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Introduction
There are several recent studies demonstrating that individual 
chemosensory neurons use temporal information for encoding 
taste quality information. Most of these studies have focused on 
gustatory processing centers in the brain. For example in studies 
of the brainstem’s nucleus of solitary tract (NST), the first synap-
tic station of the central gustatory system, Di Lorenzo and Victor 
(2003, 2007) have reported that spike timing may convey more 
information about taste quality than the conventional measure of 
spike count. They (Roussin et al., 2008) have shown further that 
spike timing differences across NST neurons were especially effec-
tive in discriminating two prototypic stimuli of one taste quality 
(i.e., discriminating between two sugars or two salts). Most recently, 
they have provided evidence indicating that broadly tuned neurons 
could discriminate the basic taste stimuli and binary mixtures of 
them based on the temporal features of the neural responses, which 
were represented in a three-dimensional taste space with each basic 
stimulus occupying a unique location within the space apart from 
each other (Di Lorenzo et al., 2009).

In contrast to the brain, electrophysiological single-cell studies 
of taste quality coding in the peripheral nervous system have mostly 
disregarded spike timing as a coding strategy. Except for a few 
prescient studies conducted many years ago (e.g., Fishman, 1957; 
Mistretta, 1972; Ogawa et al., 1973, 1974; Nagai and Ueda, 1981), 
the emphasis has been on spike count as the indispensable mode 
of signaling. In fact, it has been suggested that the periphery may 
transmit information by a spike count code and then be converted 
to a temporal code in the brain (Di Lorenzo et al., 2009). We have, 
however, recently shown the importance of temporal information 
in the geniculate ganglion (Breza et al., 2010) that receives input 

from taste buds now known to be complex processing stations with 
dynamic interaction between three distinct structural (Yee et al., 
2001; Witt et al., 2003; Finger et al., 2005) and functional (Finger 
et al., 2005; Tomchik et al., 2007; Kataoka et al., 2008; Vandenbeuch 
et al., 2008; Roper, 2009) cell types. We have shown that geniculate 
ganglion neurons receiving input from fungiform taste buds on 
the anterior tongue can be distinguished by their unique response 
latency profiles to NaCl, sucrose, citric acid, and quinine hydro-
chloride (QHCl). Our present goal is to extend this analysis to 
determine whether spike timing is critical to coding not just at 
response onset but during stimulation, as well.

The present study focused on single-cell responses by geniculate 
ganglion neurons to lingual stimulation with the basic taste stimuli 
delivered at controlled temperature and flow rate in 35ºC artificial 
saliva (AS). We adapted the tongue to 35°C AS to mimic as much 
as possible the natural environment bathing lingual receptors and 
to enhance spontaneous activity and neural responsiveness (Breza 
et al., 2010). The geniculate ganglion consists of two physiological 
populations of neurons: about 50% are narrowly tuned specialists 
that respond with high spike rate to prototypic stimuli of one taste 
quality and very little if at all to stimuli of other taste qualities; the 
other half are broadly tuned generalists that respond to multiple 
taste qualities (Frank et al., 2008; Breza et al., 2010). For example, 
narrowly tuned NaCl-specialist neurons respond with high spike 
rate and short latency to NaCl, but are relatively unresponsive to 
sweet sucrose, sour citric acid, or bitter quinine. They are also rela-
tively unresponsive to non-sodium salts like KCl and NH4

Cl (Lundy 
and Contreras, 1999; Contreras and Lundy, 2000), but respond 
to the sodium component of monosodium glutamate (MSG), 
a prototypic stimulus for umami (Breza et  al., 2007). Similarly, 
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evaluated. Thus, there were a total of 56–70 stimulus trials for each 
neuron. Each stimulus trial consisted of a 2-s pre-stimulus period 
of AS, a 2.5-s chemical stimulation period, and a 2-s post-stimulus 
period with AS. AS was a control stimulus as well as the rinse solu-
tion for all the trials. A 60-s AS rinse preceded and followed each 
stimulus presentation to ensure that neural activity returned to 
stable baseline values.

At the onset of our experiments, we chose to run 10 trials per 
stimulus, although in a few instances we had to settle for eight 
stimulus trials for technical reasons (e.g., lost cell or its respon-
siveness). Ten was our best guess estimate for obtaining reliable 
statistically supported results. Based on our previous experience 
with the geniculate ganglion preparation, we recorded consist-
ent response frequency profiles to the standard basic stimuli at 
the beginning and end of a long stimulus protocol (Breza et al., 
2010). That is, the response patterns of the neurons remained 
the same at the beginning and end of stimulation for a protocol 
that may have lasted 60 min with many stimulus trials. This was 
abetted by our stimulus delivery system that presented solutions 
at controlled flow rate and temperature with little variation 
over repeated trials. Given this history, 10 trials seemed more 
than sufficient to conduct our metric analyses. In fact when we 
performed mutual information analysis on the responses, 10 
trials yielded reasonably narrow confidence intervals over time 
to determine when there was significant spike activity during 
the recording period. Also, this number of 8–10 stimulus trials 
compared reasonably well with the number of repetitions used 
in other studies. For example, in a paper by Di Lorenzo et al. 
(2009), the stimuli were presented at least five times with a range 
of 5–23 presentations.

Recording techniques
Electrogustogram
The Electrogustogram (EGG) was recorded with Micropipette 
Holder and Ag/AgCl Pellet (World Precision Instruments) via 
saline-agar-filled capillary pipettes (tip Ø 100 μM, 0.15 M NaCl, 
0.5% agar). We located the receptive field of the geniculate ganglion 
neuron by dotting a minute amount of chemical solution on the 
tongue from the bristle tips of a delicate artisan paintbrush. The 
EGG electrode and stimulus tube were placed near this region and 
remained unchanged until the stimulus protocol was completed. 
The signal was amplified DC amplifier M-511 (A-M Systems, Inc.), 
digitized, and stored on a PC. The signal served as a rapid response 
onset to the tested stimulus.

Geniculate ganglion unit recording
Unit/few unit activity (generally 100–250  μV peak-to-peak 
amplitude) was recorded extracellularly. A low-impedance (1.0–
1.5 Mom, 1000 Hz) glass-insulated tungsten microelectrode (tip 
Ø 1 μM) was mounted on a Hydraulic Micromanipulator MO-10 
(Narishige International USA, Inc.) and advanced downward from 
the dorsal surface of the ganglion. Neural activity was amplified 
with an AC Amplifier Model 1700 (A-M Systems, Inc., bandpass 
100–5000  Hz). Neuronal and EGG responses were monitored 
on-line and digitized using hardware and software Spike 2 (CED, 
UK). Digitized responses were stored on computer for later analy-
sis. Spike templates were formed on the basis of amplitude and 

sucrose-specialist neurons respond with relatively high spike rate 
to sucrose and weakly at best to NaCl, but are unresponsive to citric 
acid or quinine. However, sucrose-specialist neurons respond to the 
glutamate component of MSG (Breza et al., 2007). In contrast to 
specialist neurons, broadly tuned acid-generalist neurons respond 
best to citric acid with high spike rate and relatively long response 
latency and secondarily to salty and bitter stimuli but with short 
response latencies (Breza et al., 2010). Electrolyte-generalist neu-
rons are broadly responsive to ionic stimuli (KCl, NaCl, quinine 
HCl, MSG) and relatively unresponsive to citric acid and sucrose. 
The contribution of spike timing may differ for these two popula-
tions of neurons. Our main purpose was to determine the contribu-
tion of spike timing to quality coding by specialist and generalist 
neurons of the geniculate ganglion using computational methods 
that have been applied successfully in other systems.

Materials and methods
Animals and surgery
Adult male Sprague-Dawley rats (Charles River Laboratories; 
n = 15) weighing 309–640 g were housed individually in plastic 
cages in a temperature-controlled colony room on a 12- to 12-h 
light–dark cycle with lights on at 0700 h. All animals had free access 
to Purina Rat Chow (No. 5001) and deionized water (dH

2
0). Rats 

were anesthetized with urethane (1.5 g/kg body wt) and, following 
a tracheostomy, were secured in a Stereotaxic Instrument for rats 
(SR-6R, Narishige International USA, Inc.) with blunt ear bars. The 
tongue was gently extended and held in place by a suture attached 
to the ventral surface. The geniculate ganglion was exposed using 
a dorsal approach following procedures described previously 
(Lundy and Contreras 1999). Briefly, a midline incision was made 
on the occipital portion of the skull, and the skin and muscles 
were excised. A portion of the right cranium between bregma and 
lambda was removed and the underlying neural tissue was aspi-
rated to allow access to the temporal bone. The petrous portion 
of the temporal bone then was gradually planed away to expose 
the geniculate ganglion.

Stimulus delivery and stimulation protocols
Solutions were presented to the anterior portion of the tongue 
using OctaFlow delivery system (ALA’s scientific instrument) at 
a constant flow rate of 50 μl/s, approximating the volume of fluid 
consumed by a rat licking from a drinking spout at a rate of 6–7 
lick/s (Smith et al., 1992). The fluid delivery system’s mixing port 
(quartz Micromanifold) allows switching between taste stimuli 
and rinse solution without compromising the flow rate. A Heated 
Perfusion Cube HPC-2A (ALA Scientific Instrument Inc.), placed 
near the end of the stimulus outflow tube, allowed the temperature 
of the solutions to be held constant at 35 ± 0.1°C (Temperature 
controller PTC-10, ALA Scientific Instrument Inc.).

The taste stimuli used in our experiments consisted of 0.5 M 
sucrose (Sucr), 0.1 M NaCl, 0.01 M citric acid (CA), 0.02 M quinine 
hydrochloride (QHCl), 0.1 M monosodium glutamate (MSG), and 
KCl. AS (Hirata et al., 2005; 15 mM NaCl, 22 mM KCl, 3 mM CaCl2, 
and 6 mM MgCl

2
; pH 5.8) served as the rinse solution and solvent 

for the basic taste stimuli. All chemicals were reagent grade. The 
tongue was adapted to 35°C AS and the responses to 8–10 ran-
dom presentations of each of the seven stimuli including AS were 
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This value reflects the amount of information (in bits) that each 
stimulus presentation provides.

The mutual information (Cover and Thomas, 1991) is then just a 
function of the stimulus entropy H(S), the firing rate entropy H(R), 
and the joint entropy H(S,R), using the formula above:

I(S,R) = H(S) + H(R) − H(S,R)

The formula can then be rewritten as:
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where the subscript t indicates that we are calculating the mutual 
information at time t using binned spike count data. Just like the 
Shannon entropy, the mutual information is measured in bits (when 
in log base 2) and is a measure of the reduction in the uncertainty 
of the stimulus when the response is given. Each bit corresponds 
to a decrease in the uncertainty by a factor of two (Quiroga and 
Panzeri, 2009).

To determine the excitatory response latency, we calculated the 
difference in mutual information between each chemical stimulus 
and control stimulation with AS using a 100-ms time bin with a 
25-ms sliding window. This enabled us to examine the change in 
the mutual information across time. We used a bootstrapping pro-
cedure to construct confidence intervals for the mutual information 
and define latency as the first instance when mutual information 
exceeded the confidence interval after stimulation.

We determined the time periods when the information conveyed 
by spiking neurons was significant during repeated trials of seven 
stimuli. We used a bias correction procedure using the information 
breakdown toolbox (see Magri et al., 2009 for further details). Based 
on this procedure, we estimated the excitatory response latency by 
determining when the mutual information first became significant 
after stimulus onset.

Analysis of temporal pattern and spike rate
To understand the relative contribution of spike rate and temporal 
pattern to coding, we used van Rossum’s (2001) spike distance 
metric to evaluate each neuron’s spike discharge pattern. The metric 
quantifies the distance between every possible pair of spike trains 
in the data set for each neuron.

To measure distance, the  metric uses an exponential kernel 
function to transform each spike train consisting of a series of 
discrete time points into a continuous function. This transforma-
tion essentially adds a tail to each spike with a time course thought 
to mimic a postsynaptic potential (van Rossum, 2001; Paiva et al., 
2010). If two spike trains are similar, then the metric distance or 
area will be small indicating a high degree of similarity. If two spike 
trains differ, then the metric distance or area will be large indicating 
a low degree of similarity.

A key temporal parameter, τ, of the van Rossum metric deter-
mines the decay time or width of the tail. As others have done (e.g., 
Narayan et al., 2006; Wohlgemuth and Ronacher, 2007), we varied τ 
to determine the degree to which temporal resolution contributes to 
spike train distance or similarity. For small τ values (e.g., <100 ms), 

waveform (Figure 1). Neurons were accepted only if they exceeded 
a signal-to-noise ratio of 3:1 (Di Lorenzo et al., 2009) and met strict 
waveform matching criteria (Breza et al., 2010).

Statistical Methods
All data analyses were carried out using self-written routines in 
MATLAB (The Mathworks). Spike2 software (CED) was used in data 
collection. Stimulus trials were divided into three regions: a 2-s pre-
stimulus period, a 2.5-s stimulus application period, and a 2-s post-
stimulus period. This allowed us to examine the changes in spike 
rate and spike timing both during and after stimulus application.

Estimation of response latency of excitation
Let (X

1
,X

2
,…,X

n
)

t
 represent the binned spike counts at time t for 

n measurements. For example, n could be the total number of 
applications of all the stimuli. Let S be a set of stimuli that is to be 
considered, with P(S) the probability of presenting S. The Shannon 
entropy (Shannon, 1948) is then defined as

Figure 1 | The bottom two traces show the raw single unit recording 
from the GG and EGG response before, during, after chemical 
stimulation (0.1 M NaCl) of the tongue. The middle two traces show that 
the raw record can be separated into two single-cell-digitized responses. The 
top two traces are a high-resolution capture of 2-s of unit responses 
highlighted by the rectangle in the lower traces. The diagram on the right 
shows the accuracy by which our waveform analysis software separates 
spikes into two distinct clusters.
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overlap. Therefore, the squared difference between these two spikes 
increases the overall distance between the two spike trains. The 
integral of the squared difference provides a measure of similarity 
between spike trains.

Recently, Paiva et al. (2010) showed that the van Rossum distance 
can be calculated as
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where N
i
 and N

j
 are the total number of spikes for spike trains 

S
i
 and S

j
, respectively, tm

i  is the mth spike for spike train S
i
, and 

Lτ τ( ) exp( | | / )⋅ = ⋅−  is the Laplacian kernel. This estimator has 
advantages over previous methods of calculating the van Rossum 
metric in that it can be implemented easily and efficiently, making it 
a valuable tool for spike train analysis. By varying the time constant 
τ in the analysis, one can determine whether the neuron acts more 
in spike timing (small τ values) or spike rate modes (large τ values) 
of information processing. Values of τ between these two extremes 
suggest a combination of modes, where the neuron uses both spike 
timing and spike rate for coding taste quality information. A recent 
study by Narayan et al. (2006) reported that neurons in the zebra 
finch brain functioned optimally with a τ value of 12 ms, indicating 
that the zebra finch brain relies mostly on spike timing for coding 
differences in bird song.

Once distances were computed, a cluster algorithm was per-
formed to examine the classification performance (also the dis-
crimination performance) of the stimuli based on the neural 
data (Victor and Purpura, 1996). Ideally, metric distance should 
be small between pairs of spike trains to the same stimulus and 
larger between pairs of spike trains to different stimuli. To assess 
clustering the algorithm randomly selected a spike train from the 
response collection and compared it to all other spike trains using 
the van Rossum metric. The selected spike train was then classified 
as a member of the stimulus category that had the smallest average 
distance. This reiterative procedure for all spike trains resulted in 
a classification matrix, also called the confusion matrix (Victor 
and Purpura, 1996). The diagonal elements of this matrix reflect 
correctly classified spike trains, while elements off the diagonal 
reflect misclassified responses. Based on this classification matrix, 
we calculated the transmitted information h (Victor and Purpura, 
1996). If the clustering was perfect, then the maximum value of the 
transmitted information is ln(C), where C is the total number of 
clusters (stimuli). The minimum of the transmitted information 
is 0, which happens when the clustering is random.

We define the optimal parameter value τ as the value that maxi-
mizes the transmitted information. To find this, we performed a 
grid search, evaluating h at each value of τ along a large parti-
tioned interval. We then found the τ value that maximized h. A 
bootstrapping procedure was used to determine significance in 
the parameter τ. We constructed surrogate datasets where we ran-
domly assigned the cluster (stimulus) labels for each spike train, 
and recalculated the information h. This “shuffling” procedure is 
repeated several times (in this case, 199), and a bootstrap confidence 

the spike tail decays quickly. For two spike trains to be coincident 
and similar, then spike timing must be critical for low metric dis-
tance. For larger τ values, the rate of decay is much slower (the “tails” 
are much longer) increasing the likelihood of coincident spikes. It 
is therefore the difference in spike rate, not spike timing that con-
tributes to metric distance. To compute the metric distance, spike 
trains, defined as a list of discrete time points, are first convolved, 
or transformed, using an exponential kernel function:

h t e I t
t

( ) ( )= ≥
−1

0
τ

τ

Where I(t ≥ 0) indicates that the variable t must be non-negative. 
Now, given two spike trains t

1
 and t

2
 (with their transformed spike 

trains f
1
 and f

2
, respectively), the van Rossum metric calculates a 

(Euclidean) distance between them using an L
2
-metric:

d h dt f f2 1 2 1 2
2

0

( , , ) ( )t t = −
∞

∫

An example of the van Rossum metric is shown in Figure 2. 
Here, we see that both spike trains have a common spike, occurring 
at the 1-s mark. Evaluating the squared difference of the trans-
formed spike trains cancels out the effect of this common spike. 
Similarly, both spike trains have unique spikes (for example, at 
1.8 and 1.5 s for spike trains 1 and 2, respectively), which do not 

Figure 2 | (A–B) An example of two spike trains (colored blue and red) along 
with the transformed spike trains f1 and f2 using an exponential kernel function 
with parameter τ = 100 ms. (C) An example of the squared difference in the 
transformed spike trains. Evaluating the area under this curve gives us the van 
Rossum distance between the two spike trains.

Lawhern et al.	 Spike patterns in taste coding

Frontiers in Integrative Neuroscience	 www.frontiersin.org	 May 2011  | Volume 5  |  Article 18  |  4

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


NaCl. Sucrose-specialist neurons had a higher spike rate and shorter 
latency response to sucrose than to MSG. Nine acid-generalist 
neurons were distinguished by their best response to citric acid 
with long latency and secondary responses to KCl, NaCl, quinine 
HCl, MSG with typically shorter latency (Breza et al., 2010). Six 
electrolye-generalist neurons responded similarly to the same set 
of stimuli as acid-generalists, except E-generalists were relatively 
unresponsive to citric acid.

One goal of this research was to study how neurons discriminate 
between taste stimuli based on their spiking discharge patterns. 
Neural spike trains have inherent variability that must be accounted 
for in the analysis. Ideally, comparisons of spike trains within the 
same stimulus should be more similar than comparisons between 
spike trains across stimuli. To perform this comparison, we used the 
van Rossum metric (see Materials and methods) to characterize the 
spiking patterns of the different neuron groups, and to determine 
whether neurons code information best using spike timing, spike 
rate, or a combination of the two.

Our analysis consisted of 13 specialist neurons (nine NaCl, two 
sucrose, two MSG), six electrolyte-generalist neurons and nine 
acid-generalist neurons. We estimated the timescale parameter 
τ

opt
 for each neuron using our bootstrap-reshuffling procedure, 

and calculated the information based on the confusion matrix of 
Victor and Purpura (1996). Trials consisted of a 2-s pre-stimulus 
AS rinse, a 2.5-s stimulus presentation and a 2-s post-stimulus 
period. The stimulus presented was chosen at random from the 
set of seven stimuli (Sucr, NaCl, CA, QHCl, MSG, KCl, AS). The 
number of replications for each stimulus was between 8 and 10. 
We determined that 10 trials were sufficient for capturing the 
neural variability using a leave-one-out cross validation approach 
on data where one trial from each stimulus was randomly removed 
from the dataset. We constructed confidence intervals for h

max
 

with the reduced data using a bootstrap procedure. The differ-
ence of h

max
 using the full data and the median of 99 bootstrap 

datasets with one trial randomly removed from each stimulus 
was not much different from each other (∼5%). Also, h

max
 with 

the full data was within a 95% confidence interval of the reduced 
data for nearly all cells in the study. This trend was also observed 
when two trials were randomly removed (where there are only 
eight trials per stimulus).

Analysis of neural responses during stimulus duration
We analyzed spike train recording during the stimulus duration 
period (2–4.5 s), computed response latencies and compared the 
transmitted information and τ values across neuron groups. An 
example of our latency analysis using the mutual information for 
one MSG-specialist cell is shown in Figure 3.

This neuron responded strongly to NaCl and MSG immedi-
ately after stimulus onset and maintained its high level activity 
throughout stimulation. Visually, the response latency appeared 
to be between 200 and 300 ms for MSG and about 400–500 ms 
for NaCl. The results from the mutual information analysis show 
that the latencies are estimated to be 500 ms for NaCl and 225 ms 
for MSG, respectively, and are consistent with estimates obtained 
visually. The mutual information remained significant for a large 
portion of the stimulus duration period, then decreased during the 
post-stimulation period.

interval is obtained. Information values outside of a 95% bootstrap 
confidence interval constituted a significant amount of transmit-
ted information. Therefore, the optimal parameter τ, called τ

opt
, 

quantifies the temporal precision used for temporal coding.
We performed an analysis called “exchanged-resampling” (Di 

Lorenzo et al., 2009) as additional means to assess the contribution 
of spike timing. For this, we constructed surrogate datasets where 
spikes are randomly shuffled within trials to the same stimulus. 
This shuffling destroys any temporal firing pattern that may have 
existed while keeping both the spike count and the post-stimu-
lus time histogram the same as the original data. If the observed 
transmitted information h

max
 is outside the confidence interval of 

h
exchanged

 (calculated using a bootstrap procedure with 199 replica-
tions), then we conclude that there is information contained in 
the temporal pattern of the response that cannot be captured by 
the overall spike rate.

Geometry of the response space
Given the optimal parameter τ

opt
, we used multidimensional scal-

ing (MDS) to visualize the geometry of the response space. MDS 
maps the elements in a given similarity (or dissimilarity) matrix 
into a vector space, such that the distances between elements in 
the similarity (dissimilarity) matrix and the (Euclidean) distances 
between the elements in the vector space are approximately equal. 
The average response across repeated trials determined the cen-
troid location for each chemical stimulus and AS in the vector 
space. Tests of the goodness of fit (from the similarity/dissimilarity 
matrix into an Euclidean space) were performed in MATLAB using 
Kruskal’s SStress criterion. Kruskal’s SStress criterion takes values 
between 0 and 1, where values closer to 0 indicate a better projec-
tion into the Euclidean space. The axes of the MDS-generated 
map do not necessarily correspond directly to physiological inter-
pretation; however, Di Lorenzo et al. (2009) noted that the first 
axis was generally correlated with firing rate. In our data, the first 
two dimensions from the MDS analysis reduced the stress to less 
than 0.1.

Results
Analysis of temporal patterns in individual cells
We recorded responses from 28 geniculate ganglion neurons 
and separated them into five physiological groups based on their 
response frequency profiles established in our prior studies (Lundy 
and Contreras, 1999; Breza et al., 2010). Nine NaCl-specialist neu-
rons were distinguished by their high spike rate responses to NaCl 
and lack of responses to KCl, citric acid, quinine HCl, and sucrose. 
MSG is an effective stimulus for NaCl-specialist neurons and vice 
versa, NaCl is an effective stimulus for MSG-specialist neurons. 
Based upon our unpublished observations, NaCl-specialist neu-
rons have a lower concentration threshold for NaCl than MSG, 
while MSG-specialist neurons have a lower concentration thresh-
old for MSG than NaCl. Since we used only one concentration of 
each stimulus, a neuron was classified a NaCl-specialist if it had 
a slightly higher spike rate and shorter latency response to NaCl 
than to MSG, and vice versa for a MSG-specialist. Two sucrose-
specialist neurons were distinguished by their relatively high spike 
rate and short latency responses to sucrose and MSG, and lack of 
responses to KCl, citric acid and quinine, and weak responses to 
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lies outside of the confidence interval for exchanged-resampled 
datasets (dashed red lines) at the optimal value of τ (650 ms), 
suggesting that the fine temporal structure of the neural response 
contributes to coding of taste quality. The middle plot shows the 
clustering matrix for this neuron. We see that many NaCl trials 
were classified as either NaCl or MSG, while MSG trials have a 
high probability of being correctly classified as MSG. In fact, there 
were no MSG trials classified as NaCl. One possible explanation 
for this is that MSG responses for this cell have a unique temporal 
pattern which distinguishes itself from NaCl (as shown in our 
exchanged-resampling analysis being significant, see Figure  4). 
Overall, approximately 53% of the trials were classified correctly, 
which indicates reliable clustering when compared to a chance 
classification (1/7 = 14.2%).

Some of our metric analysis results for the same cell are shown 
in Figure 4. The left plot shows the results of the van Rossum 
metric analysis. The metric analysis showed that the transmitted 
information h was significant across many τ values, suggesting 
that reliable information could be conveyed almost equally well 
under spike timing and spike rate modes of coding. However, the 
optimal τ value occurred at 650 ms accounting for 1.2256 bits (out 
of a maximum of log

2
(7) = 2.8074 bits) of information, which 

indicates that this neuron used a combination of spike timing and 
spike rate for coding. When using mainly spike rate information 
(τ  =  2.5  s, the length of the analysis window), the neuron can 
account for 1.0167 bits of information, which is only about 19% 
lower than when using a mixture of spike timing and spike rate. 
We also observed that the transmitted information (solid blue line) 

Figure 3 | (A) Raster plot of one narrowly tuned neuron. Black vertical lines at 
the 2- and 4.5-s marks bracket the stimulus duration period. The shaded gray 
area denotes the analysis period for the van Rossum metric. The cell responded 
strongly to NaCl and MSG and little or nothing at all to the other stimuli. (B) 
Change in mutual information over time for NaCl relative to control stimulation 
with AS. The solid blue line represents the mutual information, while the 

dashed red lines indicate 95% confidence intervals constructed using the 
bootstrap procedure. In response to NaCl, mutual information became 
statistically significant 500 ms after stimulus onset and remained significant 
during the stimulus duration period. (C) Same as (B) except using MSG 
compared to AS. We see that the mutual information was significant 225 ms 
after stimulus onset.

Figure 4 | (A) A plot of the transmitted information across a majority of τ 
values for the analysis period shown in Figure 3A. The solid blue line is the 
transmitted information, while the dashed blue lines represent a 95% 
confidence interval. The solid red line denotes the median of 199 replications of 
our exchanged-resampling analysis, constructed by randomly exchanging spikes 
within trials of the same stimulus, so that the spike count and the PSTHs remain 
the same as the original data. The dashed red lines represent a 95% confidence 
interval for the exchanged-resampling data. We see that the maximum 

transmitted information (blue solid line) lies outside of the confidence interval of 
our exchanged-resampled data (red dashed line) at τ = 650 ms. (B) Clustering 
matrix of neural responses for the same cell. The (I, J) entries in this matrix 
correspond to a probability of classifying stimulus I (the rows of the matrix) to 
stimulus J (the columns of the matrix). (C) MDS results, with dots representing 
stimulus trials and star symbols representing the centroid response for each 
stimulus. NaCl and MSG were distinguished from each other as well as from the 
other four stimuli and AS, which were grouped together.
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An example of our latency analysis for one Acid-generalist cell 
is shown Figure 5. The neuron responded best to citric acid, next 
best to NaCl and MSG, and weakly to KCl and QHCl. The spike 
pattern to sucrose was not different from that to AS.

The estimated response latency for citric acid was 1050 ms and 
the mutual information was highly significant for the remainder 
of stimulation and throughout the post-stimulus period. The NaCl 
and MSG response latencies were 950 and 525  ms, respectively 
(mutual information analysis of MSG responses were similar to 
NaCl responses, and are not shown to save space). In contrast, 
this neuron was unresponsive to sucrose throughout the trial as 
confirmed by the mutual information plot below.

Using van Rossum metric analysis, we found that the maxi-
mum information occurred at τ = 1700 ms, with the calculated 
transmitted information h = 1.7037 bits (out of a maximum of 
h = 2.8074 bits, Figure 6). In fact, the information calculated 
using a predominantly spike rate metric was nearly identical 

We performed MDS analyses to determine whether the temporal 
features of neural responses can be used to distinguish between 
taste stimuli (see Materials and Methods for more details). For 
our analysis, we chose a two-dimensional space for representing 
spike trains. This is because the differences in the stress across cell 
types was significant at the first dimension (Kruskal–Wallis test, 
p-value < 0.01), but was not significant at the second dimension 
(Kruskal–Wallis test, p-value > 0.1).

Multidimensional scaling analyses with τ at 650 ms showed NaCl 
and MSG responses to be broadly distributed in two-dimensional 
space (Kruskal SStress = 0.0087). Collectively they were also clearly 
separated from the responses to the other stimuli and AS, which 
were tightly grouped. The fact that NaCl and MSG responses were 
broadly distributed in two-dimensional space and also had a cor-
respondingly high spike rate is consistent with a prior observation 
that spike rate is related to at least one dimension of this multidi-
mensional space (Di Lorenzo et al., 2009).

Figure 5 | (A) Raster plot for one broadly tuned neuron. The shaded gray 
area denotes the analysis period for the van Rossum metric. There is a robust 
response to citric acid occurring about 1 s after stimulus onset. There were 
also responses to KCl, NaCl, and MSG occurring within 600–1000 ms after 
stimulus onset. (B–D) Analyses done as in Figure 3 for CA (B), NaCl (C), and 

sucrose (D). Based on mutual information, the neuron responded significantly 
to CA and NaCl, but not to sucrose. The response to CA was robust and 
sustained even through the post-stimulus period, while the responses to 
NaCl and MSG were weaker and more variable mostly confined to the 
stimulation period.
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reported by Di Lorenzo et al. (2009). In that study, using a similar 
number of cells (28 cells in our study vs. 35 cells in their study), they 
reported that about one-third of their neurons from the NST had 
significant timing pattern contributions to taste coding. While the 
two cells that were significant in our study were specialist neurons, 
Di Lorenzo et al. (2009) noted that their cells that were significant 
contained both specialist and generalist neuron types.

Table  1 summarizes the latency estimates using the mutual 
information. These results are mostly consistent with our previ-
ous study (Breza et al., 2010). For example, the latency results for 
NaCl-specialist neurons are 412 and 315 ms for the current study 
and the previous study, respectively. This indicates that response 
latencies can be reliably estimated using mutual information tech-
niques, thus avoiding the need to estimate latencies visually. An 
advantage of the mutual information approach is that we can adjust 
the confidence interval width (from say 95 to 90%) for the purpose 

(τ  =  2.5  s, h  =  1.6946 bits), suggesting that temporal pattern 
played little or no role in the discrimination of taste stimuli. We 
observed that the transmitted information was not outside of a 
95% confidence interval for the exchanged-resampled data (red 
dashed lines). This suggests that the temporal pattern of spikes 
does not contribute to the classification of taste stimuli, and that 
the overall firing rate is the principle mode of coding. Overall, 
the metric clustered responses fairly well, achieving about 62% 
correct classification. As depicted in the clustering matrix sucrose 
was confused with AS due to their similar responses. Responses to 
similar taste qualities (MSG and NaCl) were often misclassified 
with each other, but not classified to responses of dissimilar taste 
qualities. Using MDS analyses, we see that responses to CA, NaCl, 
and MSG can be clearly separated from the remaining stimuli. 
Similar to results shown earlier, clusters that have large variability 
tend to also have higher firing rates (Di Lorenzo et al., 2009). 
The two-dimensional plot was a good fit for the MDS analysis 
(Kruskal SSstress = 0.0067).

In many cases, we observed that the maximum value of h cal-
culated at the optimal value of τ was not much different than the 
information obtained purely from a spike rate metric. To determine 
whether spike timing played a critical role in taste discrimination, 
we compared the difference in the maximum value of h (called 
h

max
) and the information obtained from spike rate (called h

rate
) by 

plotting the difference h
max

 − h
rate

 vs. h
rate

. The results can be found 
in Figure 7. Points located on the horizontal axis tell us that the 
neuron was purely a spike rate neuron. Points above the horizontal 
axis give us the increase in the information when including tem-
poral information. We see that nearly all the neurons in the study 
were more spike rate neurons than spike timing neurons. We also 
divided the 2.5-s stimulus period into two equal 1.25-s periods to 
determine whether there were differences in neural coding between 
the first half and the second half of stimulation. We observed similar 
results for both half periods (results not shown).

Based on our exchanged-resampling analysis, only 2 of 28 cells 
showed that spike timing contributed significant information 
during the stimulation period (one NaCl-specialist cell shown in 
Figure 4, and one MSG-specialist cell not shown), for an over-
all percentage of less than 10%. These results differ from those 

Figure 6 | (A) Plot of the transmitted information for several values of τ for the 
analysis period shown in Figure 5A. (B) Clustering matrix of neural responses 
for this cell. (C) Plot of MDS results for the same cell. Here we see that the 

neural responses to CA were clearly distinguished from the other stimuli. 
Responses to MSG and NaCl were distinguished from the other stimuli, but not 
from each other.

Figure 7 | A comparison of the difference in the information hrate to the 
difference of hmax, and hrate. The dashed black line indicates that the temporal 
pattern conveys equal information when compared to the information from 
spike rate. Sp. Denotes specialist neurons, E. Gen. denotes electrolyte-
generalists, and Acid Gen. denotes Acid-generalist cells. Here, we see that all 
the neurons in the study are more rate-based coders than timing-based coders.
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(Figure 8), which shows that the NaCl and MSG trials were some-
what less distinct from control trials with AS, while the sucrose and 
KCl trials were somewhat more distinct from control trials. We also 
observed that the transmitted information was not outside of a 95% 
confidence interval for the exchanged-resampled data, suggesting 
that spike timing did not contribute to taste coding.

Results of the MDS and metric analyses for one acid-generalist 
cell are shown in Figure 9. The raster plot shows that the neu-
ron continued its vigorous firing rate to citric acid throughout 
the post-stimulus period. Similarly, the neuron also continued to 
respond to KCl, NaCl, and MSG during the post-stimulus period, 
but at slower rates. These significant responses relative to control AS 
underlie the metric analysis showing that the information during 
the post-stimulus period was significant for all τ values (h = 1.3992 
bits, τ = 500 ms). This cell also seems to be a pure rate-based cell, 
as the transmitted information was not outside of the confidence 
intervals of the exchanged-resampled data. The space map from 
MDS analysis shows that this neuron continues to see citric acid 
as a distinct stimulus completely separated from the other stimuli 
and AS.

We observed that the difference in information between h
max

 
and h

rate
 vs. h

rate
 was not too different from each other during the 

post-stimulus period (Figure 10). This is similar to the stimulus 
period, where we found that the majority of neurons act more in 
a rate-coding mode rather than a temporal-coding mode. This 
indicates that neurons continue to act in a rate-coding mode even 
after the stimulus period ends.

The majority of cells had significant levels of information at the 
optimal τ value during the post-stimulus period (10/13 special-
ist neurons, 6/6 electrolyte-generalists, and 9/9 acid-generalists) 
for an overall percentage of about 90% (25/28). Of these cells, 
a majority had significant transmitted information values when 
using spike rate alone [10/10 specialist neurons, 6/6 electrolyte-
generalists, and 7/9 acid-generalists, 92% (23/25)]. We observed a 
similar rate of cells which had significant spike pattern contribu-
tions in the post-stimulus period (2/28 for the stimulus period 
vs. 1/28 for the post-stimulus period). The one cell in the post-
stimulus period was not one of the two cells that were significant 
in the stimulus period. This tells us that the principle mode of 
coding does not change during the trial period. A non-parametric 
ANOVA comparing the information values between neural groups 

of exploratory analysis. It is possible that a neural response may be 
significant at 90% confidence, but not at 95% confidence. However, 
reducing the confidence level may introduce false positives.

A non-parametric ANOVA (Kruskal–Wallis) comparing the 
information values across neurons groups was not statistically sig-
nificant (p-value = 0.39), indicating that they were similarly effec-
tive in coding information on taste quality. The median transmitted 
information levels for the three groups of neurons (specialists, elec-
trolyte-generalists and acid-generalists) were about 1.1, 1.2, and.83 
bits, respectively. Comparisons of τ values across neuron groups was 
also not significant (Kruskal–Wallis test, p-value > 0.3), suggesting 
that they use a similar temporal strategy for coding information on 
taste quality. The median τ values for the three groups of neurons 
were about 1, 1, and 0.75, respectively. We found that almost all 
neurons conveyed statistically significant amounts of transmitted 
information during the stimulus duration period (13/13 for spe-
cialists, 6/6 for electrolyte-generalists, and 8/9 acid-generalists).

Post-stimulus analysis
We determined whether significant information was conveyed dur-
ing the post-stimulus period. An example of the MDS and metric-
space analyses for one NaCl-specialist cell are shown in Figure 8.

The raster plot shows that the neuron increased its firing rate 
to NaCl and MSG during stimulation and this increase continued 
for the initial 1-2 s of the post-stimulus period. The firing pattern 
was similar for KCl but to a much more moderate extent com-
pared to NaCl and MSG. The majority of neural responses from 
AS were correctly classified as AS. The neuron was unresponsive 
to citric acid, quinine, and sucrose during stimulation; in contrast, 
the neuron had a higher firing rate in the post-stimulus period for 
sucrose stimulus trials. Consistent with these response patterns to 
NaCl, MSG, KCl, and sucrose during the post-stimulus period, the 
metric analyses showed that the transmitted information during the 
post-stimulus period was significant across all τ values except those 
below about 100 ms. However, less information (h = 0.8895 bits) 
was conveyed and at slower time scale (τ = 800 ms) during the post-
stimulus period compared to that during stimulation (h = 1.2556; 
τ = 650 ms). In essence, the neuron conveyed information during 
and after stimulation, and that the neuron interprets taste stimuli 
in a combination of spike timing and spike rate modes. The space 
map from MDS analyses provides added support for these findings 

Table 1 | Estimated response latencies (in milliseconds) to multiple stimuli for all cells in the study.

Type	 KCl	 CA	 NaCl	 QHCl	 MSG	 Sucrose

NaCl Sp.	 0/9 (0%)	 0/9 (0%)	 9/9 (100%)	 0/9 (0%)	 9/9 (100%)	 0/9 (0%)

Latency	 –	 –	 412 ± 51	 –	 818 ± 300	 –

MSG Sp.	 2/2 (100%)	 0/2 (0%)	 2/2 (100%)	 0/2 (0%)	 2/2 (100%)	 0/2 (0%)

Latency	 2250 ± 247	 –	 675 ± 247	 –	 438 ± 300	 –

Sucr Sp.	 0/2 (0%)	 0/2 (0%)	 2/2 (100%)	 0/2 (0%)	 2/2 (100%)	 2/2 (100%)

Latency	 –	 –	 363 ± 123	 –	 1412 ± 760	 987 ± 830

E. gen.	 5/6 (83%)	 1/6 (17%)	 6/6 (100%)	 5/6 (83%)	 5/6 (83%)	 1/6 (17%)

Latency	 1115 ± 565	 1675	 1050 ± 357	 1175 ± 453	 925 ± 424	 1650

Acid gen.	 6/9 (67%)	 9/9 (100%)	 5/9 (56%)	 3/9 (33%)	 8/9 (89%)	 1/9 (11%)

Latency	 1425 ± 842	 1344 ± 560	 765 ± 320	 1175 ± 875	 578 ± 343	 975

Values presented are the means ± 1 SD.
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spikes. The distance between two spike trains is the sum of all the 
steps. Note that if q = 0, then it costs nothing to shift existing spikes; 
therefore, the metric evaluates the difference in the total number of 
spikes. If q is large, then it is cheaper to add and delete a spike then 
it is to shift an existing spike. Therefore, the metric evaluates the 
number of non-coincident spikes. We asked whether the choice of 
metric would influence the overall results of our analysis.

Some of our results are shown in Figure  11. For the NaCl-
specialist cell, we see that the maximum transmitted information 
h

max
 for the van Rossum metric is 1.2556 bits, with the transmit-

ted information from spike rate h
rate

 is 1.0167 bits. The results 
obtained from the Victor–Purpura metric was not too much dif-
ferent (h

max
 = 1.2547 bits, with h

count
 = 0.9215 bits). For the acid-

generalist cell, h
max

 = 1.1544 bits and h
rate

 = 0.9855 bits for the van 
Rossum metric, while h

max
 = 1.1177 bits and h

count
 = 0.9215 bits 

from the Victor–Purpura metric.
To compare the performance of the two metrics, we performed 

a paired t-test using all 28 neurons in the dataset comparing the 
values of h

max 
for the van Rossum metric and the Victor–Purpura 

metric. This test was not significant (p-value = 0.18), indicating that 
they have similar performance. Comparisons of h

rate
 and h

count
 were 

also not significant using this procedure (p-value = 0.58). Using 

(specialist, electrolyte-generalist, and acid-generalist) was not sig-
nificant (Kruskal–Wallis, p-value = >0.3) indicating that they were 
similarly effective in coding information about taste quality during 
the post-stimulus period. The median information values for these 
neuron groups were about 0.95, 1.1, and 0.85 bits, respectively. The 
average τ

 
values were not statistically significant (p-value = 0.75) 

indicating that the three neuron groups process information with 
a similar timescale. The median τ values for the three groups were 
about 750 ms.

Comparison with other spike train metrics
We used the van Rossum metric to characterize temporal patterns 
because of its simplicity and ease of use. Paiva et al. (2010) derived a 
computationally efficient estimator of the van Rossum metric, mak-
ing it a simple tool for spike train analysis. The Victor and Purpura 
(1996) metric is another popular metric used in taste research (Di 
Lorenzo et  al., 2009). The Victor–Purpura metric transforms a 
single spike train to another given a sequence of “steps,” where at 
each step, one of three operations can be used. Spikes can either be 
removed or added, incurring a cost of 1, while an existing spike can 
be shifted in time with a cost of q|t

1
 – t

2
|, where t

1
 – t

2
 is the length of 

the shift. The parameter q controls how costly it is to shift existing 

Figure 8 | (A) Raster plot for one NaCl-specialist cell. The shaded gray area denotes the analysis period. (B) Plot of the transmitted information over several values 
of τ for the shaded period shown in (A). (C) Clustering matrix of neural responses for this cell. (D) MDS analysis plot.
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Figure 9 | (A) Raster plot for one Acid-generalist cell. The shaded gray area denotes the analysis period. (B) Plot of the transmitted information over several values 
of τ for the shaded period shown in (A). (C) Clustering matrix of neural responses for this cell. (D) MDS analysis plot.

Figure 10 | A comparison of the difference in the information hrate to the 
difference of hmax, and hrate for neural responses in the last 2 s of the trial. 
The dashed black line indicates that the temporal pattern conveys equal 
information when compared to the information from spike rate. Sp. Denotes 
specialist neurons, E. Gen. denotes electrolyte-generalists, and Acid Gen. 
denotes Acid-generalist cells. Here, we see all the neurons in the study are 
more rate-based coders than timing-based coders.

a non-parametric sign test revealed the same conclusion in both 
cases. Thus, the choice of metric does not have a significant impact 
on the overall results obtained.

Discussion
The present findings showed that while spike timing contributed a 
significant part of the message relayed by afferent neurons from rat 
fungiform taste buds to the brain, spike rate contributed the larg-
est portion especially after response onset during stimulation. The 
EGG was a reliable reference event of stimulus onset from which 
we determined spike rate and spike timing responses to chemi-
cal stimulation. As shown in our prior study (Breza et al., 2010) 
and confirmed in this investigation, the importance of temporal 
information was most evident for first spikes as reflected by unique 
response latency profiles to the standard taste stimuli for differ-
ent neural groups; spike timing seemed to be less important for 
coding during stimulation. Thus taken in entirety, spike rate and 
spike timing together are more effective than spike rate alone in 
coding stimulus quality information to a single basic taste in the 
periphery. This was equally apparent for narrowly tuned specialists 
that responded mostly to a single taste stimulus (NaCl, MSG, or 
sucrose) as it was for broadly tuned electrolyte- and acid-generalist 
neurons that responded to multiple chemical stimuli.
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The present findings are consistent with earlier work from three 
perspectives. Firstly, there are a few early studies (e.g., Fishman, 
1957; Mistretta, 1972; Ogawa et al., 1973, 1974; Nagai and Ueda, 
1981) providing evidence that rat chorda tympani fibers distinguish 
chemical stimuli based on their temporal firing patterns to stimula-
tion of the tongue. Unfortunately, these studies did not evaluate 
neural responses separately for different neural groups nor did they 
use computational methods to quantify the relative contribution of 
spike rate and spike timing to coding as was done here. Secondly, 
there is ample evidence from studies of the central gustatory sys-
tem that spike count provides an ambiguous code for taste qual-
ity among broadly tuned neural generalists that respond nearly 
equally well to more than one taste quality; instead, they rely on 
spike timing to code differences in taste quality (Di Lorenzo et al., 
2009). Unlike the brain, spike count is not an obvious ambiguous 
signal in the periphery. While broadly tuned neurons increase their 
discharge rate to chemical stimuli representing distinctly different 
taste qualities, they do so with different spike rates, responding 
at a significantly higher rate to their “best” stimulus of a single 
taste quality and consistently less to secondary stimuli (Frank et al., 
2008). Thirdly, we recently discovered that single neurons from the 
geniculate ganglion distinguished chemical stimuli by differences 
in response latency (Breza et al., 2010). This led to the present work 
anticipating that evidence on one temporal measure of sensory 
discrimination at response onset was a harbinger of subsequent 
pronounced temporal coding during stimulation.

There are limitations of the present work focused on single-cell 
responses to highly controlled delivery of a single primary chemi-
cal stimulus for short duration. The most obvious limitation is that 

In our prior (Breza et al., 2010) and present investigations, we 
delivered chemical stimuli using a constant flow rate of 50 μl/s simi-
lar to the rate consumed by freely licking rats. It is important to note 
that our findings are consistent with the fact that response latency 
must depend upon the type and number of stimulus molecules 
and receptor proteins available at the receptive surface, not the vol-
ume of fluid passing over the tongue. In our previous paper (Breza 
et al., 2010), we showed that response latency was inversely related 
to stimulus concentration while flow rate remained constant. For 
example, the average response latency to 0.03–0.5 M NaCl by NaCl-
specialist neurons varied systematically from a high of about 550 ms 
to a low of 150 ms while the flow rate (50 μl/s) remained constant. 
The response latency pattern for acid-generalist neurons was the 
same to 0.03–0.5 M NaCl, but the range differed from a high of about 
900 ms to a low of 500 ms again while flow rate remained constant 
at 50 μl/s. Furthermore, benzamil, a pharmacological antagonist 
of the epithelial sodium channel, reduced the NaCl spike rates and 
increased the NaCl response latencies of NaCl-specialist neurons, 
but did not change the NaCl responses of acid-generalist neurons. 
NaCl-specialist neurons detect NaCl through an ENaC mechanism, 
whereas acid-generalist neurons utilize a different receptor mecha-
nism for NaCl detection. Thus, response latency differences across 
neuron types arose because of differences in stimulus concentration 
and stimulus quality and not the volume of fluid passing over the 
tongue. The volume of fluid passing over the tongue does, how-
ever, have a small influence on the response latency. Based upon 
our unsystematic observations, doubling the flow rate from 50 to 
100 μl/s shortened by a few milliseconds the response latency to all 
stimuli, but the overall response latency profile remained the same.

Figure 11 | (A) A rasterplot of one NaCl-specialist cell (top) and one Acid-generalist cell (bottom) in the study. (B–C) Metric Analysis results using the van Rossum 
metric (B) and the Victor–Purpura metric (C) for the corresponding cell in (A).
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response latency by visual inspection as the first observable increase 
in response frequency after EGG onset. The results of the present 
study using mutual information are largely consistent with our 
prior findings, although the absolute values differ slightly. This is 
apparent for the two most common neural groups (NaCl-specialists 
and acid-generalists). For both studies, NaCl-specialists responded 
to NaCl with average 412  ms latency in the present study (see 
Table 1) and 315 ms latency in our earlier study and responded 
little if at all to other stimuli with much longer latency. In the 
present study, NaCl-specialists responded consistently to MSG at 
twice the response latency as to NaCl; MSG was not used in the pre-
vious study. For both studies, acid-generalists were the most broadly 
tuned of the neuron groups. Like our prior study (Breza et al., 2010), 
acid-generalists responded with the highest frequency to citric acid 
but typically with a longer latency than to the other stimuli. Acid-
generalists responded to citric acid with average 1344 ms latency 
in the present study and 1828 ms latency in our prior study. In our 
prior study, citric acid elicited an initial weak inhibitory response 
followed by robust excitation in some acid-generalist neurons. In 
the present study, we were unable to detect this weak inhibitory 
response with mutual information most likely because of the low 
spontaneous rate to the rinse of AS. Mutual information revealed, 
however, continued responses after stimulation and off-responses 
for example to sucrose in Figure 8.

Rats can decide to accept a nutritious solution or reject a poi-
sonous one very quickly, perhaps within 250–600 ms of licking 
a solution (Halpern and Tapper, 1971). The underlying sensory 
process for this quick decision must occur within this same time 
frame, not over an extended time domain. First spikes (response 
latency) may be the mechanism that underlies this process. In fact, 
there is precedent for evoking first spikes as a coding strategy in 
other sensory systems (VanRullen et al., 2005). Experimentally, we 
used EGG onset as a means to define stimulus onset. In practice, 
stimulus onset may be encoded by the animal’s intention to sample 
a solution, by an internal oscillatory signal from rhythmic licking 
(Gutierrez et al., 2010) or by stimulus contact with tactile receptors 
on the tongue. Regardless of the way it begins, timing is a critical 
biologically adaptive feature of the nervous system, including the 
neural underpinnings for taste-mediated behavior.

Due to its simplicity and ease of use, we choose the van Rossum 
metric to characterize the temporal features of neural responses. 
Paiva et al. (2010) derived a computationally efficient method for 
calculating the van Rossum metric and making it a valuable tool 
for spike train analysis used in other sensory systems (Narayan 
et al., 2006; Wohlgemuth and Ronacher, 2007; Neuhofer et al., 
2008). The results obtained with this metric indicate that periph-
eral gustatory neurons rely mostly on spike rate to code taste 
quality information during and after stimulation. A complete 
re-analysis of our data with the Victor and Purpura (1996) metric 
used previously in taste research (e.g., Di Lorenzo et al., 2009) 
yielded similar results to that obtained with the van Rossum met-
ric. Consequently, this makes it highly unlikely that the choice 
of metric influenced the overall pattern of results during and 
after stimulation. Spike timing is more critical for first spikes as 
reflected by response latency differences to stimulus concentra-
tion (Breza et al., 2010) as well as to the standard stimuli among 
different neural groups.

the animals were anesthetized during recording and consequently 
devoid of tongue movements associated with rhythmic licking 
that may affect neural responses. It is unlikely that anesthesia has 
a direct affect on neural responses from the geniculate ganglion, 
because Li et al. (2011) have recently shown that odor responses 
by olfactory bulb neurons were unaffected by anesthesia level. 
Rhythmic licking has been shown to synchronize spike activity 
across neurons in the brain especially after learning (Gutierrez 
et al., 2010). However, learning was not a factor in the present 
study. During normal feeding the taste receptors are more com-
monly stimulated not by a single-component constant stimulus 
but rather by a complex chemical mixture combined with coin-
cident tactile and thermal cues all of which varies in intensity 
over time. The peripheral gustatory system has the capacity to 
process complex stimuli as afferent neurons innervating taste buds 
respond to many taste qualities across a broad range of concen-
trations, and also respond to tactile and thermal stimulation, as 
well (Kosar and Schwartz, 1990; Finger et al., 2005). Furthermore, 
we have shown that temperature modulates neural responses to 
chemical stimulation (Breza et al., 2006). We delivered solutions 
to the tongue adapted to 35ºC AS (Hirata et al., 2005), at low 
flow rate equivalent to a rat’s normal rate of consumption and 
without confounding tactile and thermal artifacts. Under these 
limited conditions, the peripheral gustatory system seems to rely 
more on spike rate during stimulation than on spike timing for 
coding. For more complex stimulation involving, for example, 
mixtures of two or more basic taste stimuli (Di Lorenzo et al., 
2009) or analyses of parallel processing across several neurons 
simultaneously (Katz et al., 2002), spike timing may play a more 
critical role in coding taste quality information in the periph-
eral gustatory system. These intriguing topics concerning com-
plex stimulation and parallel processing in the periphery will be 
addressed in future studies.

Computational methods to analyze temporal response 
patterns
There are considerable advantages of using mutual information 
to characterize neural discharge patterns to chemical stimulation. 
Its obvious strength is that it is a probability statistic based on 
many response trials to repeated stimulus presentations reducing 
the likelihood of reporting dubious results based on single or few 
trials. Another significant advantage is that mutual information is 
not bound by the magnitude of the change in discharge rate, but 
by the consistency of the spike pattern to a given stimulus. With 
mutual information, both large and small deviations in spike rate 
and/or spiking timing provide significant information if they con-
sistently co-occur with a given stimulus. Furthermore, we obtained 
confidence intervals using the bootstrap procedure for determina-
tion of significant information conveyed over time at the begin-
ning (response latency) as well as during and after stimulation. 
We tethered our temporal measures to EGG onset that accurately 
marked the time when the stimulus solution first contacted the 
lingual epithelium allowing us to separate neural activity into pre-
stimulus, stimulus, and post-stimulus periods.

In our prior study (Breza et al., 2010), we identified four sepa-
rate groups of geniculate ganglion neurons based on their unique 
response latency profiles to the basic taste stimuli. We determined 
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