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Bioelectronic medicine uses electrical stimulation of the nervous system to 
improve health outcomes throughout the body primarily by regulating immune 
responses. This concept, however, has yet to be  applied systematically to the 
auditory system. There is growing interest in how cochlear damage and associated 
neuroinflammation may contribute to hearing loss. In conjunction with recent 
findings, we propose here a new perspective, which could be applied alongside 
advancing technologies, to use auditory nerve (AN) stimulation to modulate 
immune responses in hearing health disorders and following surgeries for auditory 
implants. In this article we  will: (1) review the mechanisms of inflammation in 
the auditory system in relation to various forms of hearing loss, (2) explore nerve 
stimulation to reduce inflammation throughout the body and how similar neural-
immune circuits likely exist in the auditory system (3) summarize current methods 
for stimulating the auditory system, particularly the AN, and (4) propose future 
directions to use bioelectronic medicine to ameliorate harmful immune responses 
in the inner ear and auditory brainstem to treat refractory conditions. We  will 
illustrate how current knowledge from bioelectronic medicine can be applied to 
AN stimulation to resolve inflammation associated with implantation and disease. 
Further, we suggest the necessary steps to get discoveries in this emerging field 
from bench to bedside. Our vision is a future for AN stimulation that includes 
additional protocols as well as advances in devices to target and engage neural-
immune circuitry for therapeutic benefits.

KEYWORDS

nerve stimulation, inflammation, bioelectronic medicine, auditory nerve, macrophages, 
microglia, cochlea, cochlear nucleus

1 Introduction

Hearing loss is a common condition affecting more than 14% of individuals in the US or over 
38 million people (Goman and Lin, 2016). The prevalence increases dramatically with age, where 
25% of adults in their sixties and almost 2 in 3 people over the age of seventy develop age-related 
hearing loss (ARHL) (Goman and Lin, 2016). The number will likely continue to rise with 
increasing life expectancy and may reach 73 million in the US by 2060 (Goman et al., 2017). 
Treatment of hearing loss usually starts with hearing aids to increase the intensity of incoming 
sounds. Despite potential improvements in quality of life, including social engagement and 
communication (Davis et al., 2016), hearing aid use does not prevent the progression of hearing 
loss during aging (Dunya et al., 2021), which increases the risk of dementia among elderly with 
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moderate to severe hearing loss (Huang et  al., 2023). Given the 
limitation to prevent hearing loss progression, it is imperative to better 
understand the mechanisms underlying hearing loss development and 
explore new potential interventions to improve patient outcomes.

The primary etiology of most hearing loss involves the loss of 
sensory hair cells and auditory neurons in the cochlea (termed 
sensorineural hearing loss, or SNHL), including the loss of vulnerable 
cochlear synapses between hair cells and spiral ganglion neurons 
(SGN) (Kujawa and Liberman, 2015; Liberman, 2017). Such tissue loss 
occurs across various time windows, from hours and days after acute 
insults like noise and ototoxic drugs, to months and years of slow 
degeneration during aging. In consequence, tissue damages in the 
cochlea lead to reduced sensory input to the auditory brain, with the 
direct target being the cochlear nucleus (CN). Subsequent structural 
and functional changes of the central auditory neural network 
collectively contribute to the progression of hearing loss. The close 
association of peripheral and central changes during hearing loss was 
demonstrated in the CN, where central axons of type I SGNs of the 
auditory nerve (AN) form giant synapses, called endbulbs of Held, 
onto bushy cells of the CN (shown in the top left panel of Figure 1). 
These synapses undergo morphological degeneration and functional 
decline during various forms of hearing loss (O’Neil et al., 2011; Xie, 
2016; Xie and Manis, 2017; Zhuang et al., 2017; Wang et al., 2021). 
Since endbulb of Held synapses specialize in transmitting temporal 
information of sound crucial for auditory function, the observed 
changes in their morphology and physiological properties as well as 
associated changes in postsynaptic bushy neurons (Wang et al., 2023) 
substantiate their contribution to the development of hearing loss. 
Taken together, the effective strategy to prevent hearing loss may lie 
in approaches to reduce tissue damages in the cochlea and to 
ameliorate the detrimental changes in the central auditory system.

Recent findings have shown that the pathophysiology of hearing loss 
involves inflammatory responses (Kalinec et al., 2017; Frye et al., 2018; 
Hu et al., 2018; He et al., 2020; Wang et al., 2023), particularly on both 
sides of the AN, including the cochlea (Wood and Zuo, 2017; Noble et al., 
2019) and the CN (Seicol et  al., 2022). In general, inflammation is 
activated after tissue damage and is characterized by redness, swelling, 
heat and pain in affected area (Chen et  al., 2017). In most tissues 
throughout the body, unique innate immune cells reside in the tissue to 
provide surveillance and host defense. In the cochlea, long-lived 
macrophages perform these functions, migrate to the tissue during 
embryonic development, and are capable of self-renewal and innate 
immune memory (Zhang et al., 2021; Hough et al., 2022). Microglia are 
the tissue resident macrophages of the brain, including in the CN, and 
play a critical role in the proper wiring of brain circuits during 
development (Schafer et al., 2012; Milinkeviciute et al., 2019; Chokr et al., 
2022). Reactivation of these developmental functions may contribute to 
age-related diseases, such as Alzheimer’s disease (Hong et al., 2016). 
During NIHL, highly-activated macrophages in the cochlear enter the 
basilar membrane near the sensory hair cells and cochlear synapses (He 
et al., 2020) and may release factors that worsen the tissue damage. 
Microglia in the CN serve an analogous role (Lawson et al., 1990; Yin 
et al., 2017; Lee et al., 2021). During aging, macrophages in the cochlea 
and microglia in the auditory brainstem show patterns of activation 
consistent with chronic inflammation in their respective niches (Noble 
et al., 2019; Seicol et al., 2022). Different macrophage morphologies have 
been observed during homeostasis, suggesting these cells perform 
various functions (Lendeckel et  al., 2022). Investigations into the 
mechanisms of the activation of these immune cells, along with 

infiltrating immune cells, continue to shed light on the importance of 
immune responses in hearing loss (Fujioka et al., 2014; Wood and Zuo, 
2017; Frye et al., 2019). It is worthing noting that in both the cochlea and 
brain, immune activation can have both beneficial and detrimental 
impacts (DiSabato et al., 2016; Zhang et al., 2021), so harnessing the 
protective immune responses and reducing the harmful inflammation 
could improve outcomes in SNHL. In practice, steroids and other 
immunosuppressive therapies are used to care for patients who present 
with idiopathic sudden sensorineural hearing loss (Anyah et al., 2017; 
Murray et al., 2022) or autoimmune inner ear disease (Ciorba et al., 
2018), which demonstrate the contribution of the immune system 
during SNHL. However, there are significant side effects and clinical 
concerns about the use of steroids in hearing health disorders, and more 
targeted therapies are needed to improve clinical outcomes for patients 
(Chandrasekhar et al., 2019; Murray et al., 2022).

One exciting potential method to reduce inflammation in 
peripheral and central tissues is to use endogenous neural-immune 
regulation through electrical stimulation of the nervous system 
(Eberhardson et  al., 2020). This approach is used in the field of 
Bioelectronic Medicine to reduce inflammation and mitigate disease. 
In the following sections we  will first explore the native auditory 
circuitry that may modulate inflammation (section 3.1) and then 
propose potential strategies for developing bioelectronic medical 
therapies in the treatment of inflammation of the auditory system 
associated with hearing health disorders (section 3.2). In section 3.3, 
we  will highlight current and future technologies capable of AN 
stimulation that could be used to achieve these goals.

2 Uses of AN stimulation to modulate 
inflammation

2.1 Bioelectronic medicine: stimulating 
nerves to modulate inflammation

Bioelectronic medicine is a rapidly expanding and transformative 
approach to stimulate neural circuits to restore organ function 
throughout the body (Ulloa et al., 2017; Peeples, 2019). It encompasses 
various nerve stimulating paradigms, including cardiac rhythm 
management, deep brain stimulation and stimulation of the vagus nerve 
(Pavlov and Tracey, 2022). For example, vagus nerve stimulation (VNS) 
was shown to regulate immune functions, and was used to treat 
rheumatoid arthritis, diabetes, inflammatory bowel disease, 
endotoxemia, and septic shock through the activation of neural-
immune circuits (Ulloa, 2005; Huston et al., 2006; Gautron et al., 2015; 
Baral et al., 2019; Liu et al., 2021; Tanaka et al., 2021; Pavlov and Tracey, 
2022). VNS has also been applied to some hearing health disorders, 
including tinnitus and vestibular migraine (Chen et al., 2017; De Ridder 
et al., 2021). The efficacy of VNS in treating tinnitus remains unclear 
(Stegeman et al., 2021), but was shown to be beneficial for migraine, 
although the underlying mechanisms need further investigation. 
Transcutaneous VNS (tVNS) of the auricular branch of the vagus nerve 
(ABVN) provides a non-invasive method for activating vagal afferents 
and may be safer and effective in the treatment of migraine and tinnitus 
(Butt et al., 2020). Better understanding the specific neural circuits 
activated by VNS could greatly improve the value of this new approach 
in treating hearing health and vestibular disorders.

One potential mechanism of bioelectronic medicine is that nerve 
stimulation may indirectly act on the immune system and modulate 
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its activity via the release of acetylcholine and activation of alpha-7 
nicotinic acetylcholine receptors (α7nAChR) in target tissues 
(Borovikova et al., 2000; Wang et al., 2003; Rosas-Ballina et al., 2011). 
Immune cells that express α7nAChRs are suppressed by acetylcholine 
(Sitapara et  al., 2020; Chen et  al., 2022), leading to reduced 

inflammation (Koopman et al., 2016; Bonaz et al., 2021). Alternatively, 
the nervous and immune systems may interact through sensory 
neurons to modulate local immune responses (Baral et al., 2019). 
Nociceptors are somatosensory neurons that have extensive 
innervation throughout the body (Julius and Basbaum, 2001). 

FIGURE 1

Illustration depicting various macrophage populations and nearby nerves in the organ of Corti and cochlear nucleus (CN). (Top left) depicts the neural-
immune interactions likely in the CN where microglia (orange), shown in their resting state, surveil the tissue and promote homeostasis. Once 
activated, these microglia may aberrantly prune auditory synapses such as the endbulb of Held synapse shown. (Top right) Type II afferent fibers and 
MOC/LOC efferents may provide neural modulation of inflammation by the release of immunomodulatory neuropeptides such as CGRP. The proximity 
of these fiber terminals with macrophages (pink) in the basilar membrane could provide the necessary neural-immune communication for 
bioelectronic medicine treatments to reduce inflammation in the cochlea. (Bottom) shows the anatomical locations of the auditory nerve fibers and 
their relevant targets within the inner ear and brainstem.
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C-fibers, for example, are thin, unmyelinated, and slow-conducting 
nociceptors that respond to noxious mechanical force, chemicals, and 
extreme temperatures (Julius and Basbaum, 2001; Woolf and Ma, 
2007). These neurons also respond to immune mediators and directly 
to pathogen products (Chiu et  al., 2012, 2016). Activation of 
nociceptors can drive antidromic release of neuropeptides, such as 
calcitonin gene-related peptide (CGRP) (Chiu et  al., 2016), that 
regulate local immune responses (Jancso et  al., 1967). CGRP is 
typically anti-inflammatory and can suppress macrophage activation 
(Nong et al., 1989; Yaraee et al., 2005; Baliu-Pique et al., 2014; Mikami 
et al., 2014; Baral et al., 2018, 2019).

Neural-immune circuits are likely capable of regulating 
inflammation in the auditory pathway. In the cochlea, for instance, 
type II SGNs innervate the three rows of outer hair cells and may act 
as the “auditory nociceptor” (Flores et al., 2015; Liu et al., 2015). These 
SGNs have thin unmyelinated nerve fibers like C-fibers that respond 
to noxious noise and report hair cell damage and may regulate inner 
ear local immune response (Kiang et al., 1982; Asai et al., 2010; Flores 
et al., 2015; Liu et al., 2015; Long et al., 2018). The presence of immune 
mediators such as CGRP were observed in type II SGNs, however, the 
location of release and functional consequences have not been fully 
addressed (Wu et al., 2018; Vyas et al., 2019). Although the functional 
relevance between type II afferent and C-fibers remains speculative, 
their shared characteristics strongly suggest the existence of a similar 
immune modulatory mechanism in the inner ear. Furthermore, 
auditory neural-immune circuits may also involve the lateral and 
medial olivocochlear (LOC and MOC, respectively) efferent pathways 
(Kiang et al., 1982; Ryugo, 1992). As shown in Figure 1, the LOC and 
MOC are part of the auditory efferent system that originate in the 
olivary nuclei of the auditory brainstem and projects to the organ of 
Corti to modulate the activity of sensory hair cells and the AN fibers 
(Guinan, 2018). Stimulation of LOC or MOC efferents can result in 
the release of diverse neurotransmitters and neuromodulators, such 
as the anti-inflammatory neurotransmitter acetylcholine and CGRP 
(Maison et  al., 2003; Schrott-Fischer et  al., 2007). Additionally, 
endocannabinoid signaling in the cochlea (Ghosh et al., 2021) might 
modulate inflammatory responses although the circuitry needs to 
be better mapped for bioelectronic medicine to tap into this system. 
While the immunomodulatory effect of LOC and MOC efferent 
systems and type II afferent pathway still requires further investigation, 
current evidence strongly support the importance of neural 
modulation in controlling inflammation throughout the body and 
suggest that we might be able to leverage similar mechanisms in the 
auditory system.

2.2 Stimulating the AN to improve 
outcomes in hearing health disorders

Treatments for hearing loss primarily aim to improve sound input 
from the ear to the brain through amplification or transformed signal 
transduction. Hearing aids are the first line treatment for patients to 
improve auditory perception, however they do little to prevent the 
progression of hearing loss, especially during aging. Severe hearing 
loss, in which patients do not benefit from hearing aids because the 
peripheral AN is no longer connected to sensory hair cells may require 
more invasive prosthetics, such as the cochlear implant (CI). In many 
cases, preserving cochlear health is critical for potential CI patients in 
order to maintain residual hearing before CI use is even considered. 

A major challenge is immune rejection and exacerbation of hearing 
loss severity from the implantation. Given the existence of potential 
neural-immune circuitry in the cochlea (reviewed above) and in the 
brain, we propose a new perspective that stimulating the AN and 
auditory brainstem could be used to improve outcomes for cochlear 
or auditory brainstem or midbrain implantation procedures. In the 
cochlea for example, AN stimulation may activate peptidergic 
nociceptors (type II SGNs) and efferents (LOCs, MOCs). It is 
conceivable that release of CGRP into organ of Corti spaces can 
reduce the activation of proximate macrophages (see Figure 1, top 
right panel) in respective area and better preserve cochlea health and 
thus hearing outcome. The idea may be counterintuitive and against 
current protocols in the clinic that CIs are only activated after a long 
period of recovery from surgery to allow for healing. However, it is 
particularly intriguing to test the potential benefits of early CI 
stimulation during the recovery phase. Proof-of-concept studies 
should be performed to investigate the optimal timing and stimulation 
paradigm to engage these neural-immune circuits for better tissue 
preservation in animal models, using direct stimulation through the 
implants or optogenetic activation of specific AN fibers. If this kind of 
stimulation works as predicted, it may be possible to enhance healing 
during this post-surgery recovery period and improve hearing 
outcome. The viability of this approach may depend on the remaining 
auditory circuitry, therefore inclusion criteria for future clinical trials 
should be carefully considered for AN stimulation in patients with 
CIs. It is also possible that unintentional recruitment of neural-
immune circuits occurs in the cochlea under current clinical practice, 
which may be amended after better understanding of the physiology 
and function of these pathways, leading to improvements in chronic 
outcomes like reduced fibrosis and enhanced perception. We suggest 
that this is a valuable line of new investigations to augment current 
strategies, including anti-inflammatory coatings and improvements in 
surgical techniques (discussed in more detail below).

Beyond the CI patient population, we envision many applications 
of peripheral and central auditory stimulation for patients with hearing 
health disorders. As described earlier, hearing loss during normal aging 
and following acoustic trauma is accompanied by dramatic increases 
in macrophage/microglia activation and inflammation. Microglia 
prune synapses in an activity-dependent manner (Schafer et al., 2012), 
so activating afferent AN fibers to drive central processing could reduce 
microglial activation during aging and ameliorate ARHL. Stimulated 
release or inhibition of CGRP could also be beneficial for vestibular 
conditions, including balance disorders and migraines. Non-invasive 
stimulation, such as transcranial magnetic or direct current stimulation, 
could be used to activate LOC and MOC fibers and may be able to 
reduce inflammation under both ARHL and NIHL. Immune changes 
associated with various hearing health disorders have begun to 
be elucidated in animal models and clinical studies [reviewed in (Perin 
et al., 2021)], however, further investigations into these mechanisms 
are required to better understand the contribution of immune 
responses to specific conditions such as tinnitus, hyperacusis, or 
Meniere’s Disease. Tinnitus is a common condition that may respond 
to AN or cortical stimulation given its association with NIHL and 
inflammation in the auditory cortex (Wang et al., 2019). Hyperacusis, 
which is often a refractory condition that can cause severe disability 
(Liu et al., 2015), may share a similar etiology with other chronic pain 
conditions (Williams et al., 2021; Coey and De Jesus, 2023) where the 
activation of macrophages in the dorsal root ganglia (DRG), for 
example, contribute to the onset and progression of neuropathic pain 
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(Yu et  al., 2020; Guimarães et  al., 2023). DRG stimulation is an 
efficacious therapy (Berger et  al., 2021; Chapman et  al., 2023) 
suggesting similar benefits may apply to hyperacusis, especially 
hyperacusis with pain (noxacusis) (Liu et al., 2015; Williams et al., 
2021; Coey and De Jesus, 2023). Clinical application of sound therapy 
for hyperacusis/noxacusis further supports this possibility (Sheppard 
et  al., 2020; Henry, 2022). Meniere’s Disease is likely a cluster of 
disorders associated with hearing loss, vertigo, tinnitus, and aural 
fullness (Basura et al., 2020; Perez-Carpena and Lopez-Escamez, 2020), 
and may be treated with CI to reduce many of these symptoms (Desiato 
et  al., 2021). Recent application of tVNS of the ABVN showed 
promising results as an adjunctive therapy for patients with Meniere’s 
Disease (Wu et al., 2023), possibly due to immunological contributions 
to disease pathology (Flook et al., 2023). Overall, AN stimulation, 
stimulation of central auditory centers, and tVNS of the ABVN could 
be valuable approaches to find new therapies for patient populations 
with various hearing health disorders.

2.3 Overview of technology, interfaces, and 
challenges with auditory stimulation

CIs are the most successful neural prostheses in treating severe 
hearing loss. The overall performance, however, has reached a plateau 
after decades of development. The condition of spiral ganglion 
neurons, the preservation of synaptic function, and the number and 
survival of inner and outer hair cells have all been shown to be vital in 
CI efficacy (Schvartz-Leyzac et  al., 2023), and all of which are 
significantly impacted by acute and chronic inflammatory responses 
due to surgical trauma during insertion (Seyyedi and Nadol, 2014; 
Ishai et al., 2017) and foreign body reactions after the surgery (Wilk 
et al., 2016). CIs made with platinum and silicon trigger foreign body 
reaction to the device due to incompatibility and rigidity, resulting in 
inflammation, fibrotic scarring, and reduced wound healing (Lotti 
et al., 2017; O’Malley et al., 2017), and can cause neo-ossification and 
eventual break down of the device (Foggia et  al., 2019). Acute 
inflammation immediately after implantation can lead to chronic 
inflammation that is known to worsen the patient’s long-term health 
outcomes (Anderson et al., 2008). When the function of the cochlea 
nerve deteriorates to the point the CI is no longer viable, auditory 
brainstem implants (ABI) are used. Instances where ABIs are needed 
include ossification, a lack of cochlear nerve present, structural 
defects, aplasia, or impairment to the cochlea itself. Individuals with 
neurofibromatosis are the main group that would have difficulties with 
CIs because tumors develop on their nerve tissue, damaging the areas 
required for a traditional CI to provide benefit. The auditory-midbrain 
implant is another device used instead of a traditional CI by 
stimulating the inferior colliculus (Lim et al., 2009). All these devices 
could be used to activate neural-immune circuits along the auditory 
pathway to help reduce inflammation in respective sites with the 
potential to improve treatment outcome. The type of stimulation 
capable of eliciting a desired immunological outcome will need to 
be determined empirically based on both the device design (Ertas 
et al., 2022) and the physiology of the target neural-immune circuits 
(e.g., activation of type II SGNs or MOC/LOC efferents), which need 
to first be better understood (depicted in Figure 1).

Improvements in biocompatibility, including the use of softer 
materials, along with robotic surgical techniques, will reduce the 

occurrence of inflammation and foreign body responses. For example, 
a recent form of CI implantation consists of using a micro-mechanical 
tool that reduces surgical trauma due to its high precision and low 
variability (Banakis Hartl et al., 2019). Further advances including CI 
with surface coating that slowly release anti-inflammatory drugs such 
as steroids have also shown promising results in improving CI efficacy 
(Wulf et al., 2022). Beyond these developments, we predict that our 
proposed strategy of using electrical stimulation to engage neural-
immune circuits is one untapped solution with high potential to 
reduce acute and chronic inflammation and improve the outcomes of 
hearing loss treatments in patients.

3 Discussion

We have outlined the potential mechanisms and possible 
applications of using AN stimulation to modulate immune responses 
in the auditory system and provided a framework for basic and 
translational studies to test the efficacy of such interventions. In 
addition to our vision described above, we  also anticipate future 
advances in brain-computer interfaces and other technologies in 
bioelectronic medicine that could take these ideas further. A practical 
limitation currently, for example in tVNS (Butt et al., 2020), is the 
difficulty of stimulating only specific nerves or, in the case of invasive 
VNS, stimulating select fibers. Targeted nerve stimulation capable of 
stimulating select nerve fibers (Fitchett et al., 2021) could improve the 
precision of both VNS and AN stimulation to only activate neural-
immune circuits and spare sensory fibers, such as type I  SGNs. 
Current VNS methods can cause unwanted side effects and this is a 
likely limitation for the application of bioelectronic medicine to AN 
stimulation as well, which may be resolved with future technologies, 
such as precision devices or optogenetic approaches (Booth et al., 
2021). Additionally, better mapping of the anatomical and 
physiological properties of the type II SGN and the innervating 
efferent fibers could also guide the application of bioelectronic 
medicine in auditory neuroscience. Finally, combined techniques 
involving stem cell regenerative therapies augmented with 
bioelectronic medicine approaches could potentially restore lost AN 
function (Tang et al., 2018; Guo et al., 2021; Sekiya and Holley, 2021; 
Fang et  al., 2023). Our vision for the future relies on continuous 
improvements in both basic understanding of the system and new 
tools to manipulate the nerve function to produce the desired 
immunological outcomes in the cochlea and auditory system.
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