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The balance between excitatory and inhibitory neurotransmitter systems is crucial

for the modulation of neuronal excitability in the central nervous system (CNS).

The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to

enhance the response of hippocampal glutamate receptors, but whether the inhibitory

neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric

acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that

application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A

or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA)

in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists

of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated

AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein

kinase B (p-Akt) protein levels, which was attenuated by removing extracellular

calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist.

GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK

antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or

a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of

IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but

was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II

antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, whichmay be

mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling

and activation of PKC signaling. Inhibition of GABAA receptors may account for the

neuronal hyperexcitability caused by TRPV4 activation.
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INTRODUCTION

Transient receptor potential vanilloid 4 (TRPV4) is a member
of the transient receptor potential superfamily (Benemei et al.,
2015). TRPV4 activation induces an inward current that is
mainly carried by calcium (Ca2+) and helps to depolarize the
cell membrane (Garcia-Elias et al., 2014). Activation of TRPV4
increases the spontaneous firing rate in mouse retinal ganglion
cells (Ryskamp et al., 2011). In trigeminal ganglion (TG) neurons,
the application of a TRPV4 agonist facilitates the production of
evoked action potentials (APs; Chen et al., 2009a). In addition
to the Ca2+ influx through TRPV4 per se, TRPV4 activation
modulates voltage-gated ion channels and transient receptor
potential vanilloid 1 (TRPV1) receptors that are involved in the
production or propagation of APs (Liu et al., 2007; Chen et al.,
2008a,b, 2009b; Li et al., 2011). In the central nervous system
(CNS), activation of TRPV4 by body temperature regulates the
resting membrane potential in hippocampal neurons (Shibasaki
et al., 2007). Although chronic activation of TRPV4 may increase
the expression of the α subunits of voltage-gated sodium
channels, acute application of a TRPV4 agonist inhibits the
voltage-gated sodium current in hippocampal pyramidal neurons
(Hong et al., 2016). In the CNS, the balance between the
excitatory and inhibitory neurotransmitter systems is crucial
for modulating neuronal excitability. Activation of TRPV4 has
been proven to enhance glutamatergic transmission in the
hippocampus and to promote glutamate receptor function in
hippocampal pyramidal neurons (Cao et al., 2009; Li et al.,
2013a,b). However, it remains unclear whether activation of
TRPV4 can modulate the inhibitory neurotransmitter system.

γ-aminobutyric acid (GABA) is the major inhibitory
neurotransmitter in the adult CNS and acts on three classes of
receptors: GABAA, GABAB, and GABAC receptors (Sivilotti
and Nistri, 1991). GABAA receptors are ligand-gated chloride
ion channels that mediate most of the inhibitory activity
in the brain (Sivilotti and Nistri, 1991). GABAA receptor
inhibition can increase neuronal excitability, and GABAA

receptor dysfunction has been implicated in some pathological
conditions, including epilepsy, depression, and cerebral ischemic
injury (Fritschy and Panzanelli, 2014). It has been reported that
acute activation of protease-activated receptor-2 (PAR2) reduces
GABA-mediated current in the spinal dorsal horn (Huang et al.,
2011). Hyperthermia-induced depression of GABAergic synaptic
transmission is observed in the immature rat hippocampus
(Qu et al., 2007). As a multiple-activated receptor, TRPV4 is
sensitive to mild hyperthermia; in addition, PAR2 can stimulate
TRPV4 and sensitize TRPV4-induced currents (Grant et al.,
2007). However, there is still a lack of direct evidence for
TRPV4-induced modulation of GABA receptors.

GABAA receptor subunits contain phosphorylation sites for
protein kinase C (PKC), protein kinase (PKA), Ca2+/calmodulin-
dependent protein kinase II (CaMKII) and phosphatidyl inositol
3 kinase (PI3K), and these kinases have been reported to be
responsible for the TRPV4-induced modulation of some voltage-
gated ion channels and glutamate receptors (Chen et al., 2008a,
2009b; Li et al., 2013a; Nakamura et al., 2015). AMP-activated
protein kinase (AMPK) can be activated by an increase in

Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ)
activity (Hawley et al., 2005). It has been demonstrated that
AMPK can bind directly to and phosphorylate GABAB receptors
(Kuramoto et al., 2007), but it remains unclear whether activation
of AMPK can modulate GABAA receptors. The activation or
up-regulation of TRPV1, another member of TRPV family, is
accompanied by AMPK phosphorylation (Ching et al., 2012).
TRPV4 is an ion channel that is permeable to Ca2+; however,
it remains to be clarified whether activation of TRPV4 can
regulate AMPK signaling. In this study, we first assessed whether
GABA-activated current (IGABA) in hippocampal CA1 pyramidal
neurons could be modulated by activation of TRPV4. Then, we
examinedwhether AMPK signaling could be regulated by TRPV4
activation and explored whether AMPK and/or other specific
signaling pathways were involved in TRPV4 action.

MATERIALS AND METHODS

Experimental Animals
Male mice (3-week-old, ICR, Oriental Bio Service Inc., Nanjing,
China) were used in this study. All animal procedures used in
this study were performed in accordance with the Guidelines
for Laboratory Animal Research of Nanjing Medical University
and were approved by the Animal Care and Use Committee at
Nanjing Medical University. All efforts were made to minimize
the animals’ suffering and to reduce the number of animals used.

Slice Preparation
The mice were anesthetized with ethyl ether and decapitated,
and the brains were rapidly removed. Coronal brain slices
(400µm) were cut using a vibrating microtome (Microslicer
DTK 1500, Dousaka EM Co., Kyoto, Japan) in ice-cold modified
artificial cerebrospinal fluid (ACSF) containing (inmM) NaCl
126, CaCl21, KCl 2.5, MgCl2 1, NaHCO3 26, KH2PO4 1.25, and
D-glucose 20. The ACSF was oxygenated with a gas mixture
of 95% O2/5% CO2. The hippocampal slices were incubated in
ACSF for 1 h at 32◦C to allow them to recover and were then
transferred to a recording chamber.

Whole-Cell Patch Clamp Recording
All electrophysiological recordings were performed at room
temperature (22–23◦C). Hippocampal CA1 pyramidal neurons
were viewed with an upright microscope equipped with an
infrared-sensitive camera (DAGE-MTI, IR-1000) and in general,
the second and the third layer of neurons in the slices were
chosen for the patch clamp recording. IGABA was recorded
using an EPC-10 amplifier (HEKA Elektronik, Lambrecht/Pfalz,
Germany) sampled at 10 kHz and filtered (Bessel) at 2.9 kHz.
The capacitance and series resistance were compensated (>90%)
before recording. Data obtained from neurons in which
uncompensated series resistance resulted in voltage-clamp errors
>5mV were not used for subsequent analysis. The liquid
junction potentials were compensated before patching.

To record IGABA, the holding potential was set at −60mV.
The slices were continually perfused with the oxygenated ACSF
containing 0.3µM TTX. GABA was dissolved in the bath
solution and was focally applied using a rapid drug delivery
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system directed toward the soma of the recorded neurons.
Glass pipettes (No. 64-0817 [G85150T-3], Warner Instruments
Inc., Hamden, CT, USA) were used with a resistance of 1–3
M� when they were filled with the pipette solution composed
of (in mM) KCl 140, CaCl2 1, MgCl2 2, EGTA 10, HEPES
10, and Tris-ATP 5 at pH 7.3. The expression of TRPV4
receptors was functionally verified by recording the TRPV4
agonist (GSK1016790A)-activated current as previously reported
(Hong et al., 2016).

Western Blot
Western blot analysis was performed at different time points
(0, 15, 30min, 1 and 2 h) after the slices were perfused
with GSK1016790A. After the perfusion, the hippocampi were
rapidly collected and homogenized in a lysis buffer containing
50mM Tris-HCl (pH 7.5), 150mM NaCl, 5mM EDTA, 10mM
NaF, 1mM sodium orthovanadate, 1% Triton X-100, 0.5%
sodium deoxycholate, 1mM phenylmethylsulfonyl fluoride, and
a protease inhibitor cocktail (Complete; Roche, Mannheim,
Germany). Protein concentrations were determined using a
bicinchoninic acid (BCA) Protein Assay Kit (Pierce, Rochford, IL,
USA). Total proteins were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and were then
transferred to a polyvinylidene difluoride (PVDF) membrane.
The membranes were incubated with 5% nonfat dried milk in
Tris-buffered saline containing 0.1%Tween 20 (TBST) for 60min
at room temperature and were then incubated with an anti-
phospho-AMPK antibody (1:1000, Cell Signaling Technology),
an anti-AMPK antibody (1:1000, Cell Signaling Technology), an
anti-phospho-Akt antibody (1:1000, Cell Signaling Technology),
an anti-Akt antibody (1:1000, Cell Signaling Technology),
or an anti-glyceraldehyde 3-phosphate dehydrogenase (anti-
GAPDH) antibody (1:5000; Abcam) overnight at 4◦C. After
three washes with TBST, the membranes were incubated with
a horseradish peroxidase (HRP)-labeled secondary antibody
and then developed using an ECL detection Kit (Amersham
Biosciences, Piscataway, NJ). The Western blot bands were
scanned and analyzed with image analysis software (NIH).
The hippocampal samples obtained from three mice were
considered as a set for the Western blot analysis, and the
summarized data represent the average of three experimental
sets.

Data Analysis
The data are presented as means ± S.E.M. and were analyzed
using PulseFit (HEKA Elektronik) and Stata 7.0 software
(STATA Corporation, USA). All data came from neurons in
which both IGABA and GSK1016790A-evoked current could
be recorded (Supplementary Figure 1). Paired or unpaired
Student’s t-tests or analysis of variance (ANOVA) followed by
Bonferroni’s post hoc test were used for the statistical analyses,
and the significance level was set at either P < 0.05 or
P < 0.01. In the dose-response curve, the IGABA induced
by different doses of GABA was normalized to the current
induced by 300µM GABA in the same neuron. The data were
fitted to a Hill equation in which I = Imax/[1+(EC50/C)

n],
with n being the Hill coefficient and EC50 value being the

concentration that produced a 50% maximal response. In the
current-voltage relationship curve (I-V curve), IGABA induced
at different holding potentials was normalized to the current
induced with a holding potential of −60mV in the same
neuron.

Chemicals
5(6)-epoxy-8Z,11Z,14Z-eicosatrienoic acid (5,6-EET) and PKI
were obtained from Cayman Chemical (Ann Arbor, MI, USA),
and TTX was obtained from Enzo Life Science (Ann Arbor,
MI, USA). Unless stated otherwise, all other chemicals were
obtained from Sigma Chemical Company. GSK1016790A, 4α-
PDD, HC-067047, RN1734, D-sphingosine, bisindolylmaleimide
II (BIM), phorbol 12-myristate 13-acetate (PMA), H-89, PKI,
8-bromoadenosine 3′,5′-cyclic monophosphate sodium salt (8-
Br-cAMP), LY294002, Compound C, AICAR, STO-609, 740
Y-P, KN62, and KN93 were prepared as stock solutions in
DMSO. The final concentration of DMSO in the bath solution
or pipette solution was <0.1%. GSK1016790A, 4α-PDD, 5,6-
EET, HC-067047, RN1734, BIM, PMA, 8-Br-cAMP, Compound
C, AICAR, STO-609, 740 Y-P, and bicuculline were extracellulary
applied by being added to the bath solution and the rapid drug
delivery system. When exploring the effect of these chemicals
on IGABA, the slices were pre-incubated by these chemicals.
D-Sphingosine, H-89, PKI, LY294002, KN62, and KN93 were
present in the pipette solution and pre-applied by dialyzing into
the neurons through the pipette. The concentrations of these
drugs were chosen according to previous reports (Ben-Ari et al.,
1997; Williams and Doherty, 1999; Chen et al., 2000, 2008b; Liu
et al., 2007; Langelueddecke et al., 2012; Sisignano et al., 2012; Li
et al., 2013a; Shen et al., 2014; Hong et al., 2016; Rahman et al.,
2016).

RESULTS

Effects of TRPV4 Agonists on IGABA in
Hippocampal CA1 Pyramidal Neurons
In the present study, the synthetic TRPV4 agonists
GSK1016790A and 4α-PDD and the endogenous TRPV4 agonist
5,6-EET were used to determine whether activation of TRPV4
could modulate IGABA. We found that IGABA (activated by 10µM
GABA) was markedly decreased by 41.1± 4.7% from−24.4±2.1
to−15.8± 3.2 pA/pF after the application of the TRPV4 agonist
GSK1016790A (0.3µM; n = 25, paired t-test, P < 0.01;
Figure 1A). The decrease in IGABA was partially reversed after
GSK1016790A was washed out. The GSK1016790A-induced
inhibition of IGABA was dose-dependent at concentrations
ranging from 0.1 to 5µM, with an IC50 value of 0.1 ± 0.05µM
(Figure 1B). As 0.3µM GSK1016790A significantly inhibited
IGABA, this dose was used in the subsequent experiments.

We then studied the effect of GSK1016790A on the dose-
response of IGABA. As shown in Figure 1C, in the absence of
GSK1016790A, the EC50 and n values of the dose-response
curve were 12.0 ± 2.3µM and 1.9 ± 0.4, respectively. In the
presence of GSK1016790A, the maximal response to 300µM
GABA was markedly decreased (n = 7, paired t-test, P <

0.01), with EC50 and n-values being 12.0 ± 2.8µM and 2.4
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FIGURE 1 | Effect of GSK1016790A on IGABA in hippocampal CA1 pyramidal neurons. (A) The representative recordings show that IGABA (activated by 10µM

GABA) was inhibited from −3.1 to −2.0 nA by 0.3µM GSK1016790A, and the current recovered to −2.8 nA after washout. (B) The plot shows inhibition of IGABA by

GSK1016790A at concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3, and 5µM. The dose-response curve fits the Hill equation, with IC50value of 0.1 ± 0.05µM and n of

1.09 ± 0.04. (C) Dose-response curves for IGABA before and during GSK1016790A treatment. Each point represents the normalized current from 8 to 10 neurons.

(D) I–V curves for IGABA before and during GSK1016790A treatment. Each point represents the normalized current from 8 to 10 neurons.

± 0.3, respectively (unpaired t-test, P > 0.05 in each case).
According to the dose-response curve, 10µM GABA was used
to activate IGABA in the following experiments. We then assessed
the effect of GSK1016790A on the I-V curve of IGABA. IGABA
was markedly inhibited by the application of GSK1016790A at
voltages ranging from−80mV to+60mV. In the control group,
the reversal potential of the I-V curve was 7.8 ± 0.7mV, and the
ratio of the current at +60/−80mV (I+60mV/I−80mV) was −0.3.
After the neurons were treated with GSK1016790A, the reversal
potential of the I-V curve was 8.5 ± 0.5mV and I+60mV/I−80mV

ratio was −0.3 (n = 9, paired t-test, P > 0.05 in each case;
Figure 1D).

We then examined the effect of 4α-PDD, another TRPV4
agonist, on IGABA. As shown in Figures 2A,B, after treatment
with 10µM 4α-PDD, IGABA was decreased by 20.0 ± 2.2% from
−25.2 ± 3.2 to −19.9 ± 1.9 pA/pF (n = 15, paired t-test,
P < 0.01). IGABA recovered to −22.6 ± 1.1 pA/pF after 4α-
PDD was washed out. By examining the dose-response curve,
we found that the EC50 and n-values were 12.3 ± 2.5µM and
2.0 ± 0.2 during 4α-PDD treatment, respectively, which were
not significantly different from the control values (unpaired
t-test, P > 0.05; Figure 2C). By examining the I-V curve in
the presence of 4α-PDD, we found that IGABA was inhibited
at the voltages ranging from −80mV to +60mV (unpaired
t-test, P < 0.01 at potential being −80, −60, −40, −20,
and +60mV; unpaired t-test, P < 0.05 at potential being

+40mV), with the reversal potential being 8.3 ± 1.0mV (n =

10) and I+60mV/I−80mVratio being −0.3 (n = 10). Neither
the reversal potential nor I+60mV/I−80mV ratio was markedly
different from the value in the absence of 4α-PDD (unpaired
t-test, P > 0.05 in each case; Figure 2D). These results indicate
that the activation of TRPV4 by the synthetic TRPV4 agonists
GSK1016790A and 4α-PDD induces similar inhibitory effects on
IGABA.

5,6-EET is a metabolite of arachidonate and has been
identified as an endogenous TRPV4 agonist (Vincent and
Duncton, 2011). In the present study, we also examined the effect
of 5,6-EET on IGABA. Figures 3A,B show that after treatment
with 300 nM 5,6-EET, IGABA was decreased by 28.1 ± 4.9% from
−24.9 ± 4.2 to −16.3 ± 3.3 pA/pF (n = 20, paired t-test,
P < 0.01), and the inhibitory effect of 5,6-EET on IGABA was
partially reversed after washout. As shown in Figure 3C, similar
to the effect of the synthetic agonists of TRPV4, 5,6-EET inhibited
the maximal response to 300µM GABA (n = 17, paired t-test,
P < 0.01), without affecting the EC50 (15.0± 3.1µM) or n (2.1±
0.1) value of the dose-response curve (unpaired t-test, P > 0.05 in
each case). In the I-V curve, the reversal potential (8.0 ± 0.8mV,
n = 8) and I+60mV/I−80mV ratio (−0.3, n = 8) were statistically
the same as the values before the 5′6′-EET treatment (unpaired
t-test, P > 0.05 in each case; Figure 3D). These results indicate
that activation of TRPV4 by either synthetic or endogenous
agonists could inhibit IGABA.
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FIGURE 2 | Effect of 4α-PDD on IGABA in hippocampal CA1 pyramidal neurons. (A,B) IGABA (activated by 10µM GABA) was inhibited by 10µM 4α-PDD. The

representative recordings show that IGABA was −3.0, −2.4, and −2.9 nA before, during and after 4α-PDD treatment, respectively (A). On the average, IGABA was

reduced from −25.2± 3.2 to −19.9± 1.9 pA/pF. **P < 0.01 vs. control (B). (C) Dose-response curves for IGABA before and during 4α-PDD treatment. Each point

represents the normalized current from 7 to 10 neurons. (D) I–V curves for IGABA before and during 4α-PDD treatment. Each point represents the normalized current

from 7 to 10 neurons.

Effects of HC-067047, RN1734, and
Bicuculline on TRPV4 Agonist-Induced
Inhibition of IGABA
Specific TRPV4 antagonists, HC-067047 (1µM) and RN1734
(10µM), were used to further demonstrate the role of TRPV4 in
IGABA inhibition. IGABA was−22.7± 2.4 and−20.5± 2.7 pA/pF
before and during HC-067047 treatment, respectively (n = 8,
paired t-test, P > 0.05). IGABA was −23.2 ± 1.0 and −21.7 ±

1.3 pA/pF in the absence and presence of RN1734, respectively
(n = 7, paired t-test, P > 0.05). As shown in Figure 4, in the
presence of HC-067047 or RN1734, the inhibition caused by
GSKA1016790, 4α-PDD, or 5,6-EET was markedly ameliorated
(unpaired t-test, P < 0.01 in each case; Figures 4A,C,E).

Application of bicuculline (10µM), a specific GABAA

receptor antagonist, markedly reduced IGABA by 93.6 ± 1.8%
(n = 21, paired t-test, P < 0.01). In the presence of bicuculline,
IGABA was statistically the same before and during treatment with
TRPV4 agonists (Figures 4B,D,F). Together, these results imply
that GABAA receptor is inhibited by activation of TRPV4.

Involvement of Intracellular Signaling
Pathways in GSK1016790A-Induced
Inhibition of IGABA
The cellular energy-sensing kinase AMPK is known to be
activated in neurons in response to either metabolic insults

or increased [Ca2+]i through CaMKKβ. Activation of AMPK
is related to modulating PI3K/Akt signaling, and the latter is
involved in the modulation of GABAA receptors (Amato et al.,
2011; Nakamura et al., 2015). As TRPV4 is permeable to Ca2+,
we examined whether activation of TRPV4 could affect AMPK-
PI3K/Akt signaling. The protein levels of phosphorylated AMPK
(p-AMPK) and phosphorylated Akt (p-Akt) in the hippocampi
were assessed after the slices were perfused with ACSF containing
GSK1016790A for 15, 30min, 1 and 2 h. The protein level
of p-AMPK was increased 15min to 2 h after GSK1016790A
treatment; the level peaked 15min after GSK1016790A treatment
and then declined (Figure 5A). The protein level of p-Akt
decreased from 30min to 2 h after GSK1016790A treatment
(Figure 5B). Based on the changes in the levels of p-AMPK and
p-Akt and the acute effect of TRPV4 activation, the changes
in protein levels were examined 30min after GSK1016790A
treatment in the subsequent experiments. Here, it was noted
that both the GSK1016790A-mediated increase in the protein
level of p-AMPK and the GSK1016790A-mediated decrease in
the protein level of p-Akt were markedly attenuated when the
slices were perfused with Ca2+-free ACSF. In the presence of
10µM STO-609, a CaMKKβ antagonist, the GSK1016790A-
induced changes in the protein levels of p-AMPK, and p-Akt
were markedly inhibited (Figures 5C,D). The GSK1016790A-
induced decrease in the protein level of p-Akt was significantly
reversed by the application of 10µM Compound C, an AMPK
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FIGURE 3 | Effect of 5,6-EET on IGABA in hippocampal CA1 pyramidal neurons. (A,B) IGABA (activated by 10µM GABA) was inhibited by 300 nM 5,6-EET. The

representative recordings show that IGABA was −3.0, −2.2, and −2.7 nA before, during and after 5,6-EET treatment, respectively (A). On the average, IGABA was

reduced from −24.9± 4.2 to −16.3± 3.3 pA/pF. **P < 0.01 vs. control (B). (C) Dose-response curves for IGABA before and during 5,6-EET treatment. Each point

represents the normalized current from 8 to 10 neurons. (D) I–V curves for IGABA in the absence and presence of 5,6-EET. Each point represents the normalized

current from 8 to 10 neurons.

antagonist (Figure 5D). These results indicate that TRPV4-
induced activation of AMPK is Ca2+- and CaMKKβ-dependent
and this action then down-regulates Akt signaling.

We then evaluated whether the regulation of AMPK and Akt
signaling was involved in TRPV4-induced inhibition of IGABA.
IGABA was reduced by 20.55 ± 2.57% when 1mM AICAR, an
AMPK agonist, was applied to the bath solution (n = 18, paired
t-test, P < 0.01).We also found that IGABA was increased by 11.84
± 3.15% when the slices were exposed to Compound C (n = 10,
paired t-test, P < 0.05). These results indicate that activation
of AMPK plays a role in the regulation of IGABA. As shown in
Figure 6A, after pre-application of Compound C, GSK1016790A
reduced IGABA by 10.0 ± 2.1%, which was markedly different
from the inhibition caused by GSK1016790A alone (unpaired
t-test, P < 0.01).

In this study, IGABA was increased 19.1 ± 3.1% by the
application of 20µM 740 Y-P (a PI3K agonist; n = 11, paired
t-test, P < 0.01) and was inhibited 22.3± 4.2% by the application
of 50µM LY294002 (a PI3K antagonist; n = 7, paired t-test,
P < 0.01). In the presence of 740 Y-P, GSK1016790A-induced
inhibition of IGABA was reduced to 12.5 ± 3.6% (n = 11, paired
t-test, P < 0.01); however, the GSK1016790A-induced inhibition
of IGABA was virtually unaltered (37.8 ± 2.1%; n = 9) by the
application of LY294002 (unpaired t-test, P > 0.05; Figure 6A).
Collectively, these results indicate that the activation of AMPK
and the subsequent down-regulation of the PI3K/Akt signaling

pathway are likely responsible for the inhibition of IGABA caused
by acute activation of TRPV4.

We also investigated whether PKC, PKA, or CaMKII signaling
was involved in TRPV4-induced inhibition of IGABA. After the
application of PKC antagonist D-sphingosine (20µM) or BIM
(1µM), IGABA was inhibited by 21.5 ± 3.1% (n = 10) or 22.3
± 3.4% (n = 10) by GSK1016790A, which was significantly
different from the inhibition induced by GSK1016790A alone
(unpaired t-test, P < 0.01; Figure 6B). As shown in Figure 6C,
in the presence of the PKA antagonist PKI (10µM) or H-
89 (10µM), GSK1016790A treatment inhibited IGABA by 45.4
± 2.0% (n = 10) or 40.5 ± 3.1% (n = 11), respectively.
Both inhibition levels were similar to the inhibition caused
by GSK1016790A alone (unpaired t-test, P > 0.05). Figure 6D
shows that when CaMKII antagonist KN62 or KN93 was added
in the pipette solution, GSK1016790A inhibited IGABA by 39.1
± 3.7% (n = 12) or 38.3 ± 3.0% (n = 11), respectively. These
results indicate that in addition to AMPK-PI3K/Akt signaling,
the PKC signaling pathway is also involved in GSK1016790A-
induced inhibition of IGABA.

DISCUSSION

GABA is the principal inhibitory neurotransmitter in the
mammalian brain. By now, three classes of GABA receptors
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FIGURE 4 | Effects of HC-067047, RN1734, and bicuculline on TRPV4 agonists-induced inhibition of IGABA. (A) In the presence of HC-067047 or RN1734,

the inhibition of IGABA by GSK1016790A was decreased from 41.1 ± 4.7% (n = 25) to 3.0 ± 0.6% (n = 10) or to 2.8 ± 0.9% (n = 9), respectively. Unpaired t-test,
∧∧P < 0.01 vs. GSK1016790A. (B) IGABA was markedly inhibited from −22.5± 2.2 to −1.9± 0.9 pA/pF by the application of bicuculline, and the current was virtually

unaffected by GSK1016790A treatment (−1.9± 0.4 pA/pF) in the presence of bicuculline. Paired t-test, **P < 0.01 vs. control, n = 7. (C) 4α-PDD-induced inhibition

of IGABA was significantly attenuated from 20.0 ± 2.2% (n = 15) to 2.3 ± 0.4% (n = 11) or to 1.7 ± 0.9% (n = 9) by pre-application of HC-067047 or RN1734,

respectively. Unpaired t-test, ##P < 0.01 vs. 4α-PDD. (D) In the presence of bicuculline, the current (−1.8± 0.7 pA/pF) was virtually unchanged by 4α-PDD

treatment (−1.9± 0.4 pA/pF). Paired t-test, **P < 0.01 vs. control, n = 7. (E) After pre-application of HC-067047 or RN1734, the inhibition of IGABA by 5,6-EET was

reduced from 28.1 ± 4.9% (n = 20) to 3.0 ± 0.9% (n = 10) or to 3.2 ± 0.7% (n = 8), respectively. Unpaired t-test, $$P < 0.01 vs. 5,6-EET. (F) In the presence of

bicuculline, the currents were −1.7± 0.3 and −1.7± 0.8 pA/pF before and during 5,6-EET treatment, respectively. Paired t-test, **P < 0.01 vs. control, n = 7.

have been identified in the CNS and GABAA receptors are
the main type of ionotropic GABA receptor (Sivilotti and
Nistri, 1991; Fritschy and Panzanelli, 2014). Changes in the
expression or function of GABAA receptors are important
for the modulation of CNS function. Although, there are
reports demonstrating that hyperthermia and PAR2, two
factors that are related to the activation of TRPV4, may
negatively regulate GABA-mediated inhibitory post-synaptic
currents, there is still a lack of direct evidence for the TRPV4-
induced modulation of GABAA receptors (Qu et al., 2007;
Huang et al., 2011). In the present study, IGABA recorded

in hippocampal CA1 pyramidal neurons was largely blocked
by bicuculline (Figures 4B,D,F), indicating that the current
was mediated by GABAA receptors. IGABA was inhibited by
the application of two types of TRPV4 agonist, i.e., the
specific synthetic agonists GSK1016790A and 4α-PDD and
the endogenous agonist 5,6-EET (Figures 1, 2, 3). Moreover,
the inhibition of IGABA induced by GSK1016790A, 4α-PDD
or 5,6-EET was almost completely blocked by the TRPV4
specific antagonists HC-067047 and RN1734 (Figures 4A,C,E).
Therefore, our data provide the first direct evidence that
GABAA receptor can be inhibited by acute activation of
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FIGURE 5 | Effect of GSK1016790A on p-AMPK and p-Akt levels. (A,B) Western blot analysis of p-AMPK (A) and p-Akt (B) levels in the hippocampus 15, 30min,

1 and 2 h after GSK1016790A treatment. The p-AMPK or p-Akt protein density was first normalized to the density of AMPK or Akt, respectively, and the densities of

the GSK1016790A-treated group were then normalized to the control values at each of the different time points. Each group contained 9mice. **P < 0.01 vs. control.

(C) Western blot analysis of p-AMPK protein levels in the hippocampus 30min after GSK1016790A treatment. The increase in the p-AMPK protein level was blocked

when the extracellular Ca2+ was removed or when the slices were pre-incubated with the CaMKKβ antagonist STO-609. **P < 0.01 vs. control, ∧∧P < 0.01 vs.

GSK1016790A. Each group contained 9 mice. (D) Western blot analysis of p-Akt protein levels in the hippocampus 30min after GSK1016790A treatment. The

decrease in the p-Akt protein level was markedly attenuated when the extracellular Ca2+ was removed or when the slices were pre-incubated with the AMPK

antagonist Compound C or the CaMKKβ antagonist STO-609. *P < 0.05, **P < 0.01 vs. control, ∧∧P < 0.01 vs. GSK1016790A. Each group contained 9 mice.

TRPV4. The subsequent experiments showed that the EC50

values in the dose-response curves of GABAA receptor were
unaffected by GSK1016790A, 4α-PDD, or 5,6-EET (Figures 1C,
2C, 3C), indicating that TRPV4-induced inhibition of IGABA
is noncompetitive and is likely not due to decreasing ligand-
binding affinity. By assessing the I–V curves, we showed
that the reversal voltage and I+60mV/I−80mV ratio were
not markedly affected by TRPV4 agonists (Figures 1D, 2D,
3D), suggesting that TRPV4 acts in a voltage-independent
manner.

GABAA receptors contain phosphorylation sites for protein
kinases and phosphorylation plays an important role in the
modulation of many aspects of the receptor, including directly
regulating channel function and receptor trafficking (Nakamura
et al., 2015). AMPK is a heterotrimeric serine/threonine protein
kinase and there is evidence that AMPK can be activated by
CaMKKβ in a manner that is dependent on an increase in
intracellular Ca2+ (Hawley et al., 2005). The activation of TRPV1,
another TRPV subfamily member, elevates the intracellular Ca2+

level. Studies using vascular smooth muscle cells, endothelial
cells, and ventricular tissue have demonstrated that the AMPK
signaling pathway can be activated by TRPV1-induced elevation

in cytosolic Ca2+ level (Ching et al., 2012; Lu and Xu,
2013; Li et al., 2014). In addition, the activation of transient
receptor potential canonical (TRPC), a member of the TRP
superfamily that is also permeable to Ca2+, leads to activation
of AMPK in CT-26 murine colon cancer cells and human
endothelial cells (Bair et al., 2009; Hwang et al., 2013). As
TRPV4 acts as a Ca2+ channel, we proposed that activation
of TRPV4 might activate AMPK signaling pathway. This
proposal was confirmed by our data that p-AMPK protein
levels were markedly increased in response to GSK1016790A
treatment. Moreover, GSK1016790A-increased p-AMPK protein
level was blocked if extracellular Ca2+ was removed or if
the slices were pre-incubated with STO-609, a CaMKKβ

inhibitor (Figures 5A,C). These results indicate that activation
of TRPV4 may increase AMPK signaling in a manner that
is dependent on both Ca2+ influx and CaMKKβ. AMPK
signaling has been reported to inhibit the PI3K/Akt pathway
(Amato et al., 2011). Here, along with the increased AMPK
activation, the decrease of p-Akt protein level was significant
30min to 2 h after GSK1016790A treatment (Figure 5B) and
the GSK1016790A-action was reversed by either an AMPK
antagonist (Compound C) or a CaMKKβ antagonist (STO-609)
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FIGURE 6 | Intracellular signaling pathways involved in GSK1016790A-induced inhibition of IGABA. (A) GSK1016790A-induced inhibition of IGABA was

markedly attenuated by either the AMPK antagonist Compound C or the PI3K agonist 740 Y-P but was not affected by the PI3K antagonist LY294002. Unpaired

t-test, ∧∧P < 0.01 vs. GSK1016790A. (B) In the presence of the PKC antagonist D-sphingosine or BIM, the GSK1016790A-induced inhibition of IGABA was

significantly reversed. Unpaired t-test, ∧∧P < 0.01 vs. GSK1016790A. (C,D) Pre-application of the PKA antagonists PKI or H-89 (C) or the CaMKII antagonists KN62

or KN93 (D) did not affect the GSK1016790A-induced inhibition of IGABA.

(Figure 5D). Therefore, it is likely that activation of TRPV4
activates AMPK and then down-regulates PI3K/Akt signaling.
The activation of the PI3K/Akt signaling pathway leads to an
increase in GABAA receptor expression on the surfaces of many
types of cells, including neurons, α islet cells, and HEK293
cells and is responsible for the potentiation of GABAergic
synaptic transmission (Wang et al., 2003; Xu et al., 2006;
Guimond et al., 2014). Consistently, the present result showed
that IGABA was increased by activation of PI3K. Here, it is
noted that that the GSK1016790A-induced inhibition of IGABA
was markedly blocked by pre-application of a PI3K agonist
or an AMPK antagonist (Figure 6A). Collectively, our results
suggest that activation of AMPK and the subsequent down-
regulation of PI3K/Akt signaling are responsible for TRPV4-
induced inhibition of IGABA.

A number of studies have reported that GABAA receptors
can be modulated by PKA-, PKC,- and CaMKII-dependent
phosphorylation (Nakamura et al., 2015). Studies performed
on trigeminal ganglion neurons and hippocampal pyramidal
neurons have reported that these signaling pathways are
involved in the TRPV4-induced regulation of voltage-gated
sodium and potassium currents and N-methyl-D-aspartate
(NMDA)-activated currents (Chen et al., 2008a, 2009b; Li
et al., 2013a). Here, we also explored which, if any, of

these kinases are involved in the effect of GSK1016790A on
IGABA. We first determined that IGABA was decreased by
either activation of the PKC and PKA signaling pathways or
inhibition of CaMKII (Supplementary Table 1). The following
experiment showed that GSK1016790A-induced inhibition of
IGABA was markedly blocked by pre-application of a PKC
antagonist (BIM or D-Sphingosine) but was unaffected by
either PKA or CaMKII antagonists (Figures 6B–D). Therefore,
in addition to AMPK-PI3K/Akt signaling, PKC signaling
pathway is also involved in GSK1016790A-induced inhibition of
IGABA. It is known that PKC can modulate GABAA receptors
by changing the channel conductance or altering GABAA

receptor trafficking (Song and Messing, 2005). Activation of
the PI3K/Akt pathway has been shown to increase the number
of GABAA receptors on the membrane surface, which is
due to a rapid translocation of intracellular receptors to the
plasma membrane (Wang et al., 2003). Therefore, it was
proposed that TRPV4-induced inhibition of IGABA probably
results from a direct decrease in GABAA receptor conductance
and/or the total number of GABAA receptors on the cell
surface and additional experiments are required to prove this
hypothesis.

The GABAergic system is of great importance in regulating
neuronal excitability and network oscillation dynamics and
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thus, plays a crucial role in brain function. In hippocampal
dentate gyrus, activation of TRPV1 has been proven to inhibit
somatic GABAergic synaptic function through promoting
internalization of GABAA receptor (Chávez et al., 2014).
This study shows that TRPV4 activation may inhibit GABAA

receptor and thus provides a possibility that activation of
TRPV4 may negatively regulate GABAergic synaptic function.
More experiments are needed to clarify this through assessing
the evoked and miniature inhibitory postsynaptic current.
Glutamatergic synaptic transmission and the function of
glutamate receptors [including NMDA and α-amino-3-hydroxy-
5-methl-4-isoxazolepropionic acid (AMPA) receptors] can be
enhanced by TRPV4 activation. Here, inhibition of GABAA

receptors may further aggravate the imbalance between
the excitatory and inhibitory systems and thereby helps to
account for the increased neuronal excitability caused by
TRPV4 activation. Another important finding of this study
was that we demonstrated, for the first time, that AMPK-
PI3K/Akt signaling was responsible for regulating IGABA,
which provides new insights into the modulation of GABAA

receptors.
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