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Disrupted single-subject gray 
matter networks are associated 
with cognitive decline and 
cortical atrophy in Alzheimer’s 
disease
Yaqiong Xiao 1*, Lei Gao 2, Yubin Hu 1 and The Alzheimer’s 
Disease Neuroimaging Initiative
1 Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China, 2 Department 
of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China

Background: Research has shown disrupted structural network measures 
related to cognitive decline and future cortical atrophy during the progression of 
Alzheimer’s disease (AD). However, evidence regarding the individual variability 
of gray matter network measures and the associations with concurrent cognitive 
decline and cortical atrophy related to AD is still sparse.

Objective: To investigate whether alterations in single-subject gray matter 
networks are related to concurrent cognitive decline and cortical gray matter 
atrophy during AD progression.

Methods: We analyzed structural MRI data from 185 cognitively normal (CN), 
150 mild cognitive impairment (MCI), and 153  AD participants, and calculated 
the global network metrics of gray matter networks for each participant. 
We examined the alterations of single-subject gray matter networks in patients 
with MCI and AD, and investigated the associations of network metrics with 
concurrent cognitive decline and cortical gray matter atrophy.

Results: The small-world properties including gamma, lambda, and sigma had 
lower values in the MCI and AD groups than the CN group. AD patients had 
reduced degree, clustering coefficient, and path length than the CN and MCI 
groups. We  observed significant associations of cognitive ability with degree 
in the CN group, with gamma and sigma in the MCI group, and with degree, 
connectivity density, clustering coefficient, and path length in the AD group. 
There were significant correlation patterns between sigma values and cortical 
gray matter volume in the CN, MCI, and AD groups.

Conclusion: These findings suggest the individual variability of gray matter 
network metrics may be  valuable to track concurrent cognitive decline 
and cortical atrophy during AD progression. This may contribute to a better 
understanding of cognitive decline and brain morphological alterations related 
to AD.
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Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative 
disorder characterized by both cognitive decline and brain atrophy. 
Evidence from previous neuroimaging studies has shown AD-related 
brain morphometric changes using structural magnetic resonance 
imaging (MRI). There is also growing evidence to suggest disruptions 
of structural brain networks that are constructed using brain 
morphological features such as thickness and volume of (GM) in both 
mild cognitive impairment (MCI) and AD (He et al., 2008; Yao et al., 
2010; Reid and Evans, 2013; Dai and He, 2014; Dai et al., 2019). These 
studies, using the graph theoretical approach, reported altered local 
and global network properties in MCI and AD patients, such as a 
greater network segregation and reduced small-world coefficient, as 
compared to cognitively normal (CN) subjects (He et al., 2008; Yao 
et al., 2010).

While network properties based on group-level structural 
covariance across subjects have been proven useful to reveal brain 
structural topological organizations, it cannot derive individual-level 
network measures and thus does not allow to examine the potential 
clinical relevance for individuals. To overcome this limitation, single-
subject morphometric network analyses were developed to evaluate 
brain structural networks at the individual level (for reviews, see Cai 
et al., 2023; Wang and He, 2024). Studies have shown these analyses 
are robust and reliable (Sebenius et al., 2023; Yin et al., 2023), and 
particularly suitable for identifying biomarkers for brain disorders 
such as AD (Tijms et al., 2012, 2013b; Li et al., 2017; Xue et al., 2023). 
Findings from previous research have also demonstrated the biological 
relevance of the morphometric network analyses (Sun et al., 2022; Li 
et  al., 2023). So far, several approaches have been developed to 
construct the single-subject morphometric networks, and different 
approaches estimate interregional morphological connectivity from 
different perspectives (for reviews, see Cai et al., 2023; Wang and He, 
2024). Among the methodologies, the approach developed by Tijms 
et al. (2012) is widely used to estimate the interregional relationships 
of morphological features (i.e., GM volume) (e.g., Tijms et al., 2014, 
2018; Dicks et al., 2018; Verfaillie et al., 2018; Vermunt et al., 2020). 
The single-subject morphological networks are further analyzed with 
graph theoretical approach to reveal the network’s topological 
properties such as degree, clustering coefficient, and small-worldness 
(Tijms et al., 2014; Verfaillie et al., 2018; Pelkmans et al., 2022; Wang 
and He, 2024).

In recent years, single-subject morphological network analyses 
have been widely used in the field of AD research to gain a better 
understanding of the brain morphometric alterations related to AD 
(Tijms et al., 2013b; Dicks et al., 2018; Pelkmans et al., 2022; Wang and 
He, 2024). For example, research has consistently reported that 
disrupted single-subject structural network properties are closely 
related to cognitive decline in both MCI and AD patients (Pereira 
et al., 2016; Dicks et al., 2018; Tijms et al., 2018; Verfaillie et al., 2018). 
Research also found different network topological patterns in distinct 
AD subtypes which had varying cognitive decline (Ferreira et al., 
2019). In addition, GM network properties have been suggested as 
sensitive markers to identify the individual variability of clinical 
decline in patients with prodromal AD (Pelkmans et al., 2022).

More importantly, single-subject GM networks can be used to 
examine the associations between structural network alterations and 
individual differences in clinical progression in AD. Previous studies 

have reported that worse disruptions of network measures are related 
to more severe cognitive decline in AD (Tijms et al., 2013a, 2014) and 
predementia AD patients (Dicks et al., 2018; Tijms et al., 2018; Dicks 
et al., 2020; Vermunt et al., 2020; Ng et al., 2022). A few studies have 
demonstrated that disrupted GM networks are already present in 
preclinical AD patients who had normal cognition but with 
aggregating amyloid (Tijms et  al., 2016; ten Kate et  al., 2018; 
Voevodskaya et al., 2018; Dicks et al., 2020). Together, these studies 
suggest that single-subject network analysis is a sensible and feasible 
approach to examine individual differences within the group, and that 
GM network measures may serve as useful predictors of cognitive 
decline in the progression of AD pathology, even at the 
preclinical stage.

In recent studies, single-subject structural network measures have 
been examined across AD continuum including the CN, MCI, and 
AD groups (Dicks et al., 2020; Pelkmans et al., 2021; Sheng et al., 2021; 
Ng et al., 2022). There were greater network abnormalities in patients 
with more severe disease severity (Sheng et al., 2021; Ng et al., 2022), 
and the associations of disrupted network measures with cognitive 
decline depended on stages for different cognitive domains (Dicks 
et al., 2020). Furthermore, research has shown that structural network 
measures can predict future cortical atrophy in hippocampus, which 
is specific for preclinical AD patients but not for cognitively 
unimpaired normal older subjects (Dicks et al., 2020). These findings 
imply that single-subject network measures are useful to track and 
predict both cognitive decline and cortical atrophy related to disease 
progression in AD. However, so far, evidence regarding the 
associations of GM network measures with the concurrent cognitive 
decline and cortical gray matter atrophy during the course of AD 
progression is still sparse.

In this study, we aimed to investigate the alterations in topological 
patterns during the progression of AD and the associations of 
structural network measures with the concurrent cognitive decline 
and cortical atrophy. We constructed the single-subject morphological 
networks using the approach described in Tijms et al. (2012) as this 
approach demonstrates great reliability and stability (Tijms et  al., 
2012) and is widely used in the field of AD research (e.g., Tijms et al., 
2014, 2018; Dicks et al., 2018; Verfaillie et al., 2018; Vermunt et al., 
2020). We then calculated the global network measures of single-
subject gray matter networks in CN, MCI, and AD participants. 
We anticipated that network measures would be altered in patients 
with increasing severity of AD. Next, we examined the associations of 
global network measures with cognitive ability and expected to 
observe reduced network measures associated with cognitive decline 
regardless of disease severity. Further, we examined the relationship 
between the small-world coefficient and GM volume in the CN, MCI, 
and AD groups. The small-world coefficient (i.e., sigma), reflecting a 
balance between information segmentation and integration within the 
network (Humphries and Gurney, 2008), is considered to be  a 
summary of multiple topological features (i.e., normalized clustering 
coefficient and normalized path length). In fact, the small-world 
coefficient is also one of the network measures that is most robustly 
associated with cognitive decline (Dicks et al., 2018; Tijms et al., 2018; 
Verfaillie et  al., 2018). We  thus used this metric as the index to 
examine the association between GM network measures and cortical 
GM volume, hypothesizing that there would be different correlation 
patterns in CN, MCI, and AD participants at varying stages of 
cognitive decline.
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Materials and methods

Participants

In this study, we used the MRI and clinical data obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.1 The 
ADNI was launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial MRI, positron emission 
tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be  combined to measure the 
progression of MCI and early AD. For more detailed information 
about this database, please refer to the website2 and publications 
(Weiner et al., 2010, 2017; Aisen et al., 2015).

Specifically, we included a total of 488 participants in the analysis: 
185 CN (90 M/95 F, mean age = 74.8 ± 7.17 years, 58.4–94.7 years), 150 
MCI (85 M/65 F, mean age = 73.45 ± 8.7 years, 55.2–97.4 years), and 
153 AD (88 M/65F, mean age = 75.47 ± 7.74 years, 56–91 years). 
We selected this cohort of participants because they had quality MRI 
and clinical data, and these participants were matched on age and 
gender across groups. All the participants provided demographic 
information (i.e., age, gender, years of education) and clinical data, 
including scores from the Clinical Dementia Rating (CDR) and the 
Mini-Mental State Examination (MMSE). In addition, MoCA scores 
were available for the majority of participants (CN: n = 172; MCI: 
n = 100; AD: n = 92).

MRI data collection

The T1-weighted structural MRI images of all 488 participants 
were analyzed in this study. For detailed information regarding 
ADNI’s image acquisition protocols which are different for multiple 
MRI scanner types used in ADNI, see this link.3 Raw Digital Imaging 
and Communications in Medicine (DICOM) MRI scans were 
downloaded from the public ADNI site.4 All the raw images were 
automatically corrected for spatial distortion caused by gradient 
nonlinearity and B1 field inhomogeneity.

Structural MRI data preprocessing

Briefly, MR images were visually inspected for quality to ensure 
that the MRI data were usable, and then realigned to the standard 
anterior commissure (AC)- posterior commissure (PC) 
orientations for better segmentations. The preprocessing was 
conducted with the voxel-based morphometry (VBM) pipeline 
using the Computational Anatomy Toolbox (CAT12)5 for 
Statistical Parametric Mapping (SPM12),6 running in Matlab 
R2020a (MathWorks, Natick, MA, United States). All MRI data 

1 https://adni.loni.usc.edu/

2 www.adni-info.org

3 http://adni.loni.usc.edu/methods/documents/mri-protocols/

4 www.loni.ucla.edu/ADNI

5 https://neuro-jena.github.io/cat/

6 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

were segmented into GM, white matter, and cerebrospinal fluid 
images using the default tissue probability maps. After finishing 
segmentation, the quality of segmented images was visually 
checked, and all the GM images were qualified for constructing 
networks. The total intracranial volume (TIV) was calculated for 
each participant, which was used to control for different brain sizes 
in the statistical analyses.

Single-subject GM network construction

Gray matter networks were constructed using a previously 
published, automated pipeline (Tijms et al., 2012)7 implemented in 
Matlab R2020a. The details of this pipeline has been described 
elsewhere (Tijms et al., 2012). Briefly, each GM segmentation was 
divided into 3 * 3 * 3 voxel cubes, corresponding to 6 mm * 6 mm * 
6 mm for each cube. These non-overlapping cubes were served as 
nodes in the network and used to construct single-subject GM 
networks. Connections between each pair of cubes for each individual 
scan were established by calculating the Pearson’s correlation 
coefficient of the GM volume between the corresponding voxels. This 
approach takes into account both the gray matter probability (i.e., 
from the tissue segmentation) and the spatial information present in 
27 voxels within each cube. The similarity matrices were binarized to 
construct unweighted and undirected graphs with a threshold of 5%, 
determined using the false discovery rate (FDR) correction for each 
network. To calculate small world metrics, we generated 20 random 
matrices by rearranging the edges of the network while keeping the 
spatial degree distribution intact for each binarized similarity matrix 
(Tijms et al., 2012, 2013a).

Calculation of global network metrics

Next, we calculated the global network metrics for each individual 
GM network. Specifically, we computed the following metrics to assess 
the global network properties: (1) network size, the total number of 
nodes in the network; (2) degree, average of all the degrees (degree: 
number of connections that a node has) of the nodes in the network; 
(3) connectivity density, the percent of existing connections to the 
number of all possible connections within the network; (4) clustering 
coefficient, average clustering coefficient (the number of edges 
between a node and its direct neighbors) over all nodes within the 
network; (5) path length, the average of the shortest path length 
(minimal number of edges from one node to another node) over all 
nodes within the network.

Further, we computed the global normalized clustering coefficient 
(gamma), normalized path length (lambda), and small world 
coefficient (sigma) to estimate the small world property of the 
networks. The gamma and lambda are calculated by dividing the 
average clustering coefficient and path length values by those mean 
values of 20 randomized networks of identical size and degree 
distribution (Maslov and Sneppen, 2002). For a network to contain 
the small world property, it is required that gamma is greater than 1 

7 https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks
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TABLE 1 Demographic and clinical details in the CN, MCI, and AD groups.

CN (n  =  185) MCI (n  =  150) AD (n  =  153) p-value

Mean  ±  sd Range Mean  ±  sd Range Mean  ±  sd Range

Sex (M/F) 90/95 85/65 88/65 0.19

Age (years) 74.8 ± 7.17 58.4–94.7 73.45 ± 8.7 55.2–97.4 75.47 ± 7.74 56–91 0.075

Education (years) 16.83 ± 2.36 12–20 15.8 ± 3 6–20 15.59 ± 2.64 8–20 <0.001

CDR 0 ± 0 0–0 0.53 ± 0.16 0.5–2 0.81 ± 0.36 0.5–2 <0.001

MMSE 29.06 ± 1.13 24–30 26.83 ± 2.54 16–30 22.89 ± 2.96 5–30 <0.001

MoCA 24.3 ± 1.95 18–29 21.83 ± 4.6 4–29 17.89 ± 5.4 0–27 <0.001

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive 
Assessment.

and lambda is approximately equal to 1. And the sigma, defined as the 
ratio of gamma and lambda, is supposed to greater than 1 for a 
network to have small world property (Humphries and Gurney, 2008). 
All the network measures were calculated based on the functions from 
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).8

Statistical analysis

Comparisons of demographic and clinical scores among CN, 
MCI, and AD groups were conducted using the chi-squared test for 
categorical variable (sex), one-way analysis of variance (ANOVA) for 
continuous variables (i.e., age, education, MMSE, and MoCA), and 
Kruskal-Wallis ANOVA for CDR scores.

We then examined group differences in all the network metrics 
using the regression analysis, controlling for age, sex, education, and 
TIV. For network metrics showing significant differences among CN, 
MCI, and AD groups, we tested the differences between groups (i.e., 
CN vs. MCI, CN vs. AD, and MCI vs. AD) using pairwise two-sample 
t tests with the FDR correction for multiple testing.

To analyze the relationships between the cognitive ability as 
measured by the MoCA (i.e., MoCA total scores) and global network 
metrics, we used linear regression models with the MoCA total scores 
as the independent variable and each of the global network metrics 
(i.e., degree, connectivity density, clustering coefficient, path length, 
gamma, lambda, and sigma) as the dependent variable, controlling for 
age, sex, education, and TIV. The regression analyses were first 
conducted across the whole sample, and then tested within each 
diagnostic group.

These group comparisons and regression analyses were conducted 
in R software (version 4.1.2).

Associations between the small world 
coefficient and GM volume

Further, we examined the associations between the small-world 
property (i.e., sigma) and whole-brain GM volume in the CN, MCI, 
and AD groups, separately. Specifically, we conducted the whole brain 
voxel-wise correlation analysis using the “y_Correlation_Image” 

8 https://sites.google.com/site/bctnet/

function in DAPBI (a toolbox for Data Processing & Analysis for 
Brain Imaging9; Yan et al., 2016), with the small-world coefficient 
value (i.e., sigma) as a covariate of interest, and age, sex, and TIV as 
covariates of no interest. The resulting r maps were converted to z 
maps, and the Gaussian Random Field (GRF) theory was applied for 
multiple comparisons correction for each correlation map with the 
following thresholds: voxel-wise p < 0.001, cluster-wise p < 0.05, two 
tailed (z > 3.29, GRF corrected).

Results

Characteristics of demographic 
information and clinical data

As shown in Table 1, the CN, MCI, and AD groups were matched 
on gender and age (ps > 0.05), but these groups differed (ps < 0.001) in 
years of education, CDR, MMSE, and MoCA.

Single-subject GM networks and group 
differences in network metrics

Networks had an average size of 6,590 nodes (sd = 608) and an 
average connectivity density of 17.3% (sd = 1.1) across all participants. 
Although all single-subject gray matter networks in the CN, MCI, and 
AD groups had a small world topology (i.e., sigma >1), the topology 
was altered in both MCI and AD groups as compared to the CN group 
(CN vs. MCI: p = 0.02; CN vs. AD: p < 0.001), controlling for age, sex, 
education, and TIV (Table 2). We observed that almost all the network 
metrics showed lower values in the MCI or AD group than the CN 
group (Table 2; Figure 1). Specifically, compared to the CN group, 
both MCI and AD patients had lower gamma (CN vs. MCI: p = 0.01; 
CN vs. AD: p < 0.001), lambda (CN vs. MCI: p = 0.03; CN vs. AD: 
p < 0.001), and sigma (CN vs. MCI: p = 0.02; CN vs. AD: p < 0.001). In 
addition, AD patients had reduced degree (p = 0.03), connectivity 
density (p = 0.01), clustering coefficient (p < 0.001), and path length 
(p = 0.002) than the CN group. As compared to MCI patients, AD 
patients had reduced degree (p = 0.03), clustering coefficient 
(p < 0.001), path length (p = 0.02), gamma (p < 0.001), lambda 

9 https://rfmri.org/dpabi
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(p < 0.001), and sigma (p < 0.001). All the results were corrected for 
multiple comparisons using the FDR method.

Relationships between network metrics 
and cognitive ability

Across the whole sample, significant relationships with MoCA scores 
were found in all the network metrics except path length, controlling for 
age, sex, education, and TIV (Table  3). We  observed significant 
associations of MoCA scores with degree (β = 5.22, p = 0.2) in the CN 
group, and significant associations of MoCA scores with gamma 
(β = 0.002, p = 0.025) and sigma (β = 0.001, p = 0.034) in the MCI group 

(Table 3; Figure 2). In the AD group, MoCA scores were significantly 
correlated with network metrics including degree (β = 6.6, p < 0.001), 
connectivity density (β = 0.05, p = 0.007), clustering coefficient (β = 0.0008, 
p = 0.012), and path length (β = −0.0007, p = 0.01) (Table 3; Figure 2).

Significant associations between the 
small-world coefficient and cortical GM 
volume

As shown in Figure 3, there were significant associations between 
the small-world coefficient and cortical GM volume in the CN, MCI, 
and AD groups, controlling for age, sex, and TIV. Specifically, 

TABLE 2 Summary of global network metrics and group differences between CN, MCI, and AD groups.

CN (n  =  185) MCI (n  =  150) AD (n  =  153) p-valuea p valueb p-valuec p-valued

Network size 6602.12 ± 564.01 6636.67 ± 630.29 6529.56 ± 634.6 0.01 0.6 0.41 0.38

Degree 1152.34 ± 112.4 1150.94 ± 117.2 1117.44 ± 136.22 0.0007 0.92 0.03 0.03

Connectivity 

density
17.47 ± 1.05 17.38 ± 1.23 17.11 ± 1.1 0.009 0.45 0.01 0.06

Clustering 

coefficient
0.443 ± 0.02 0.439 ± 0.02 0.43 ± 0.02 <0.001 0.08 <0.001 <0.001

Path length 1.88 ± 0.01 1.878 ± 0.02 1.87 ± 0.02 0.002 0.4 0.002 0.02

Gamma 1.36 ± 0.03 1.35 ± 0.04 1.33 ± 0.04 <0.001 0.01 <0.001 <0.001

Lambda 1.03 ± 0.005 1.029 ± 0.006 1.024 ± 0.006 <0.001 0.03 <0.001 <0.001

Sigma 1.325 ± 0.03 1.317 ± 0.03 1.295 ± 0.03 <0.001 0.02 <0.001 <0.001

Data are presented as mean ± sd; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease. aStatistical results from comparisons among the CN, MCI, and MCI 
groups, controlling for age, sex, education, and TIV. bStatistical results from comparisons between the CN and MCI groups. cStatistical results from comparisons between the CN and AD 
groups. dStatistical results from comparisons between the MCI and AD groups.

FIGURE 1

Single-subject gray matter network metrics and comparisons between CN, MCI, and AD groups. Boxplots show interquartile range (IQR; first quartile, 
Q1; third quartile, Q3); the horizontal line inside the box represents the median. Black cross indicates the mean value. Significant results were corrected 
for multiple comparisons using the FDR method. *p  <  0.05, ***p  <  0.001, ns, not significant.
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significant correlations were observed in brain regions including 
bilateral middle temporal gyrus, superior temporal gyrus, inferior 
temporal gyrus, parahippocampal gyrus, fusiform gyrus, inferior 

parietal lobe, insula, middle occipital gyrus, inferior occipital gyrus, 
and lingual gyrus (Table  4). Additional significant clusters in 
amygdala, Heschl’s gyrus, cuneus, precuneus, posterior cingulate 

TABLE 3 Correlations between gray matter network metrics and MoCA scores, controlling for age, sex, education, and TIV.

Whole sample 
(n  =  488)

CN (n  =  185) MCI (n  =  150) AD (n  =  153)

Degree < 0.001 0.02 0.382 < 0.001

Connectivity density 0.024 0.208 0.234 0.007

Clustering coefficient < 0.001 0.323 0.821 0.012

Path length 0.85 0.228 0.081 0.01

Gamma <0.001 0.323 0.025 0.253

Lambda 0.002 0.6 0.076 0.171

Sigma <0.001 0.213 0.034 0.116

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease. Significant correlation coefficients (i.e., p-values) are highlighted in bold.

FIGURE 2

Linear regression model fitted plots between MoCA scores and network metrics in the CN (A), MCI (B,C), and AD (D–G) groups. The r-values were 
from the Pearson’s correlation analysis, and p values were from the regression analyses, controlling for age, sex, education, and TIV.

FIGURE 3

Clusters showing significant associations between the small-world coefficient and cortical gray matter volume in the CN (A), MCI (B), and AD 
(C) groups, controlling for age, gender, and TIV. The resulting clusters were corrected for multiple comparisons (z  >  3.29, GRF corrected). CN, 
cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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cortex (PCC), calcarine, middle cingulate cortex (MCC), superior 
occipital gyrus, and right cerebellum posterior lobe were observed in 
the CN group. There were also additional significant clusters found in 
amygdala, postcentral gyrus, angular gyrus, middle frontal gyrus, 
precuneus, cuneus, middle occipital gyrus, calcarine, MCC, and PCC 
in the MCI group (Table 4). All the resulting clusters were corrected 
for multiple comparisons using the GRF method with the following 
thresholds: voxel-wise p < 0.001, cluster size >1,300 voxels, cluster-wise 
p < 0.05, two tailed (Z > 3.29).

Discussion

In the present study, we observed AD-related alterations in the 
structural network topological patterns by comparisons of single-
subject GM network measures. We  also demonstrated significant 
relationships between disrupted global network metrics and cognitive 
decline for both the whole sample and each diagnostic group. 
Importantly, we observed significant associations of the small-world 
coefficient with cortical GM volume in brain regions including 
temporal cortex, parahippocampal gyrus, occipital cortex, parietal 
cortex, fusiform gyrus, and insula in the CN, MCI, and AD groups, 
with additional regions involved in the CN and MCI groups. These 
findings provide further evidence for the altered structural network 
properties related to the disease severity of AD and suggest the 
individual variability of GM network metrics may be valuable and 

sensible markers for the concurrent cognitive decline and brain 
morphologic alterations during the progression of AD.

One of the main findings is that all three groups showed significant 
associations between the small-world coefficient and the concurrent 
GM volume in a variety of brain regions. The prominent clusters 
included bilateral temporal cortex, parahippocampal gyrus, occipital 
cortex, and parietal cortex, which have been recognized as vulnerable 
brain regions to show atrophy in both normal aging (Glodzik et al., 
2012) and AD progression (Hampel et al., 2008; Shi et al., 2009; Frisoni 
et al., 2010; Albert et al., 2011). This finding suggests the reduced 
small-world coefficient in individuals is related to the concurrent GM 
atrophy in these vulnerable regions. Notably, the frontal cortex, 
cuneus, MCC, PCC, and amygdala were additionally found in the CN 
and MCI groups, suggesting that the small-world coefficient might 
capture more morphological alterations in normal aging adults and 
patients at early stages of dementia. Our finding here extends previous 
reports that network measures predict future hippocampal atrophy for 
preclinical AD subjects (Dicks et al., 2020), and demonstrates that the 
reduced small-world coefficient is also related to GM volume atrophy 
in normal aging adults and patients at different stages of dementia.

One possible biological basis of the associations between the 
small-world coefficient and GM volume is that alterations in GM 
volume may lead to rewiring of neural circuits, affecting the 
efficiency of information transmission and integration across the 
brain network (Crossley et al., 2014; Xiong et al., 2023). Another 
possible biological basis is that disruptions in the network 

TABLE 4 Brain regions showing significant associations between the small-world coefficient (sigma) and gray matter volume in the CN, MCI, and AD 
groups, separately.

Region Cluster size 
(voxels)

Peak MNI 
coordinates

Peak Z 
value

x y z

CN group

Right STG, MTG, ITG, SFG, parahippocampal gyrus, IFG, insula, fusiform gyrus, amygdala, IPL 23,182 21 5 −41 5.68

Left MTG, STG, ITG, parahippocampal gyrus, insula, amygdala, Heschl’s gyrus 11,710 −44 2 −27 5.52

Left cuneus, precuneus, PCC, calcarine, lingual gyrus, SOG 16,705 −12 32 30 4.8

Bilateral MCC 2,819 −5 −12 41 5.27

Left MTG, STG, ITG 2,299 −62 −53 11 5.64

Right cerebellum posterior lobe 1840 15 −74 −38 4.98

MCI group

Right ITG, STG, MTG, IPL, parahippocampal gyrus, MOG, postcentral gyrus, hippocampus, 

precuneus, insula, angular gyrus, lingual gyrus, IFG

36,349 51 −54 −18 6

Left MTG, parahippocampal gyrus, hippocampus, STG, insula, ITG, fusiform gyrus, amygdala, 

IFG

8,249 −36 −23 −6 4.58

Left postcentral gyrus, MFG, IPL 7,974 −54 −15 48 5.52

Left precuneus, cuneus, MOG, calcarine, SOG 3,375 −21 −80 24 4.4

Bilateral MCC, PCC 1,447 −6 −32 30 4.8

AD group

Left MTG, STG, ITG, fusiform gyrus, MOG, IPL, parahippocampal gyrus, supramarginal gyrus, 

insula, IOG

18,918 −65 −8 −6 5.68

Right MTG, STG, ITG, fusiform gyrus, IPL, insula, MOG, lingual gyrus, IOG, parahippocampal 

gyrus

16,534 63 −11 −6 5.12

MTG, middle temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; IPL, inferior parietal lobe; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; MFG, middle 
frontal gyrus; SOG, superior occipital gyrus; MOG, middle occipital gyrus; IOG, inferior occipital gyrus; MCC, middle cingulate cortex; PCC, posterior cingulate cortex.
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organization, as reflected by the network measures (e.g., small-
world coefficient), may impact GM volume through mechanisms 
such as neuronal degeneration, synaptic pruning, and synaptic 
plasticity (Meftah and Gan, 2023). It is also possible that there may 
be shared genetic, molecular, or cellular mechanisms underlying 
GM volume changes and alterations in morphological networks 
(Pol et  al., 2006). Further investigations utilizing functional 
measures like functional MRI or anatomical measures such as 
diffusion tensor imaging are still needed to elucidate the intricate 
neurobiological underpinnings of these associations observed here.

In AD patients, network measures including degree, 
connectivity density, clustering coefficient, and path length were 
associated with concurrent cognitive ability. This finding is in line 
with previous studies that reported reduced network measures 
related to cognitive dysfunctions in AD (Tijms et al., 2013a, 2014; 
Vermunt et al., 2020). The associations of network measures and 
cognitive ability were also found in the CN and MCI groups. 
Specifically, we observed significant associations of degree with 
cognitive ability in CN individuals, indicating that reduced global 
degree is associated with cognitive decline in normal aging. 
Previous cross-sectional and longitudinal studies in CN 
participants have consistently reported that brain networks tend to 
reorganize toward a more random topology (i.e., low clustering 
coefficient, low path length) with age (Chen et al., 2011; Zhu et al., 
2012; Wu et al., 2013; Carey et al., 2019). However, we did not 
observe such correlations in the CN group. Instead, we  found 
correlations of small-world properties (including gamma and 
sigma) with the cognitive ability in the MCI group. These results 
might indicate that disrupted network measures reflect cognitive 
decline as seen in normal aging adults and patients with dementia, 
especially in AD patients. Importantly, the associations between 
network measures and the concurrent cognitive function in 
cognitively unimpaired normal older individuals and patients at 
early and later stages of dementia also support the idea that 
network measures may provide a biological substrate for cognitive 
dysfunction during normal aging and AD progression (Pereira 
et al., 2016; Pelkmans et al., 2021, 2022).

We observed that small-world properties (i.e., gamma >1, 
lambda ~1, sigma >1) exist in all groups, indicating that all 
participants including MCI and AD patients still exhibited a 
relatively higher level of network integration and better local 
communication as compared to the characteristics of random 
networks. Nevertheless, single-subject GM networks in both the 
MCI and AD groups were characterized by a more random 
topology than the CN group, as indicated by a decreased clustering 
coefficient, path length, and small-world properties (including 
gamma, lambda, and sigma values). The topological patterns were 
much more random in AD patients than MCI patients, reflecting 
the disruptions of GM network were related to the disease severity 
in AD. These findings are in line with previous structural (Tijms 
et al., 2013a; Sheng et al., 2021; Ng et al., 2022) and functional 
(Stam et al., 2009; Sanz-Arigita et al., 2010) network studies in AD.

The present study has two main limitations that are worth noting. 
First, neither preclinical AD nor asymptomatic control participants 
who later developed dementia were included here. In future studies, 
these participants should also be included to gain a complete picture 
of alterations in brain structural networks during the pathological 

progression of AD. Second, this study lacked longitudinal data, which 
prevented the examination of network disruption trajectories 
concurrent with cognitive decline or GM atrophy. Thus, longitudinal 
studies are still needed to identify early network markers for the brain 
morphological changes related to preclinical dementia and 
AD. Additionally, the findings reported here may be biased by the 
individual variability of the cross-sectional samples.

Conclusion

Our study provides new evidence for brain morphological 
alterations related to AD using a graph theoretical approach to capture 
the characteristics of single-subject GM networks. Altered network 
metrics were correlated with the concurrent cognitive decline in 
normal aging adults and patients with dementia (including MCI and 
AD), suggesting that the brain structure topological organization may 
predict the severity of the cognitive decline, especially in AD patients. 
Further, we presented associations between the small-world coefficient 
(i.e., sigma) and cortical GM volume in the temporal cortex, 
parahippocampal gyrus, occipital cortex, parietal cortex, fusiform 
gyrus, and insula in the CN, MCI, and AD groups. These brain regions 
are vulnerable to atrophy during normal aging and AD progression. 
Our findings suggest that single-subject GM network metrics may 
be sensible markers for detecting the concurrent cognitive decline and 
cortical GM atrophy, highlighting the potential for applying structural 
network metrics to track the disease progression of AD.
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