pharmaceutical
therapies. These could be activities that are physical, social, or
even cognitive. It treats mild to moderate cognitive impairment
with the drugs sodium valproate and lithium (Moore et al.,
2010). There are even some well-known pain relievers that can
help prevent oxidative damage (Kaspar et al., 2009; Hane et al.,
2017), neurodegeneration, and reduce neuroinflammation, like
naproxen and ibuprofen, which are both non-steroidal anti-
inflammatory drugs.

There are over 20,000 compounds in triterpenoids, which
are secondary metabolites with diverse biological roles.
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Triterpenoids are from a complex collection of secondary
metabolites that contain over 20,000 compounds with various
biological functions. Oleanolic acid, betulinic acid, and ursolic
acid (UA) are the three most prevalent triterpenoids found
in plants, with oleanolic acid being the most abundant.
It has been discovered that these chemicals, among other
biological effects, exhibit antifungal, anti-HIV, and anti-
tumor properties. In addition to being a phytosterol and a
pentacyclic triterpenoid, UA has also been shown to have
pharmacological activity, which was previously considered
the case. It was primarily utilized as an emulsifier in the
pharmaceutical, cosmetic, and food sectors, among other
places. For this reason, it is regarded harmless; it has
been shown to have no adverse effects in mice at dosages
of up to 1,000 mg/kg body weight (Kerr et al., 2017)
due to its low toxicity. A study published in neurology
found that UA can change the monoaminergic system,
which may be necessary to prevent mood and cognitive
dysfunctions associated with neurodegenerative and mental
diseases (Rafi et al., 2020). In 1920, it was discovered
in apple epicuticular waxes (Gaulton et al., 2012), which
led to its discovery. Recent discoveries have revealed that
it can be found in the wax coverings of various fruits,
including prunes, pears, cranberries, bilberries, and olives
(Gaulton et al., 2012; Rafi et al., 2020), as well as the
medicinal plants Eriobotrya japonica, Rosmarinus officinalis,

Arctostaphylos uva-ursi, and Ocimum sanctum (Yap, 2011;
Mukerjee et al., 2022).

Computer-aided drug design (CADD), which has the
potential to reduce the amount of effort, time, and money
spent on medication research, has become increasingly essential
in recent years (Mukerjee et al., 2022). Artificial intelligence
and computational technologies are used to screen and analyze
millions of compounds in libraries to find the most promising
drugs. This project aims to use artificial intelligence and
computational methods to find possible and safe inhibitors
of Keap1. As a result, for the objective of screening keap1
inhibitors, we built a QSAR based on machine learning. The
first and most critical step was to create an effective QSAR
model by choosing the best machine learning technique from a
selection of options. Based on their R2 and RMSE scores, the
authors compared and evaluated forty-one machine learning
methods. After that, the best model (with the highest R2 and
lowest RMSE) was used to calculate pIC50 and screen the library
that had been gathered. The compounds library was created
based on the structural similarity of the UA compound. The
medicines with the highest pIC50 values were identified as
the most promising treatments against Keap1 when predicted
pIC50 values for the complete chemical library were compared.
We have inhibited Keap1 using novel phytochemical UA in
this study using machine learning and molecular dynamics
simulation approaches (as illustrated in Figure 1).
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FIGURE 1

Schematic presentation of the active inhibition. Adopted from BioRender.com.

Materials and methods

United States food and drug
administration-approved drugs library

The compounds which have a similar structure to UA
were screened in the drug bank database by using the SWISS
similarity tool.1

Dataset curation and machine learning
model training

We used CHEMBL (Wang et al., 2016) to acquire the
dataset, which contains small compounds with experimentally
validated IC50 values against Keap1. To train classification
models, known experimental activity levels (IC50) were used
and activity labels were assigned based on the activity values.
The training activity cut-off was established at 1,000 nM; if
IC50 = 1,000 nm is active, either is inactive. Figure 2 shows
more information about the curated dataset, which has 65
active and 174 inactive. The dataset’s PubChem fingerprints
were then calculated using the open-source software “PaDEL for
descriptor calculation” (Ravindranath et al., 2015). The typical
algorithms were then evaluated and compared using lazyPredict.
Based on the root mean squared error (RMSE) and R-squared,

1 http://www.swisssimilarity.ch

the optimal algorithm was chosen (R2). The entire dataset was
utilized as a training set before being used as a test set.

Molecular docking

The 3D structures of Keap1 downloaded protein data bank
(PDB ID: 4IFN). The top five drugs obtained from ML-based
QSAR screening were prepared by Checm3D software. The
AutodockFR (ADFR) program (Al-Khafaji and Taskin Tok,
2020b) and AutoGridFR (AGFR version 1.0) (Al-Khafaji and
Taskin Tok, 2021) programs are used in the execution of the
molecular docking of ligands in the active site of Keap1 which
are capable of establishing configuration file which contains
the data for running controlled flexible docking by identifying
the residues of the complex’s binding site. Autogrid maps
estimated with a default grid map were set on the position
of reference ligands at (40, 40, 40) box spacing of 0.375A0.
ADFR’s presumptive parameters enable the ligand to reach
buried grooves (Al-Khafaji and Taskin Tok, 2020a, 2021).
ADFR uses the scoring function of Autodock but is customized
for flexible receptors (Shukla et al., 2019; Ghosh A. et al.,
2022). The docking was implemented using default search
settings.

Molecular dynamic simulation

Dynamics simulations are of vital interest to investigators
in the field of computer-aided drug discovery (Yap, 2011;
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FIGURE 2

Characteristics of the curated dataset. Adopted from BioRender.com.

Zoete et al., 2011). Thus, we are using molecular dynamics
simulations to supply us with information about conformational
stability (Bjelkmar et al., 2010; Shukla et al., 2019). Like
these technologies, molecular dynamics simulation consists of
a set of standard protocols of GROMACS 2018.1 and an
implementation. We implemented these protocols holo forms
of Keap1, with Charmm27 force field for all atoms (Darden
et al., 1993; Bjelkmar et al., 2010; Yap, 2011). For the first step of
molecular dynamics, we employed the Swiss PARAM to create
the topology file of drugs (Zoete et al., 2011). The holoforms
of Keap1 were placed and cantered in a cubic cell unit with at
least 0.1 nm distance from box edges. Then, we chose three-
point transferable intermolecular potential (TIP3P) that is used
as a solvent for our protein-ligand complexes. And if complexes
were charged, we neutralized the complexes by adding opposite
ions either sodium ions or chloride ions. An appropriate way
to proceed with this molecular dynamic simulation is to use the
steepest descent algorithm threshold value of 1,000 kJ/mol nm
for minimization. Both the NVT and NPT ensembles of 0.1 ns
were used with the position constraint on the protein molecules
for controlling pressure at 1 atm and temperature at 300 K. In
the next step, to assess the impact of electrostatic interactions on
the diversified behaviors of complexes, we utilized the Particle
Mesh Ewald summation. Then, we implemented a 20 ns MD

simulation for all systems. The MD trajectories were analyzed
by using the RMSD, RMSF, Rg, hydrogen bonding, and principal
component analysis (PCA).

Results

Inhibitory activity prediction via
machine learning model

To build a model which can be used to determine
the inhibitory activity (pIC50) against Keap1, we compared
common machine learning algorithms. The ability of these
algorithms to build an efficient model was assessed via (R2)
and RMSE, from benchmarking the common algorithms. The
benchmarks of the R2 and RMSE indicated that the Random
Forest Regressor (Figure 3) can be used as an efficient model
to predict pIC50. Further, the correlation between experimental
and predicted pIC50 is presented in Figure 4. Then this model
was used to predict pIC50 values (as shown in Supplementary
Data Sheet 1). It can be observed that the UA has a pIC50
of 5.553, whereas the top five pIC50 were 7.1, 6.9, 6.8, 6.77,
and DB06841, DB04310, DB11784, DB12730, and DB12677,
respectively.
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FIGURE 3

Evaluation of common machine learning algorithms via using: (A) R-squared and (B) RMSE. Adopted from BioRender.com.

FIGURE 4

Plot correlation between experimental and predicted pIC50 by using Random Forest-regressor. Adopted from BioRender.com.
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Molecular docking analysis

The best confirmation was displayed as a docking complex,
according to the results, after completing a molecular docking
analysis of the Keap1 protein with our five-hit ligands: DB12730,
DB12677, DB12310, DB06841, and DB11784 in the ADFR
output. For usage with the MGL 1.5.6 suite, the receptors
and ligands were stored in pdbqt format. By putting the
command into the command prompt, ADFR was launched.
It was configured to use exhaustiveness of eight and a grid
point spacing of 0.275 by default. PyMol and the Discovery
studio visualizer 2021 were used to investigate the output files
in pdbqt format and they were found to be accurate. Using
a co-crystal ligand, we were able to verify and improve the
ligand binding. It was made by mixing 48 hydrogen bonds, one
of which was rotatable, with Kollman and Gastieger charges,
and then adding them to the resulting combination. Finally,
the pdbqt format was used to hold both the receptor and
ligand molecules. To create a grid box, the values X = –
1.655, Y = 57.005, and Z = 133.83 were multiplied by
0.275. The Genetic Algorithm was used to perform docking
studies on the protein-ligand combination (GA). A total of
3,000,000 evaluations and 27,000 generations of GA were used
with parameters such as population size of 100, evaluation
number of 150, and evaluation number of 3,000,000. Additional
docking experiments were performed using the Lamarckian
genetic algorithm (LGA) to find the lowest free energy of
binding for the protein-ligand complex (G). The free energy
of binding (G) of 4IFN with the DB12730 complex was –
7.658 kcal/mol, the inhibitory concentration (Ki) was 2.55 mM,
the ligand efficiency was –0.26, the total internal energy
was –0.45 kJ/mol, and the torsional energy was 0.3 kcal/mol;
the inhibitory concentration (Ki) was 2.55 mM, the ligand
efficiency was –0.26, the total 4IFN demonstrated free energy
of binding (G) of –8.941 kcal/mol in the presence of the
DB12677 complex; 4IFN demonstrated free energy of binding
(G) of –7.974 kcal/mol in the presence of the DB12310
complex; 4IFN demonstrated free energy of binding (G) of –
7.7558 kcal/mol in the presence of the DB06841 complex; and
4IFN demonstrated free energy of binding (G) of the DB11784
complex. The essential residues involved in the creation of
the binding pocket surrounding five distinct ligands (DB12730,
DB12677, DB12310, DB06841, and DB11784) are depicted in
Figures 5A–E.

Dynamic simulation analysis

To understand the dynamic behavior of the Keap1 when
it is bound to one of DB06841, DB04310, DB11784, DB12730,
and DB12677 during 20 ns MD simulations. The root means
square deviation (RMSD), the root means square fluctuation
(RMSF), radius of gyration (Rg), and Hydrogen bonding during

20 ns. The RMSD values of the drug-bound Keap1 backbone
revealed that all drug-bound Keap1 backbones fluctuated
between 0.07 and 0.14 nm (Figure 6A). The RMSD values for
holo Keap1 showed approximately similar changes in the Keap1
backbones from the starting structures. In deep inspection,
the average RMSD values were 0.0992, 0.1036, 0.1032, 0.1033,
and 0.0949 for Keap1 backbone bound to DB06841, DB04310,
DB11784, DB12730, and DB12677, respectively. Further, the
RMSD fluctuations of the inspected drugs were analyzed also
to evaluate the dynamics and stabilities of these drugs inside
the Keap1’s binding site. It can be observed that DB06841,
DB04310, and DB11784 had restricted fluctuations (RMSD less
than 0.3 nm during the whole MD simulation) inside the
binding site of Keap1 (Figure 6B) and their overall average
RMSD values were 0.1587, 0.1622, 0.1736 nm, respectively.
Another significant aspect of Md simulation is the RMSF,
which is the average fluctuation of each residue used for
assessing the flexibility of protein during a simulation. The
RMSF values of the top five drugs bound Keap1 are plotted
in Figure 6C. From Figure 6C, only RMSF for DB12730-
bound Keap1 had higher flexibility for the 330–480 aa region.
The overall average RMSF values were 0.0541, 0.0574, 0.0576,
0.0663, and 0.0555 for DB06841, DB04310, DB11784, DB12730,
and DB12677, reactively. On the other hand, despite these
findings of the impact of DB06841, DB04310, DB11784,
DB12730, and DB12677 on the dynamic behavior of Keap1,
we used Rg as a tool to analyze the effect of these drugs on
the compactness of Keap1. Rg values of drug-bound Keap1
complexes were shown in Figure 6D. Rg results revealed that
there are no significant changes in the Keap1 compactness
when it is bound to one of these drugs, whereas the average
of Rg values were 1.7984, 1.7976, 1.8028, 1.8025, and 1.7976
for DB06841, DB04310, DB11784, DB12730, and DB12677,
respectively.

The strength of binding of these drugs toward Keap1’s
binding site was evaluated by measuring the hydrogen bonds
between the five drugs and Keap1’s active site. The plot of
hydrogen bonds between the drugs and Keap1 is shown in
Figure 6E. It can be noticed from Figure 6 that DB06841 has
the highest number of hydrogen bonds and DB04310 comes
second in this rank. The average hydrogen bonding values was
6.1759, 3.2108, 1.9280, 1.7881, and 1.5337 nm, of DB06841,
DB04310, DB11784, DB12730, and DB12677, respectively. The
Md simulation findings help us to understand how DB06841
and DB04310 have the highest predicted pIC50 values.

Principal component analysis

Principal component analyses were executed for the MD
trajectories of holo Keap1. To plot PCA or essential dynamics
both PC1 and PC2 were plotted together to visualize collective
motions (Figure 7). It can be seen that the range of the PCA
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FIGURE 5

Describes the docking pose of Pdb: 4IFN and our 5 selected drug molecules.

FIGURE 6

MD simulation analysis for generated trajectories for Keap1 holo forms: (A) RMSD for Keap1 backbone atoms, (B) RMSD for ligand atoms,
(C) RMSF for backbone atoms of Keap1 residues, the (D) radius of gyration for keap1 atoms and (E) hydrogen bonds between the drugs with
Keap1. Adopted from BioRender.com.
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FIGURE 7

PCA analysis for MD simulation trajectories. Adopted from BioRender.com.

values for DB06841 is smaller than another drug (Figure 7),
indicating more restricted motions of the Keap1 backbone
atoms, probably due to a greater number of intermolecular
hydrogen bonds formed between the Keap1 and the DB06841.
This suggests that the DB06841 decreased the flexibility of
Keap1 due to its binding strength inside the binding site also
the dynamic behavior was so conserved during the whole MD
simulation. Thus, PCAs indicate that the overall motions of
the Keap1 complexed with the DB06841 are more conserved
compared to the studied drugs.

Discussion

The goal of this study was to understand more about Keap1
and its role in Alzheimer’s disease so that we could create
better treatments. Amyloid-beta-induced neuronal damage can
be averted by inhibiting Keap1, a negative regulator of Nrf2.
We investigated many machine learning approaches and used
the one that showed to be the best successful at predicting
inhibitory activity (pIC50) against Keap1. A small number
of treatments have shown promise in human trials, but all

FIGURE 8

The outcomes and findings in our research show the active inhibition of the target protein. Adopted from BioRender.com.
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have severe limitations and address only a subset of the
factors that lead to the development of Alzheimer’s disease.
By comparing several common machine learning techniques,
the best prospective quantitative structure-activity relationship
(QSAR) model was developed; this model has the lowest
RMSE and highest R2 values. Our top five drugs (DB06841,
DB04310, DB11784, DB12730, and DB12677) were chosen
based on the QSAR study’s predicted pIC50 values (7.091184,
6.900866, 6.800155, 6.768965, and 6.756439). The binding
location of Keap1 was also used to dock the molecules of
the five most commonly prescribed drugs. Following that,
molecular dynamics simulations, RMSD, RMSF, Rg, and
hydrogen bonding were used to assess the structural stability
of the potential drugs. At 20 ns, none of the models exhibit
any discernible oscillations. Finally, five drugs with the highest
promise as Keap1 inhibitors in the fight against Alzheimer’s
disease are offered.

Conclusion

This study was done to investigate the potential drug
against AD via targeting Keap1. A specific inhibition
of Keap1, which is a negative regulator of Nrf2, can
help in the prevention of neuronal toxicity caused by
amyloid-beta. To build a model which can be used to
determine the inhibitory activity (pIC50) against Keap1,
we compared common machine learning algorithms and
implement the best model (Random Forest regressor).
We have found five chemical compounds with generic
names: 2-[(Formyl-Hydroxy-Amino)-Methyl]-Heptanoic
Acid [1-(2-Hydroxymethyl-Pyrrolidine-1-Carbonyl)-2-
Methyl-Propyl]-Amide (DrugBank ID: DB04310, Chemical
Formula: C19H35N3O5), [(2R)-1-[(2S)-2-[[(2S,3S)-1-
Chloro-6-(diamino methylidene amino)-2-hydroxyhexan-
3-yl]carbamoyl]pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]a
zanium (DrugBank ID: DB06841, Chemical Formula:
C21H34ClN6O3), NRX-1074 (DrugBank ID: DB11784,
Chemical Formula: C25H37N5O6), Soblidotin (DrugBank
ID: DB12677, Chemical Formula: C39H67N5O6), and
Dolastatin 10 (DrugBank ID: DB12730, Chemical
Formula: C42H68N6O6S); these compounds are small-
molecule types showing the highest pIC50 values,
and then we run on molecular docking for these
drugs against Keap1 target. Also, these drugs showed
very stable interactions with Keap1. To examine the
dynamic stabilities of nominated drugs/Keap1, further,
we run the MD simulation and PCA analysis for MD
trajectories. The Md simulation and PCA analysis
revealed that DB06841, [(2R)-1-[(2S)-2-[[(2S,3S)-1-Chloro-
6-(diaminomethylideneamino)-2-hydroxyhexan-3-yl]
carbamoyl]pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-
yl]azanium, can act as most promising drug for preventing
neurodegeneration associated with the accumulation
of amyloid-beta (as illustrated in Figure 8).

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding authors.

Author contributions

NM and KA-K contributed to the conceptualization. KA-K,
NM, SM, AG, RB, and SC designed and carried out the
experimental procedures. NM, KA-K, JS, AG, GA, SJ, and
MMR did the analysis. NM, MR, PS, SM, MA, and AT did the
manuscript preparation. AG, NM, GMA, MK, MA, KS, MA-D,
MR, and RS edited the manuscript. All authors contributed to
the article and approved the submitted version.

Funding

We are grateful to DST-FIST support by Govt. of India to
the Department of Microbiology, West Bengal State University,
West Bengal, India and the Department of Botany, Gauhati
University, Assam, India.

Acknowledgments

This research was supported by the Princess Nourah
bint Abdulrahman University Researchers Supporting
Project Number (PNURSP2022R30), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnmol.
2022.1036552/full#supplementary-material

Frontiers in Molecular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1036552
https://www.frontiersin.org/articles/10.3389/fnmol.2022.1036552/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnmol.2022.1036552/full#supplementary-material
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-1036552 December 6, 2022 Time: 10:5 # 11

Mukerjee et al. 10.3389/fnmol.2022.1036552

References

Al-Khafaji, K., and Taskin Tok, T. (2020b). Understanding the mechanism
of Amygdalin’s multifunctional anti-cancer action using computational
approach. J. Biomol. Struct. Dyn. 39, 1600–1610. doi: 10.1080/07391102.2020.17
36159

Al-Khafaji, K., and Taskin Tok, T. (2020a). Molecular dynamics simulation, free
energy landscape and binding free energy computations in exploration the anti-
invasive activity of amygdalin against metastasis. Comput. Methods Progr. Biomed.
195:105660. doi: 10.1016/j.cmpb.2020.105660

Al-Khafaji, K., and Taskin Tok, T. (2021). Amygdalin as multi-target anticancer
drug against targets of cell division cycle: Double docking and molecular dynamics
simulation. J. Biomol. Struct. Dyn. 39, 1965–1974. doi: 10.1080/07391102.2020.
1742792

Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., and Lindahl, E. (2010).
Implementation of the CHARMM force field in GROMACS: Analysis of protein
stability effects from correction maps, virtual interaction sites, and water models.
J. Chem. Theory Comput. 6, 459–466. doi: 10.1021/ct900549r

Chiu, C. T., Wang, Z., Hunsberger, J. G., and Chuang, D. M. (2013). Therapeutic
potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder.
Pharmacol. Rev. 65, 105–142. doi: 10.1124/pr.111.005512

Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An N·log
(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.

Frisoni, G. B., Winblad, B., and O’Brien, J. T. (2011). Revised NIA-AA
criteria for the diagnosis of Alzheimer’s disease: A step forward but not
yet ready for widespread clinical use [published correction appears in Int
Psychogeriatr. 2012 Apr;24(4):682]. Int. Psychogeriatr. 23, 1191–1196. doi: 10.
1017/S1041610211001220

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic
Acids Res. 40, D1100–D1107.

Ghosh, A., Sarmah, P., Patel, H., Mukerjee, N., Mishra, R., Alkahtani, S., et al.
(2022). Nonlinear molecular dynamics of quercetin in Gynocardiaodorata and
Diospyros malabarica fruits: Its mechanistic role in hepatoprotection. PLoS One
17:e0263917. doi: 10.1371/journal.pone.0263917

Ghosh, S., Sachdeva, B., Sachdeva, P., Chaudhary, V., Rani, G. M., and Sinha,
J. K. (2022). Graphene quantum dots as a potential diagnostic and therapeutic tool
for the management of Alzheimer’s disease. Carbon Lett. 32, 1381–1394.

Hane, F. T., Robinson, M., Lee, B. Y., Bai, O., Leonenko, Z., and Albert, M. S.
(2017). Recent progress in Alzheimer’s disease research, Part 3: Diagnosis and
treatment. J. Alzheimers Dis. 57, 645–665.

Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo,
M. C., et al. (2012). National institute on aging-Alzheimer’s association guidelines
for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8,
1–13.

Isaacson, R. S., Ganzer, C. A., Hristov, H., Hackett, K., Caesar, E., Cohen, R., et al.
(2018). The clinical practice of risk reduction for Alzheimer’s disease: A precision
medicine approach. Alzheimers Dement. 14, 1663–1673.

Kaspar, J. W., Niture, S. K., and Jaiswal, A. K. (2009). Nrf2:INrf2 (Keap1)
signaling in oxidative stress. Free Radic. Biol. Med. 47, 1304–1309. doi: 10.1016/
j.freeradbiomed.2009.07.035

Kerr, F., Sofola-Adesakin, O., Ivanov, D. K., Gatliff, J., Gomez Perez-Nievas,
B., Bertrand, H. C., et al. (2017). Direct Keap1-Nrf2 disruption as a potential
therapeutic target for Alzheimer’s disease. PLoS Genet. 13:e1006593. doi: 10.1371/
journal.pgen.1006593

Lanoiselée, H. M., Nicolas, G., Wallon, D., Rovelet-Lecrux, A., Lacour, M.,
Rousseau, S., et al. (2017). APP, PSEN1, and PSEN2 mutations in early-onset
Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS
Med. 14:e1002270. doi: 10.1371/journal.pmed.1002270

Moore, A. H., Bigbee, M. J., Boynton, G. E., Wakeham, C. M., Rosenheim, H. M.,
Staral, C. J., et al. (2010). Non-steroidal anti-inflammatory drugs in Alzheimer’s
disease and Parkinson’s disease: Reconsidering the role of neuroinflammation.
Pharmaceuticals (Basel) 3, 1812–1841. doi: 10.3390/ph3061812

Mukerjee, N., Das, A., Maitra, S., Ghosh, A., Khan, P., Alexiou, A., et al.
(2022). Dynamics of natural product Lupenone as a potential fusion inhibitor
against the spike complex of novel Semliki Forest Virus. PLoS One 17:e0263853.
doi: 10.1371/journal.pone.0263853

Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A.,
Das, A. K., et al. (2020). Combination of QSAR, molecular docking, molecular
dynamic simulation and MM-PBSA: Analogues of lopinavir and favipiravir as
potential drug candidates against COVID-19. J. Biomol. Struct. Dyn. 17, 1–20.
doi: 10.1080/07391102.2020.1850355

Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., and Sanner, M. F.
(2015). AutoDockFR: Advances in protein-ligand docking with explicitly specified
binding site flexibility. PLoS Comput. Biol. 11:e1004586. doi: 10.1371/journal.pcbi.
1004586

Sharma, R., Garg, N., Verma, D., Rathi, P., Sharma, V., Kuca, K.,
et al. (2021). “Indian medicinal plants as drug leads in neurodegenerative
disorders,” in Nutraceuticals in brain health and beyond, ed. D. Ghosh
(Cambridge, MA: Academic Press), 31–45. doi: 10.1016/B978-0-12-820593-8.00
004-5

Sharma, R., Kabra, A., Rao, M. M., and Prajapati, P. K. (2018).
Herbal and holistic solutions for neurodegenerative and depressive
disorders: Leads from ayurveda. Curr. Pharm. 27, 2597–2608. doi:
10.2174/1381612824666180821165741

Sharma, R., Kuca, K., Nepovimova, E., Kabra, A., Rao, M. M., and Prajapati, P. K.
(2019). Traditional ayurvedic and herbal remedies for Alzheimer’s disease from
bench to bedside. Expert Rev. Neurother. 19, 359–374. doi: 10.1080/14737175.2019.
1596803

Sharma, R., Singla, R. K., Banerjee, S., Sinha, B., Shen, B., and Sharma, R. (2022).
Role of Shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An
umbrella review covering evidence from ethnopharmacology to clinical studies.
Neurosci. Biobehav. Rev. 140:104795. doi: 10.1016/j.neubiorev.2022.104795

Shukla, R., Munjal, N. S., and Singh, T. R. (2019). Identification of novel
small molecules against GSK3β for Alzheimer’s disease using chemoinformatics
approach. J. Mol. Graph. Model. 91, 91–104.

Wang, Y., Miller, S., Roulston, D., Bixby, D., and Shao, L. (2016). Genome-wide
single-nucleotide polymorphism array analysis improves prognostication of acute
lymphoblastic leukemia/lymphoma. J. Mol. Diagn. 18, 595–603. doi: 10.1016/j.
jmoldx.2016.03.004

Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate
molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474.

Zoete, V., Cuendet, M. A., Grosdidier, A., and Michielin, O. (2011). SwissParam:
A fast force field generation tool for small organic molecules. J. Comput. Chem. 32,
2359–2368. doi: 10.1002/jcc.21816

COPYRIGHT

© 2022 Mukerjee, Al-Khafaji, Maitra, Suhail Wadi, Sachdeva, Ghosh,
Buchade, Chaudhari, Jadhav, Das, Hasan, Rahman, Albadrani, Altyar,
Kamel, Algahtani, Shinan, Theyab, Abdel-Daim, Ashraf, Rahman and
Sharma. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1036552
https://doi.org/10.1080/07391102.2020.1736159
https://doi.org/10.1080/07391102.2020.1736159
https://doi.org/10.1016/j.cmpb.2020.105660
https://doi.org/10.1080/07391102.2020.1742792
https://doi.org/10.1080/07391102.2020.1742792
https://doi.org/10.1021/ct900549r
https://doi.org/10.1124/pr.111.005512
https://doi.org/10.1017/S1041610211001220
https://doi.org/10.1017/S1041610211001220
https://doi.org/10.1371/journal.pone.0263917
https://doi.org/10.1016/j.freeradbiomed.2009.07.035
https://doi.org/10.1016/j.freeradbiomed.2009.07.035
https://doi.org/10.1371/journal.pgen.1006593
https://doi.org/10.1371/journal.pgen.1006593
https://doi.org/10.1371/journal.pmed.1002270
https://doi.org/10.3390/ph3061812
https://doi.org/10.1371/journal.pone.0263853
https://doi.org/10.1080/07391102.2020.1850355
https://doi.org/10.1371/journal.pcbi.1004586
https://doi.org/10.1371/journal.pcbi.1004586
https://doi.org/10.1016/B978-0-12-820593-8.00004-5
https://doi.org/10.1016/B978-0-12-820593-8.00004-5
https://doi.org/10.2174/1381612824666180821165741
https://doi.org/10.2174/1381612824666180821165741
https://doi.org/10.1080/14737175.2019.1596803
https://doi.org/10.1080/14737175.2019.1596803
https://doi.org/10.1016/j.neubiorev.2022.104795
https://doi.org/10.1016/j.jmoldx.2016.03.004
https://doi.org/10.1016/j.jmoldx.2016.03.004
https://doi.org/10.1002/jcc.21816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/

	Recognizing novel drugs against Keap1 in Alzheimer's disease using machine learning grounded computational studies
	Introduction
	Materials and methods
	United States food and drug administration-approved drugs library
	Dataset curation and machine learning model training
	Molecular docking
	Molecular dynamic simulation

	Results
	Inhibitory activity prediction via machine learning model
	Molecular docking analysis
	Dynamic simulation analysis
	Principal component analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


