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Cannabinoids and the endocannabinoid system (ECS) have been intensively

studied for their neuroregulatory roles in the central nervous system (CNS),

especially in regulating learning and memory. However, many experimental

and clinical studies obtained conflicting results indicating a complex

network of interaction underlying the regulation of learning and memory

by di�erent cannabinoids and the ECS. The ECS influences neuronal synaptic

communications, and therefore may exert di�erent regulation via their di�erent

impact on other neurotransmitters. The monoaminergic system includes a

variety of neurotransmitters, such as dopamine, norepinephrine, and serotonin,

which play important roles in regulating mood, cognition, and reward. The

interaction among cannabinoids, ECS and themonoaminergic system has drawn

particular attention, especially their contributions to learning and memory. In

this review, we summarized the current understanding of how cannabinoids,

ECS and the monoaminergic system contribute to the process of learning and

memory, and discussed the influences of monoaminergic neurotransmission by

cannabinoids and ECS during this process.
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1 Cannabinoids and the endocannabinoid system

Cannabinoids are first identified in the substances derived from cannabis plants.

One of the most prominent contents in plant cannabinoids is 1-9 tetrahydrocannabinol

(THC), which is the main psychoactive substance in cannabis. Up to now, more than

113 different cannabinoids have been identified in cannabis plants (Gulck and Moller,

2020). Cannabis has high heterogeneity, containing more than 600 different chemical

components. There are multiple different plant strains containing varying amounts of

different plant cannabinoids. Synthetic cannabinoids, a group of chemically synthesized

substances that are functionally similar to cannabis, have been intensively studied for

pharmacological purposes (Roque-Bravo et al., 2023). Different cannabinoids have been

used in the treatment of various diseases, including multiple sclerosis (MS), neuropathic

pain, vomiting after chemotherapy, and neuropsychological and cognitive disorders such
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as depression, anxiety, and sleep disorders. The biological effects

of both plant-originated and synthetic cannabinoids are mainly

mediated by a class of receptors belonging to the G-protein

coupled receptor family: the type-1 and type-2 cannabinoid

receptors (CB1R and CB2R). The endogenous cannabinoids

(eCBs), anandamide (ANA), and 2-arachidonoylglycerol (2-AG)

are some the endogenous lipid ligands of CB1R and CB2R

(Busquets-Garcia et al., 2022). The cannabinoid receptors, eCBs,

and the enzymes responsible for the biosynthetic and hydrolytic of

the eCBs are collectively composed of the endocannabinoid system

(ECS) (Lu and Mackie, 2016).

ECS is a widespread modulatory signaling system in the

central nervous system (CNS) and plays critical roles in the

development of CNS, synaptic plasticity, and the response to

endogenous and environmental stimulations. CB1R, located on the

presynaptic terminals of GABA and glutamate neurons (Terzian

et al., 2014), is activated by eCBs synthesized and released by

postsynaptic terminals in response to postsynaptic depolarization.

This retrograde regulation of eCBs results in the depolarization-

induced suppression of excitation and inhibition (DSE and DSI)

causing a transient presynaptic inhibition of neurotransmitter

release (Scheyer et al., 2023). CB1R is also expressed by the

astrocytes on their membrane and mitochondria (mtCB1R),

participating in the regulation of neuronal/synaptic function

via astrocyte-neuron crosstalk (Figure 1) (Busquets-Garcia et al.,

2018). CB2R, originally identified as a cannabinoid receptor of

the peripheral system restricted to immune cells, is now proven

to be expressed throughout the CNS. CB2R is expressed at a low

level in the microglial cells and astrocytes in a healthy brain.

In pathological conditions, such as brain injuries, stroke, and

neurodegenerative diseases, the expression of CB2R is highly

induced participating in the regulation of inflammation, and

therefore has been intensively studied as a treatment target in such

diseases (Xin et al., 2020; Yu et al., 2023). The cannabinoids and

the ECS are demonstrated to play pivotal roles in the process of

learning and memory. However, the exact effects of cannabinoids

and the ECS during this process are under debate. In this review,

we summarize the recent research advances of how cannabinoids

and the ECS affect learning and memory via their interaction with

the monoamine neurotransmitters.

2 Cannabinoids in learning and
memory

How cannabinoids affect learning and memory has been

one of the most debated topics for a long time. Many clinical

studies reveal no difference in memory, attention, processing

speed, and executive function between people with a history

of cannabis use and non-user controls (Lyons et al., 2004;

Burggren et al., 2018; Panee et al., 2018; Fatjo-Vilas et al.,

2020). Meanwhile, other studies support the causal link between

cannabis intoxication and learning/memory impairment in a dose-

dependent manner (Ranganathan and D’Souza, 2006; Schoeler and

Bhattacharyya, 2013; Petker et al., 2019). A meta-analysis based on

a large dataset covering more than 43,000 participants reveals the

robust association between cannabis use and long-term cognitive

impairments (Dellazizzo et al., 2022). A recent randomized

trial reveals that administration of THC causes impairments

in working memory, increased mind wandering, and decreased

metacognitive accuracy (Adam et al., 2020). Consistently, another

study demonstrates impairment in memory and processing speed

in young adults with positive urine toxicology screen for THC

(Petker et al., 2019). THC is considered the main psychoactive

component in cannabis causing the acute and adverse effects of

cannabis on cognitive functions and memory loss.

In contrast to the clinical studies, treatments using different

cannabinoids in rodents demonstrate both impairment or

improvement of memory dependent on different stages or tasks of

the memory. Also, the type, dosage, and route of administration

of the cannabinoid compound, and the age of subjects also seem

to influence the outcomes of how cannabinoids affect learning

and memory. Chronic low dosage of THC (3 mg/kg per day)

for up to 28 days improves memory and spatial learning in old

mice (Bilkei-Gorzo et al., 2017). A single low dose of THC (0.002

mg/kg) is demonstrated to improve memory and spatial learning

in 24-month-old mice (Sarne et al., 2018). This pro-cognitive effect

of THC is likely related to increased volume in the entorhinal

cortex, prefrontal cortex, and posterior hippocampus (Sarne

et al., 2018). Whereas other components in cannabis, such as

cannabidiol (CBD), a non-euphoric component of cannabis, do

not induce cognitive impairment. Further research suggests that

CBD demonstrates potential anxiolytic and antipsychotic effects,

and therefore has been intensively studied for pharmacological

purposes (Schoeler and Bhattacharyya, 2013). Studies using

synthetic cannabinoids reveal the highly complex regulatory

role of ECS in learning and memory. Microinjection of CB1R

antagonists (AM251 and SR141716A) into the CA1 region of the

hippocampus is found to impair spatial learning in the Morris

water maze (MWM) and cause memory acquisition deficit in

passive avoidance tasks. Similarly, AM251 injection in basolateral

amygdala (BLA) is reported to disrupt the reconsolidation of

fear memory. Administration of GABAA receptor antagonist

Bicuculline was demonstrated to abolish this effect of AM251,

suggesting that this regulation of AM251 was mediated by

GABAergic transmission in the BLA (Ratano et al., 2014).

Interestingly, Both agonizing and antagonizing of CB1R in CA1

via microinjection of arachidonoylcyclopropylamide (ACPA),

a synthetic CB1R-specific agonist, and AM251, respectively,

disrupt spatial learning of rats in MWM (Vaseghi et al., 2018).

CB1 antagonizing using SR141716 (3 mg/kg) causes increased

fear response, meanwhile, CB1 agonizing using CP55940 (50

µg/kg) aggravates the fear response (Llorente-Berzal et al., 2015).

Low-dose administration of ACPA at 0.01 mg/kg and AM251

at 50 ng/mouse are reported to cause impairment in memory

acquisition (Nasehi et al., 2015). However, in contrast to previous

studies, AM251 systematic administration at 1.0 mg/kg is reported

to promote recognition memory in rats (Bialuk and Winnicka,

2011). CB1R agonist (WIN55212-2) administration at doses of

1, 3, or 5 mg/kg is found to dose-dependently impair object

recognition memory in rats (Baek et al., 2009). However, a lower

dose of WIN55212-2 at 0.25 mg/kg is reported to promote the

extinction of contextual fear memory and spatial memory in rats

(Pamplona et al., 2006). Moreover, the functions of CB1R also
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FIGURE 1

Regulation of glutamate and GABA neurotransmissions, and astrocyte-neuron crosstalk by CB1 receptors. CB1R, Cannabinoid Receptor Type 1;

2-AG, 2-arachidonoylglycerol; DAG, diacylglycerol; DGLα, diacylglycerol lipase-α; PLCβ, phospholipase C-β.

seem to exert different impacts on learning and memory under

pathological conditions. Both pharmacological stimulation and

antagonizing of CB1R demonstrate significant protective effects in

rodent models of memory disturbances induced by beta-amyloid

(Aβ) peptide brain injection (Mazzola et al., 2003; van der Stelt

et al., 2006). This large number of conflicting experimental

results collectively reveals the complex nature of how different

cannabinoids and the ECS are involved in the regulation of

learning and memory.

One of the possible reasons why different cannabinoids

and the ECS differently affect learning and memory is that

they may interact with different neurotransmitters. Monoamine

neurotransmitters are a class of chemical messengers including

dopamine, norepinephrine, and 5-hydroxytryptamine (5-HT;

serotonin). These neurotransmitters play key roles in the learning

and memory process, influencing the formation and maintenance

of learning memories by binding to specific receptors that regulate

nerve cell activity and synaptic transmission properties. ECS can

potentially regulate the monoamine neurotransmission via direct

regulation of their release on neuronal terminals, or indirectly

via the inhibitory and excitatory projections on the neurons

that are able to release monoamine neurotransmitters. As CB1R

is believed to be differently expressed in different neuronal

subpopulations, with a higher level on GABAergic interneurons

and a lower level on glutamatergic terminals (Marsicano and

Lutz, 1999), their impact on monoamine neurotransmission and

the process of learning and memory is therefore complex. In

the following parts, we summarize the current understanding of

how cannabinoids and the ECS interact with the monoaminergic

system, and how this interaction is involved in the regulation of

learning and memory.

3 The interaction between
endogenous cannabinoids and
monoamine neurotransmitters in
learning and memory

3.1 Dopaminergic neurotransmission

3.1.1 Dopaminergic neurotransmission in
learning and memory

The dopamine system is related to many different aspects of

normal brain functions, including learning and memory (Grella

and Donaldson, 2024), emotions (Wakeford et al., 2024), and

cognitions (Sun et al., 2024). Interestingly, an inverted U-shaped

curve has been proposed between dopamine signaling and

cognitive performance (Weber et al., 2022). Specifically, optimal

levels of dopamine and D1 dopamine receptor are required for

best cognitive function, excessively high or low dopamine signaling

impairs cognitive performance. Consistently, both agonizing and

antagonizing of D1 dopamine receptor in the BLA are found to

impair context-dependent fear learning (Nasehi et al., 2016).This

dose-dependent effect of dopamine on cognitions indicates its

prominent regulatory role during this process. Indeed, many

studies indicate that the dopamine system plays a crucial role

in various cognitive functions by regulating blood oxygen level-

dependent (BOLD) signals (Salami et al., 2019). Anatomically, the

dopamine-expressing neurons are widely distributed throughout

the CNS. Meanwhile, intense dopaminergic projections connect

the striatum, hippocampus, prefrontal cortex and the limbic

system. This dopaminergic network plays an important role in the

formation and processing of associative memory. The dopamine
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system in the amygdala is largely involved in the formation of

fear-regulated memory (Ritger et al., 2024). In the hippocampus,

dopamine plays an important role in the transition of CA1-CA3

synapses from early long-term potentiation (E-LTP) to late

long-term potentiation (L-LTP) (Frey et al., 1990). Moreover,

D1/D5 dopamine receptor agonists enhance memory function

by mimicking the neurophysiological effects of dopamine in

learning and memory (Hersi et al., 1995). However, there is limited

research on the function of D2-like dopamine receptors, and

their role in cognitive function has not been fully elucidated.

Previous studies have shown that PFC infusion of the D2

agonist 2-(n-phenylethyl-n-propyl)-amino-5-hydroxytetrahydroalin

hydrochloride (PPHT), dose-dependently disrupts spatial working

memory in rats undergoing delayed U-maze tasks (Druzin

et al., 2000). Quipilol (D2 receptor agonist) has a systemic dose-

dependent effect on spatial working memory in delayed response

tasks in young adult monkeys, mainly manifested as a protective

effect at moderate doses and memory damage at high or low doses.

It is worth noting that dopamine exhibits a high affinity for D4

receptors, which are highly expressed in brain regions related

to learning and memory (Alachkar et al., 2024). In addition, the

dopaminergic system is also involved in processing information

related to rewards. In the ventral tegmental area (VTA) and

substantia nigra, dopaminergic neurons are able to track reward

prediction errors and emit signals with typical features of learning

positive reinforcement signals (Yang et al., 2024). Although the

dopaminergic system is considered a global neural regulatory

system, it can provide precise temporal information for specific

target structures, affecting many cognitive functions.

3.1.2 ECS influences dopaminergic
neurotransmission

The ECS plays an important role in regulating reward-related

changes in dopamine levels in the nucleus accumbens (NAc) and

other brain regions associated with addiction (Honeywell et al.,

2024). THC or WIN55212-2 administration increases dopamine

levels in primates and rodents, and exposure to THC significantly

increases early adult opioid self-administration and enhances

the release of midline dopamine in rats (Justinova et al., 2013;

Terzian et al., 2014). Systemic injection of cannabinoids (THC or

WIN55212-2) enhances the excitability of PFC neurons toward

VTA dopaminergic input and indirectly increases the excitability

of VTA dopaminergic neurons by inhibiting the GABAergic

projection to VTA (Pistis et al., 2001). The activation of CB1R

in PFC changes the activation of downstream dopaminergic

neurons in VTA in a biphasic and dose-dependent manner, leading

to disturbances in emotional memory processing (Pistis et al.,

2001). Intra-BLA injection of D1 receptor agonist SKF38393

(1µg per mouse) or D2 receptor agonist quinpirole (0.1 µg per

mouse) is demonstrated to rescue the ACPA-induced memory

acquisition impairment. Those regulatory roles of cannabinoids

in dopaminergic transmission and dopamine-related behavior

appear to be indirect, and may be exerted via the influences

of CB1R on GABAergic or glutamatergic terminals projecting

on dopaminergic neurons, as CB1R appears to be present in

both glutamatergic projection and GABAergic inhibitory neurons

(Nasehi et al., 2016). Expression of CB1R is also reported on

neurons expressing D1 dopamine receptors (Terzian et al., 2011;

Micale et al., 2017). Conditional knockout of CB1R on D1

dopamine receptor-expressing cells causes weak- to moderate

anxiety-like behaviors and significantly elevated contextual and

auditory-cued fear (Terzian et al., 2011), indicating the possible

influences of dopamine downstream regulations by ECS.

One recent study reveals the expression of CB1R on dopamine

neurons in VTA related to rewarding. Conditional knockout

of CB1R on dopamine neurons abolishes the inhibitory effects

of THC or arachidonyl-2
′

-chloroethylamide (ACEA, a highly

selective cannabinoid CB1 receptor agonist) administration on

rewarding as revealed by dose-dependently reduced optical

intracranial self-stimulation, indicating the direct regulation of

CB1R on dopamine release and related behaviors (Han et al.,

2023). However, the mechanism of how ECS interacts with

dopamine neurotransmission, especially its influences on the

process of learning and memory, is not fully understood. Acute

systematic injections of THC or WIN55212-2 are reported to

increase dopamine accumulation in the hippocampus, indicating

a possible regulation of learning and memory via dopaminergic

neurotransmission by cannabinoids (Moranta et al., 2004), and

therefore worth more in-depth studies.

Other than influencing dopamine levels, cannabinoids have

also been suggested to modulate the transcription of dopamine

receptors. Perinatal THC exposure in rats is associated with

schizophrenia in adulthood, as revealed by social withdrawal

and cognitive impairments (Di Bartolomeo et al., 2021, 2023).

Those abnormalities are due to increased transcriptional levels

of CB1R and D2/D3 dopamine receptors in the PFC (Stark

et al., 2020; Di Bartolomeo et al., 2021, 2023). Interestingly, THC

treatment in adults is demonstrated to rescue the cognitive deficit in

prenatal methylazoxymethanol acetate (MAM) exposure-induced

schizophrenia, rather than perinatal THC exposure-induced

schizophrenia in rats, by modulating the expression of D2/D3

dopamine receptors (Di Bartolomeo et al., 2023). Meanwhile,

CDB treatment is reported to reverse the prenatal MAM exposed-

induced schizophrenia by changing the expression of D3 dopamine

receptor (Stark et al., 2020). Collectively, those studies not only

indicate the important roles played by cannabinoid-dopamine

interaction in schizophrenia, but also suggest the critical role of

their interactions during ontogenetic development. As ECS has

been reported to play critical roles in regulating the neurogenic

processes during ontogenetic development (Gomes et al., 2020),

how this ontogenetic variation of ECS influences dopamine

neurotransmission and contributes to the processes of learning and

memory is particularly interesting.

3.2 5-HT neurotransmission

3.2.1 5-HT neurotransmission in learning and
memory

Eric Kandel demonstrated the decisive contribution of 5-

HT to memory formation in the 1970s. 5-HT induces the level

of 3′, 5′-cyclic adenosine monophosphate (cAMP) in sensory

neurons of California sea hare (Aplysia californica) (Cedar and
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Schwartz, 1972). This process activates cAMP-dependent protein

kinases, which promote synaptic transmission in sensitization

and induce synaptic strength-dependent LTP of protein synthesis

after repeated stimulation (Longo et al., 1990). Since then, the

contribution of 5-HT in the memory process has been intensively

studied and proposed as a promising target for the treatment of

memory-related disorders. 5-HT receptors contain seven different

subtypes, including 5-HT1 receptor to 5-HT7 receptor (Sharp and

Barnes, 2020). Except for 5-HT3 receptor, which belongs to the

ligand-gated ion channel belongs to the cys-loop channel family,

all of the rest are G-protein-coupled receptors (GPCRs), which

couple to at least 13 types of G proteins, and are involved in a

multitude of physiological and pathological processes (Noda et al.,

2004; Hannon and Hoyer, 2008).

5-HT receptors are heterogeneously distributed in the brain

and activate different downstream signaling pathways according

to their coupled G proteins. However, the exact role of 5-HT in

learning and memory regulation is not fully understood, partially

due to the complex regulatory role carried out by distinct subtypes

of 5-HT receptors. For example, stimulation of 5-HT1A receptor,

coupled with inhibitory G proteins (Gi/Go), generally demonstrates

learning impairment effects (Ogren et al., 2008). In contrast, in

another study, blocking of 5-HT1 receptors is reported to enhance

the hippocampal activities, and therefore can be targeted as a

potential therapeutic option for depression or diseases related

to memory deficits (Jahreis et al., 2023). Administration of 5-

HT1B receptor agonist anpirtoline via subcutaneous injection

produce dose-dependent impairment of spatial learning in rats,

and 5-HT1B receptor selective antagonist NAS-181 fully rescues

the impairment of learning caused by anpirtoline, indicating the

important role of 5-HT1B receptor in the processes of learning

and memory (Ahlander-Luttgen et al., 2003). 5-HT2A receptor

is reported to influence memory in human (de Quervain et al.,

2003). 5-HT2A receptor, a Gq/11-coupled G protein, is able to

form heterodimer with dopamine D2 receptors and mGluR2

receptor (Gonzalez-Maeso et al., 2008; Lukasiewicz et al., 2010),

and therefore participates in the process of learning and memory.

5-HT2A receptor is also demonstrated to directly interact with

NMDA receptor. Postsynaptic 5-HT2A receptor regulates object

memory consolidation via modulating NMDAR-mediated synaptic

plasticity (Peddie et al., 2008). Therapeutic approaches targeting

5-HT2A receptor has been indicated as a promising way for

the treatment of learning and memory impairment associated

with neurodegenerative diseases, and also a possible approach to

regulate addiction (Zhang and Stackman, 2015). 5-HT3 receptor is

not coupled with G proteins. Systemic injection of 5-HT3 receptor

antagonist is reported to promote the induction of LTP and

enhance the retention of memory (Staubli and Xu, 1995). Mice with

5-HT3 receptor knockout demonstrate impaired fear extinction

(Kondo et al., 2013). 5-HT4 receptor, coupled with stimulatory

G proteins (Gs), is also reported to promote memory acquisition

and consolidation in both human and mouse (Teixeira et al., 2018;

Murphy et al., 2020). The exact function of 5-HT5 receptor is not

clear. It is reported to couple with Gi/Go or Gs. In learning and

memory, 5-HT5A receptor is demonstrated to promotememory, as

pharmacological blockade of 5-HT5A receptor impairs both short-

term and long-term memory, while 5-HT5A receptor stimulation

enhancesmemory (Gonzalez et al., 2013). 5-HT6 receptor, although

predicted to couple with Gs (Hannon and Hoyer, 2008), is

found to negatively influence learning and memory. Specifically,

using selective 5-HT6 receptor antagonists is found to promote

learning and memory via increased cholinergic neurotransmission

(Meneses et al., 2007), while pharmacological stimulation of 5-

HT6 receptor is reported to impair both short- and long-term

memories (Meneses et al., 2008). 5-HT7 receptors are reported

to couple with Gs in human (Hannon and Hoyer, 2008). 5-

HT7 receptors agonizing using AS19 is reported to impair short-

term memory, and this impairing effect is rescued by selective 5-

HT7 receptor antagonist SB-269970, but not by elective 5-HT1A

antagonist WAY 100635 (Meneses et al., 2008). Interestingly, 8-

Hydroxy-2-(dipropylamino) tetralin (8-OH-DPAT), an agonist for

both 5-HT1A and 5-HT7 receptors, is demonstrated to cause

contextual learning impairment. However, its impact on learning

through different receptors appears to be different. It seems that

the contextual learning impairment caused by 8-OH-DPAT is due

to its stimulation of postsynaptic 5-HT1A receptors. Meanwhile,

use of 5-HT7 receptor antagonist exaggerated contextual learning

impairment caused by 8-OH-DPAT, indicating that the activation

of 5-HT7 receptor by 8-OH-DPAT actually counteracts the 5-

HT1A receptor-mediated impairments caused by 8-OH-DPAT

(Eriksson et al., 2008). Collectively, 5-HT neurotransmission is

a major regulator of neuronal processes related to learning and

memory. However, due to the complexity of 5-HT receptors and

their distinct functions, influences of 5-HT on memory is complex

and worth more in-depth investigations.

3.2.2 5-HT neurotransmission regulated by ECS
ECS has been reported to influence 5-HT neurotransmission

via regulating 5-HT release and the expression of 5-HT receptors.

Systemic THC administration is found to increase 5-HT level in

rats (Segawa and Takeuchi, 1976). Specifically, systemic injection

of WIN55212-2 is found to CB1R-dependently promotes the

spontaneous firing of 5-HT neuron in dorsal raphe nucleus

(DRN) (Bambico et al., 2007). CB1R systematical agonizing using

WIN55212-2 and CP55940 causes increased 5-HT efflux in NAc,

one of the projection areas of DRN, in rats (Tao and Ma,

2012). This effect is found to mediated by the CB1R-dependent

inhibition of GABAergic interneurons in the DRN (Tao and Ma,

2012). Deactivation of fatty acid amide hydrolase (FAAH), the

endocannabinoid hydrolase, is also reported to promote the activity

of 5-HT neuron in DRN (Gobbi et al., 2005; Bambico et al., 2010).

However, reduced or unchanged 5-HT level has also reported in

other brain regions. THC administration is found to induce spatial

memory impairment via reduced 5-HT release in the medial PFC

and hippocampus (Egashira et al., 2002). Reduced level of 5-HT

is also reported in NAc after THC administration (Sano et al.,

2008). WIN55212-2 is found to reduce the release of 5-HT in

frontocortical (Ferreira et al., 2012).

Electrophysiological studies in vitro demonstrate that the CB1R

agonists infusion produce no significant effect on the neuronal

activity of 5-HT neuron in DRN. Meanwhile, CB1R antagonist

infusion suppresses the 5-HT neuron firing in DRN (Mendiguren

and Pineda, 2009), suggesting an eCBs activating effect of the 5-

HT neuron (Figure 2A). The influence of 5-HT neurotransmission
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FIGURE 2

Regulation of monoamine neurotransmission by CB1R. (A) Regulation of the 5-HT neurons in Dorsal Raphe Nucleus by GABA and glutamate

terminals by presynaptic CB1R, and the regulation of glutamate and 5-HT release of 5-HT neurons by CB1R. (B) Regulation of the noradrenergic

neurons in Locus Coeruleus by ECS.

also seems to be indirect via the inhibitory projections on the 5-HT

neurons in DRN, as revealed by the finding that the inhibitory effect

of CB1R antagonizing is abolished by GABAA receptor antagonist

(Mendiguren and Pineda, 2009) (Figure 2A). CB1R is also reported

to locate on the glutamate terminals in the DRN originated from

PFC (Marsicano and Lutz, 1999) (Figure 2A). PFC lesion abolishes

the 5-HT stimulatory effect induced by systemic injection of

WIN55212-2, indicating the regulation of 5-HT release DRN by

ECS via glutamate terminals (Bambico et al., 2007). However, the

exact function of glutamate terminals regulating 5-HT neuron in

DRN is not conclusive (Haj-Dahmane and Shen, 2011; Mendiguren

et al., 2018; Peters et al., 2021).

The DRN of the midbrain is a major source of 5-HT in the

CNS, including the hippocampus, which is the brain region related

to learning and memory. Co-expression of tryptophan hydroxylase

2 (TPH2), a 5-HT neuron marker, and CB1R mRNA is reported
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in the DRN in rodents (Haring et al., 2007). CB1R is also reported

to locate on the axon terminals of 5-HT neurons (Carvalho et al.,

2010). Similarly, single-cell transcriptome analysis suggests that in

the mouse DRN, the CB1R is often co-expressed on 5-HT neurons.

This group of neurons also release glutamate, indicating a possible

regulation of 5-HT release by the ECS at their terminals (Ren et al.,

2019; Wang et al., 2019; Okaty et al., 2020) (Figure 2A).

Other than influencing 5-HT release, the ECS is reported to

alter the expression of 5-HT receptors in the CNS. CB1R knockout

or pharmacological blockade is reported to desensitize 5-HT1A

receptor, suppress 5-HT2C receptor expression in DRN, NAc

and the paraventricular nucleus of the hypothalamus (PVN), and

promote the expression of 5-HT2C receptor in CA3 of the ventral

hippocampus (Aso et al., 2009).

Overall, CB1R stimulation is believed to increase 5-HT levels

in brain regions such as DRN and NAc. However, the exact

influence seems dependent on the type, concentration, and route

of cannabinoids that been used, and the brain region that

the 5-HT been tested. Indeed, acute THC and WIN55212-2

systematic administrations are previously demonstrated to reduce

the hippocampal level of 5-hydroxytryptophan (5-HTP), which is

a precursor for 5-HT (Moranta et al., 2004). Differences of how

cannabinoids influence 5-HT in the brain is also probably caused

by the indirect effects of eCBs at GABA neurons, suggesting that the

ECS may produce different effect on neuron activities depending

on different regulation of excitatory/inhibitory neuronal circuit

(Peters et al., 2021). Moreover, as summarized in the previous

section, functions of different 5-HT receptors are expected to

be distinct, especially in the regulation of learning and memory.

How altered 5-HT level caused by different cannabinoids and ECS

contribute to learning and memory via distinct 5-HT receptors

is unknown. These distinct 5-HT neurotransmission regulations

by cannabinoids and ECS could partially explain the complexity

of how cannabinoids and ECS impact the process of learning

and memory. For this reason, further investigations of how the

use of different cannabinoids and alternations in ECS affect the

neurocircuits related to learning and memory via their impact

on 5-HT neurotransmission and different 5-HT receptors are

critically important.

3.3 Noradrenergic neurotransmissions

3.3.1 Noradrenergic neurotransmission in
learning and memory

Norepinephrine is a neurotransmitter that plays a key role in

the brain and is involved in a wide range of physiological activities,

including attention, emotion regulation, and stress response (Sara,

2009; Bahtiyar et al., 2020). Animal studies have demonstrated

the regulatory role of the noradrenergic system in memory

consolidation (Balbinot and Haubrich, 2023). Norepinephrine acts

on both pre- and post-synaptic adrenergic receptors in the brain

and participates in the regulation of learning and memory mainly

by the modulation of synaptic plasticity (Tully and Bolshakov,

2010). Norepinephrine is found to reduce the threshold for LTP

in the hippocampus via the phosphorylation of the GluR subunit

of AMPARs and therefore enhances learning and memory (Hu

et al., 2007). Noradrenergic neurons are mainly distributed in

the brainstem, namely the locus coeruleus (LC) and solitary tract

nucleus (NTS) (Szabadi, 2013). Specifically, LC is reported as the

largest noradrenergic nucleus in the brain, and the only source of

norepinephrine in the forebrain and the hippocampus (O’Dell et al.,

2015; Galgani et al., 2023). Activation of the LC-norepinephrine

system plays an important regulatory role in learning and

memory (Giustino andMaren, 2018). The noradrenergic projection

from LC to the hippocampus is reported to promote memory

consolidation by releasing norepinephrine, which induces a long-

lasting enhancement of synaptic transmission effects (Hansen,

2017). Significantly reduced levels of norepinephrine and its

metabolites are observed in the LC-hippocampus-cortex system of

aged rats, which may be associated with their increased phobias

as well as deficits in spatial learning and memory, confirming that

the efficiency of noradrenergic neurotransmissions affects learning

and memory (Collier et al., 2004). Bilateral inactivation of LC is

reported to impair the acquisition ofmemory (Khakpour-Taleghani

et al., 2009), while LC activation increases norepinephrine levels

in DG and CA1, which leads to enhanced LTP and long-term

depression (LTD), and subsequently promotes the encoding of

memory (Katsuki et al., 1997; Lemon et al., 2009). Norepinephrine

acts on β-adrenergic receptors (β-ARs) leading to hippocampal

LTD and promoting LTD-related memory processing (Hagena

et al., 2016). In the hippocampus, dentate gyrus (DG) contains

the highest concentration of receptors and the highest fiber

density projected from LC, resulting in the highest levels of

norepinephrine release (Chowdhury et al., 2022). Moreover,

nisoxetine (norepinephrine reuptake inhibitor) or idazosin (α2

adrenergic receptor antagonist) administration is reported to

enhance LTP, while clonidine (α2 adrenergic receptor agonist)

impairs LTP (Garrido Zinn et al., 2018; Nguyen and Gelinas, 2018;

Saggu et al., 2023). Collectively, norepinephrine enhances synaptic

plasticity in the hippocampus through the activation of β-ARs,

and in particular plays an important role in the formation and

stabilization of LTP.

3.3.2 Regulation of noradrenergic
neurotransmissions by ECS

Early anatomical studies using autoradiography reveal

moderate CB1R mRNA in the primary noradrenergic nucleus LC

and NTS (Scavone et al., 2010; Navia-Paldanius et al., 2015). The

characterization of the distribution of CB1R in LC indicates that

CB1R is localized within the somatic dendritic spectrum and axonal

terminals. The neurochemical characterization of LC neurons

indicates that some CB1R-positive neurons are noradrenergic

(Wyrofsky et al., 2019), indicating potential interaction between

the ECS and noradrenergic neurotransmissions. Indeed, systemic

administration of synthetic cannabinoids (WIN55212-2 and CP

55940) and THC has been shown to increase the spontaneous

firing rate of neurons in LC in rodents (Mendiguren and Pineda,

2006; Muntoni et al., 2006). Similarly, increased LC cell activities

are observed in inhibiting the degradation of eCBs using FAAH

inhibitor URB597 (Gobbi et al., 2005). Consistently, systemic

administration of WIN55212-2 and CP55940 has been shown

to increase c-fos expression in LC noradrenergic neurons

and norepinephrine release in the downstream nucleus (Patel

and Hillard, 2003; Oropeza et al., 2005). This increased LC
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noradrenergic neuron activities induced by CB1R stimulation

are also associated with elevated tyrosine hydroxylase (TH)

expression and NA synthesis in the LC and the efferent brain

areas of LC (Moranta et al., 2004; Page et al., 2007). Systemically

administration of rimonabant, a CB1R antagonist, is reported

to decrease the firing rate of noradrenergic neurons in LC

(Muntoni et al., 2006). However, activation of CB1R by LC local

administration of URB597 is not able to increase c-fos expression

in LC noradrenergic neurons (Murillo-Rodriguez et al., 2007).

Further study reveals that the stimulation of LC neuron activity by

systemic cannabinoid administration may be due to disinhibition

of the LC noradrenergic neurons via the activation of CB1R in

prepositus hypoglossi (PrH), rather than activation of CB1R in LC

(Mendiguren and Pineda, 2006; Muntoni et al., 2006) (Figure 2B).

Other than regulating the GABAergic projection to LC, CB1R

is also reported to regulate the glutamatergic projection to LC.

In vitro studies reveal that cannabinoids can decrease the phasic

activity of LC cells by reducing glutamate release via a local

microcircuit (Mendiguren et al., 2018) (Figure 2B).

Collectively, those studies have suggested the general

stimulation of noradrenergic neurons in LC and efferent

areas by activation of CB1R. However, how this interaction

between cannabinoids and norepinephrine implicates the

process of learning and memory is currently unknown. In the

hippocampus, as one of the most potent efferent brain regions of

noradrenergic neurons in LC, changes in noradrenaline release or

synthesis by different cannabinoids may provide some insights.

Specifically, acute and chronic (5 days) systematic administration

of WIN55212-2 at doses ranging from 2 to 8 mg/kg are reported to

reduce noradrenaline content in the hippocampus of rats (Moranta

et al., 2004, 2009). Similarly, THC systematic administration

(5, 10, 20 mg/kg) is also reported to reduce the noradrenaline

content in the hippocampus of rats (Moranta et al., 2004). CB1R

systematic antagonizing using rimonabant (3 mg/kg) is found to

increase noradrenaline release in the hippocampus (Tzavara et al.,

2001). Consistently, in vitro studies suggest reduced noradrenaline

release in the hippocampus of human and guinea pig induced

by WIN55212-2 or CP55940 (Schlicker et al., 1997; Kathmann

et al., 1999). Together with the important roles played by the

hippocampal noradrenergic neurotransmissions in learning and

memory, it seems that cannabinoids may exert potential influences

on learning and memory via its regulation of noradrenergic

neurotransmissions. Further research regarding this topic is,

therefore, necessary to identify the mechanism and neurocircuit

underlying the regulation of noradrenergic neurotransmissions by

cannabinoids and ECS in learning and memory.

4 Conclusion remarks and future
perspectives

The use of cannabinoids and alternation in the ECS has

been suggested to intensively influence learning and memory.

Many conflicting results have been obtained indicating a

complex regulating network behind this important regulation.

The interaction between ECS and monoaminergic system may

participate in the regulation of learning and memory. However, the

exact mechanism and neurocircuit of this interaction and its role

in learning and memory is not clear. In this review, we summarize

and discuss the current understanding of how cannabinoids and

the ECS interact with the monoaminergic system, and how this

interaction is potentially involved in the regulation of learning and

memory. However, there are still many issues to be addressed in

future investigations:

1. In most studies, cannabinoids are delivered via systematic

administration, which affects the ECS in both CNS and

peripheral systems. This may be the reason why the effect

of certain cannabinoids varies depending on the dosage

and route of administration. In future studies, brain region-

specific and neuronal cell type-specific studies are necessary

for a better understanding of how cannabinoids and ECS are

involved in the regulation of learning and memory.

2. The monoamine system of the brain has important features

of automatic and cross-regulation. The regulatory effects of

cannabinoids and the ECS are able to fine-tun monoamine

system. For this reason, more in-depth studies investigating

the complex regulation between ECS andmonoamine system,

using new genetic, pharmacological, and viral approaches, are

necessary to reveal the neuro-modulatory process in learning

and memory.
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