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Editorial on the Research Topic

Changes in Molecular Expression After Memory Acquisition and Plasticity. Looking for the

Memory Trace

Since Semon defined an engram as the neural substrate for memories (Semon, 1921, 1923),
several hypotheses have been established, which had tried to determine how an engram is codified
and where it is located in different brain structures. Historically, memory trace was defined as
the physical mark of an acquired memory that in turn was considered a process divided in
stages: acquisition, consolidation, and retrieval. The definition of the physical mark is central to
understanding memory processing and helped to establish different scales at which these processes
have been studied. Substantial support from research in several model systems points to the
synaptic changes that occur initially during memory acquisition and consolidation and also during
reconsolidation and extinction. Those changes, led to neurons to interact in a coordinate way
that was called, neural assemblies. These assemblies are groups of cells that respond to specific
stimulus in a coordinate way with a unique spatiotemporal pattern of firing. Based on that, it
would be possible that neural assemblies would define the engram, as the physical mark of a
memory (Nicolelis et al., 1997). Nevertheless, non-synaptic mechanisms have been described that
are also capable of acting as memory substrates (Abraham et al., 2019). In this context, epigenetic
intrinsic cellular adaptations emerge as a possible mechanism that regulate the pattern of RNA
transcription and possibly indirectly other molecular dynamics that could initiate the engram at
the intracellular level.

At present, we known that both, memories and the engram, are not fixed and inactive processes.
Memory retrieval could turn the consolidated memory in a labile state, facilitating the update of
the recalled memory in a process that was called reconsolidation. In parallel neural assemblies were
modified in order to change the response based on the reconsolidation process.

In order to study where and how memory is codify and storage, and as an early approach,
numerous authors performed lesions in different brain structures in order to establish which
areas were related to the different memory stages (reviewed in Kandel et al., 2013). These works,
established the first steps in the anatomical mapping of where memories were located.

In parallel, the study of patients such as H.M. confirmed the relationship between the
hippocampus and the acquisition of new declarativememories and their consolidationmechanisms
(Scoville and Milner, 1957; Milner, 1959).

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2020.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2020.00050&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mveritobaez@gmail.com
https://doi.org/10.3389/fnmol.2020.00050
https://www.frontiersin.org/articles/10.3389/fnmol.2020.00050/full
http://loop.frontiersin.org/people/269537/overview
http://loop.frontiersin.org/people/200190/overview
http://loop.frontiersin.org/people/261293/overview
https://www.frontiersin.org/research-topics/6893/changes-in-molecular-expression-after-memory-acquisition-and-plasticity-looking-for-the-memory-trace


Freudenthal et al. Looking for the Memory Trace

On the other hand, the injection of several pharmacological
agents helped to elucidate the neurotransmitters and post-
synaptic receptors involved in memory processing (Kandel
et al., 2013; Morris, 2013; Rossato et al., 2013). Also, it was
discovered that, after memory acquisition, protein translation
and gene expression were required, as well as protein acetylation,
ubiquitination, and proteasome activity (Quevedo et al., 1999;
Klann and Sweatt, 2008; Richter and Klann, 2009; Bousiges
et al., 2010; Trinh and Klann, 2013; Jarome and Helmstetter,
2014). These processes take place along several time frames,
starting immediately after memory acquisition and continuing
during memory consolidation and subsequent phases (Quevedo
et al., 1999; Jarome and Helmstetter, 2014; Figueiredo et al.,
2015). More recently, epigenetic changes were incorporated
to the engram hypothesis. DNA methylation and/or histone
covalent modifications as acetylation, provides a different scale
in gene transcription regulation as these mechanisms could
enhance or silence different related genes simultaneously (D’Urso
and Brickner, 2014; Lopez-Atalaya and Barco, 2014; Dean,
2017; Kim and Kaang, 2017). miRNAs also were associated
to memory engram as they acts as post-transcriptional gene
regulators in dendrite remodeling and synaptic plasticity, as
well as in experience-dependent adaptive changes of neural
circuits after memory acquisition (Bredy et al., 2011; Busto
et al., 2015; Gu et al., 2015; Kremer et al., 2018). More recently,
endogenous retrovirus were implicated in gene expression
regulation associated to memory encoding, as they could share
RNAs (mRNA, miRNA, circRNA) between cells modifying gene
expression in connected cells (Hunter, 2019). A more interesting
mechanism of Arc, that was classically related to memory
encoding. It was recently discovery that Arc assembles itself
as a retrovirus and move to other cells through the synapses
trafficking information between neurons (Ashley et al., 2018;
Pastuzyn et al., 2018).

In summary, many molecular changes are proposed as
markers of the dynamic process that are part of thememory trace.
More recently, in vivo electrophysiology and optogenetics have
provided evidence that certain circuit changes are associated to
memory encoding (Liu et al., 2012; Spiers and Bendor, 2014).
However, as of today, more evidence is necessary to clarify how
a new memory is storage in a circuit and how is it activated and
could be modified during retrieval and reconsolidation.

The aim of this Research Topic is to discuss available data and
to discover current developments in this area. Our goal is to join

the latest advances in original research as well as updated reviews
that contribute to the analysis and discussion of new ideas and
recent discoveries in this area. Two papers dealing with this topic,
Krawczyk et al. and Medina and Viola, discuss the relevance of
the ERK1/2 pathway in Memory and Learning. In the first one,
the authors review the role of ERK/MAPKs in reconsolidation of
aversive and appetitive memories, highlighting the importance of
ERK1/2 and Arc expression in the persistence of reactivated fear
memories. In the second one, Medina and Viola discuss the role
of the ERK1/2 pathway in each stage of the Memory process, and
how these kinases link post-synaptic receptors with expression
changes after memory acquisition.

In the same way, Pagani and Merlo debate about the
differential role of kinases and phosphatases in Memory
Formation and Extinction in associative long-term memories
(LTM). Also, Zalcman et al. review the role of CAMKII isoforms
in memory processing, emphasizing the importance of CAMKII
α, β, γ, and δ isoforms and CAMKII heteromers formation in
memory persistence.

Finally, we contribute original papers that investigate, on
the one hand, the role of microRNA 210– 5p in cognitive
impairment evidenced in a vascular dementia rat model
induced by chronic cerebral ischemia (Ren et al.). On
the other hand, Oliveira et al. study the strengthening of
fear memories by epinephrine released during stressful
events. Furthermore, Aguayo et al. analyze in review
how transient changes in molecular synaptic composition
that lead to memory consolidation are modified by
stress exposure.

Taken together, data presented in this chapter look into
several aspects of the elusive engram. In one hand, this
topic highlights the role of kinases as ERK1/2 and CAMKII
as well as phosphatases, as very important components
of the engram, not only in the establishment of the trace,
but also during reactivation and modifications of the
engram. Furthermore, this chapter points recent findings
that indicate that external stimulus could modify the
engram components: enhancing, interfering, or deleting a
memory trace.
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