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Introduction: Multimodal emotion recognition has become a hot topic in 
human-computer interaction and intelligent healthcare fields. However, 
combining information from different human different modalities for emotion 
computation is still challenging.

Methods: In this paper, we propose a three-dimensional convolutional recurrent 
neural network model (referred to as 3FACRNN network) based on multimodal 
fusion and attention mechanism. The 3FACRNN network model consists of 
a visual network and an EEG network. The visual network is composed of a 
cascaded convolutional neural network–time convolutional network (CNN-
TCN). In the EEG network, the 3D feature building module was added to 
integrate band information, spatial information and temporal information of the 
EEG signal, and the band attention and self-attention modules were added to 
the convolutional recurrent neural network (CRNN). The former explores the 
effect of different frequency bands on network recognition performance, while 
the latter is to obtain the intrinsic similarity of different EEG samples.

Results: To investigate the effect of different frequency bands on the experiment, 
we obtained the average attention mask for all subjects in different frequency 
bands. The distribution of the attention masks across the different frequency 
bands suggests that signals more relevant to human emotions may be active in 
the high frequency bands γ (31–50 Hz). Finally, we try to use the multi-task loss 
function Lc to force the approximation of the intermediate feature vectors of 
the visual and EEG modalities, with the aim of using the knowledge of the visual 
modalities to improve the performance of the EEG network model. The mean 
recognition accuracy and standard deviation of the proposed method on the 
two multimodal sentiment datasets DEAP and MAHNOB-HCI (arousal, valence) 
were 96.75 ± 1.75, 96.86 ± 1.33; 97.55 ± 1.51, 98.37 ± 1.07, better than those of 
the state-of-the-art multimodal recognition approaches.

Discussion: The experimental results show that starting from the multimodal 
information, the facial video frames and electroencephalogram (EEG) signals 
of the subjects are used as inputs to the emotion recognition network, which 
can enhance the stability of the emotion network and improve the recognition 
accuracy of the emotion network. In addition, in future work, we will try to 
utilize sparse matrix methods and deep convolutional networks to improve the 
performance of multimodal emotion networks.
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1 Introduction

Emotion recognition and analysis are crucial in our everyday 
lives, particularly in the fields of human-computer interaction (Liu 
Y. et al., 2020; Cheng et al., 2021), the assessment of psychological 
disorders such as depression and autism (Blankertz et al., 2016), and 
fatigue driving (Kong et al., 2017). There are two distinct categories of 
emotional recognition signals: physiological and non-physiological. 
Electromyography (EMG), electroencephalography (EEG), 
electrocardiogram, heart rate (Doma and Pirouz, 2020) and 
respiratory rate are examples of physiological signals, while facial 
expressions, utterances, and body postures are examples of 
non-physiological signals (Daros et al., 2013; Huang et al., 2020).

EEG is noninvasive, practical, quick, and affordable. 
Consequently, it is frequently employed to examine the brain’s 
response to emotional stimuli. We  can acquire emotion-related 
feature information from different frequency bands and electrodes of 
the EEG, and use deep learning methods for feature learning and 
classification. Wang et al. (2018) used a 3D CNN network to extract 
spatial features from EEG signals followed by emotion state 
prediction, but did not consider the effect of temporal feature 
components in EEG signals on emotion recognition; Yang et  al. 
(2018a) extracted spatio-temporal feature information from EEG 
signals by cascading CNN and LSTM networks, which is similar to 
the emotion recognition architecture based on convolutional 
recurrent networks proposed in this paper, but the method proposed 
by Yang et al. did not integrate feature information of EEG data in 
different dimensions, which resulted in spatio-temporal features 
representativeness extracted by the CNN-LSTM network did not 
comprehensive; Li et al. (2018) constructed a two-dimensional matrix 
of 62 electrode locations and mapped the EEG features onto the 
two-dimensional matrix, they were then fed into a network model for 
training; Song et al. designed differential entropy features based on 
the relationship between electrode locations and used a graph 
convolutional neural network as a classifier (Song et al., 2020); both 
Li et al. and Song et al. only considered the effect of relative position 
information between different electrodes on emotion recognition, 
ignoring the importance of information from different frequency 
bands within the same electrode for the prediction of emotional 
states; Yang et al. used a combination of four frequency bands in the 
EEG, including theta (4–7 Hz), α (8–13 Hz), β (14–30 Hz), and γ 
(31–50 Hz), and found that they are closely related to emotional states 
(Yang et al., 2018b), but did not use attentional means to adjust the 
weight parameters of the different frequency bands according to their 
importance to help the emotion network to better fulfill the emotion 
prediction task. To address the weaknesses and shortcomings of the 
above research methods, in this paper, we  propose a three-
dimensional convolutional recurrent neural network model based on 
the attention mechanism, 3FACRNN, which can first integrate the 
multidimensional feature information of EEG signals using the three-
dimensional feature construction module to increase the feature 
complexity of EEG signals, then extract the deep spatio-temporal 
features of EEG signals using the convolutional recurrent neural 
network, and finally combine with the frequency-band attention 
module and the self-attention module to improve the discriminative 
capability of the feature information.

Inspired by the research of Shen et al. (2020), this paper proposes 
a 3D feature construction module to better utilize all the emotional 

information contained in the EEG signals. This 3D feature building 
module can extract frequency band, spatial and temporal 
information from the original EEG signals, and then input the 
3D-structured EEG signals into a neural network consisting of 
CNNs and LSTMs for deeper feature abstraction, and finally input 
them into a SoftMax classifier for emotional state classification. 
Incorporating attentional mechanisms, such as frequency bands and 
self-attention mechanisms into this procedure allows us to extract 
more discriminative feature information (Guo et al., 2022; Tao et al., 
2023). Although all four bands of EEG signals contain information 
related to emotions, the importance of the emotional information 
contained in different bands varies. To deal with this case, we used 
1 1×  convolution method to assign different weights to different 
bands. In addition, since the importance of different EEG samples 
of subjects varies, we integrate a self-attention module in LSTM, 
which can extract the attention information of subjects according to 
the importance of their different EEG samples. Through the attention 
mechanism, the 3FACRNN network is able to acquire more 
discriminative feature information from EEG signals, thereby 
enhancing its recognition performance.

The EEG signal is the result of the integrated activity of human 
brain regions, and because it is not influenced by subjective human 
factors, it accurately reflects the true emotional state of a person in 
response to a stimulus. However, the EEG signal is easily disturbed 
by noise. Although facial expression can visually communicate the 
subject’s emotional state, it is often disguised, so the subject is 
sometimes unable to express his or her own emotional state 
accurately. Multimodal emotion recognition methods that combine 
the facial expressions of subjects with EEG signals can compensate 
for the deficiencies of unimodal methods and achieve superior 
recognition results (Mühl et  al., 2014; D’mello and Kory, 2015; 
Basbrain and Gan, 2020). Afouras et  al. (2020) trained a visual 
recognition model based on lip reading using the knowledge of 
obscurity in the speech modality, but both the speech and visual 
modalities are artifactual and do not allow for true emotional state 
labeling. Soleymani et al. (2016) proposed a multimodal continuous 
emotion prediction method based on facial sign sequences and EEG 
signals, obtaining high recognition accuracy. Tzirakis et al. (2017) 
achieved the first end-to-end emotion recognition by using ResNet 
and two convolutional layers to extract facial expression feature 
signals and speech feature signals, concatenating them to form new 
features, and then integrating contextual information via a 
multilayer LSTM. Both the studies of Soleymani et al. and Tziraki 
et al. fused the feature information of the two modalities in series 
at the feature level or decision level, without considering the 
differences and complementarities between the features. In contrast, 
the multimodal emotional network 3FACRNN network proposed 
in this paper does not serially splice features between two modalities 
and feed them into the network for undifferentiated learning, but 
rather forces approximation of the intermediate feature vectors of 
the visual and EEG modalities through the multitasking loss 
function Lc, with the aim of utilizing the knowledge of the visual 
modalities for the improvement of the performance of the EEG 
network model.

In this paper, we  propose a novel multimodal emotion 
recognition network (3FACRNN) based on the attention mechanism, 
which includes visual and EEG networks. The visual network is 
trained only for the visual modality, and the important feature 
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information in the visual modality is extracted and used to supervise 
the EEG network for training and learning. The proposed multi-task 
loss function LC consists of the weighted sum of the L1 loss function 
and the cross-entropy loss function, which is used to force the 
approximation of the intermediate feature vectors of the two 
modalities, so that the EEG modalities can learn the knowledge of the 
visual modalities, thereby improving the recognition performance of 
the EEG network. The EEG network model cascades the 3D feature 
construction module, the multi-attention module, the CNN, and the 
LSTM framework, The inputs to the EEG network include 
intermediate feature vectors obtained from the visual network and 
raw EEG signals and labels. The raw EEG signals are first preprocessed 
to remove noise, artifacts, and baseline signals, and then important 
feature information is integrated into the EEG signals using a 3D 
feature building module, and then important band information and 
intrinsic similarity information of different EEG signals are extracted 
using a multi-attention module, and finally, a convolutional recurrent 
neural network to extract local features for deeper feature abstraction, 
and a classifier consisting of a fully connected layer and SoftMax is 
used to complete the prediction of emotion labels. The proposed 
3FACRNN network model for emotion recognition has been 
evaluated on two publicly available datasets, the DEAP dataset 
(Koelstra et al., 2012) and the MAHNOB-HCI dataset (Soleymani 
et al., 2012). On both datasets, the network model has demonstrated 
outstanding recognition accuracy. Here is a synopsis of our most 
notable contributions:

 1 This paper proposes a 3D convolutional recurrent neural 
network model based on the attention mechanism called 
3FACRNN, which cascades a 3D feature construction module, 
a frequency band attention module, a convolutional recurrent 
neural network, and a self-attention module to perform the 
emotion recognition task. This model can effectively enhance 
the discriminative properties of EEG signals in space, time, 
and spectrum.

 2 In this paper, we use the multi-task loss function Lc to force 
approximation of the intermediate feature vectors of visual 
modality and EEG modality in order to achieve the purpose of 
using the dark knowledge of visual modality to supervise the 
emotion recognition of the EEG network, which effectively 
utilizes the advantage of the high resolution of the visual 
modality in spatial dimensions, solves the problem of the single 
data information in the uni-modal approach, and improves the 
feature complexity of the EEG signals in spatial dimensions.

 3 The average accuracy and standard deviation of the proposed 
3FACRNN model on the valence and arousal dimensions of the 
DEAP and MAHNOB-HCI datasets were 96.75 ± 1.75, 
96.86 ± 1.33, 97.55 ± 1.51, and 98.37 ± 1.07. It outperforms 
existing emotion recognition methods using multimodal data. 
Moreover, this paper analyses the attentional weights of various 
frequency bands, and the weight distribution suggests that the 
gamma band of EEG signals may be  more pertinent to 
human emotions.

The remaining sections of the paper are organized as follows: 
section 2 describes the relevant materials and methodologies, section 
3 analyses the experimental results, section 4 discusses the work 
accomplished and concludes the entire paper.

2 Methods

The framework of the proposed 3FACRNN multimodal emotional 
network model is shown in Figure 1. It is made up of the visual and 
EEG networks.

The facial video frames of the subjects in the DEAP dataset and 
the MAHNOB-HCI dataset were then fed into the pre-trained visual 
network to extract the spatio-temporal eigenvectors of the visual 
modalities. The feature information obtained from the visual 
modalities along with the original EEG signal and labels was fed into 
the EEG network so that the dark knowledge of the visual modalities 
could enhance the recognition performance of the EEG network. The 
specific implementation process of each component in the two 
subnetworks and the interaction mechanism between the two 
subnetworks for learning will be  described in detail in the 
following section.

2.1 The visual network model

The visual network model is shown in Figure  2. The visual 
network model consists of facial video frame acquisition, 
pre-processing, CNN, time series convolutional network (TCN) and 
SoftMax classifier architecture. The facial expression is first processed 
by frame extraction, and the processed face video frames are resized 
to 48×48 ×3, with T video frames input at a time. It is then passed 
through spatial–temporal convolutional network, which consists of 
CNN, TCN and linear layers. The T consecutive video frames and 
labels are fed into a CNN, which contains two convolutional layers, 
two pooling layers and a flatten layer. The spatial information of the 
video frames is derived by the CNN network and spatial features are 
generated for each frame, resulting in T×512-dimensional spatial 
features. The latter is then passed through a temporal convolutional 
neural network (TCN), from which temporal information is obtained 
and the spatial–temporal composite features of the video frames are 
obtained, generating T×128-dimensional spatial–temporal features. 
TCN networks are capable of extracting features at different time 
scales and can effectively capture long-term dependencies in time-
series data (Xue et al., 2020; He et al., 2022; Wang et al., 2022). The 
TCN network in the visual network proposed in this paper cascades 
two temporal convolution modules and a pooling layer, and the 
internal parameters of both temporal convolution modules can 
be shared. The temporal convolution module consists of one normal 
convolutional layer, two dilated convolutional layers, and a residual 
block, with Relu activation functions and normalization layer added 
after each convolutional and dilated convolutional layer. The 
convolution kernel size of the convolutional layer is 3, stride = 1, 
dilation = 1; the convolution kernel size of the dilated convolutional 
layer is 3, stride = 1, dilation = 2. The role of the dilated convolutional 
layer is to inject voids into the convolutional layer as a way to increase 
the receptive field so that the output contains a larger range of feature 
information than it otherwise would. Where the dilation parameter 
refers to the number of kernel intervals. A 1×1 convolutional kernel is 
used in the residual block to perform dimensional matching of the 
input to the output and to residually connect the input to the output 
to prevent gradient explosion. In addition we added Dropout layer 
after each normalization layer for preventing overfitting and its scale 
is set to 0.5. The T × 128 dimensional spatio-temporal features are then 
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mapped to T × 2 dimensions using a fully connected layer. Finally, the 
SoftMax classifier receives the extracted features as input to recognize 
the emotional state., using a cross-entropy loss function to reduce the 
distance between the predicted sequence and the actual sequence 
(labels). We used a large number of 2D-based facial image or emotion 
databases AFEW-VA (Kossaifi et  al., 2017) and AffectNet 
(Mollahosseini et al., 2019) to train the visual network.

2.2 The EEG network model

Figure 3 depicts the EEG network model, which consists of an 
EEG signal preprocessing, a 3D feature construction module (feature 
extraction), a convolutional recurrent neural network (frequency 
band attention module, CNN, LSTM, self-attention module), and a 
SoftMax classifier. First, we  pre-process the raw EEG signal to 
eliminate the baseline signal, and then we input the pre-processed 
EEG signal into the 3D feature construction module to integrate the 
frequency information, spatial information, and temporal information 
of the signal. The 3D EEG signals are then fed into a convolutional 

recurrent neural network. The frequency band attention module in 
the convolutional recurrent neural network captures the frequency 
bands that are more critical to the task. The self-attention mechanism 
focuses on more important EEG samples by assessing the probability 
based on the similarities between samples. The CNN and LSTM 
networks further abstract and extract the spatial–temporal features of 
the EEG signals. Finally, a SoftMax classifier is utilized to predict the 
subject’s emotional state. Each component’s implementation is 
described in detail below.

2.2.1 3D feature construction module
Initially, we  carry out preprocessing procedures on the 

unprocessed EEG signals, which encompass both baseline and 
experimental signals (Ahmed et al., 2023). In this paper, we use a 
non-overlapping sliding window to remove the baseline signal from 
the raw EEG signal. According to previous studies, human emotional 
state is generally maintained between 1 and 12 s, while 0.5–3 s can 
achieve better classification accuracy (Li et al., 2017). For the DEAP 
dataset, each subject has 40 × 60 s of emotional EEG signals, and we set 
the size of the sliding window to 2 s without overlapping, so that a total 

FIGURE 1

3FACRNN network architecture (Facial frame sequence A is obtained after preprocessing of facial expression videos in the AFEW-VA dataset, and f 
Facial frame sequence B is obtained after preprocessing of facial expression videos in the DEAP dataset and MAHNOB-HCI dataset).

FIGURE 2

Framework for the visual model.
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of 26,400 samples can be obtained, with 1,200 samples for each person; 
while for the MAHNOB-HCI dataset, due to the varying durations of 
each trial, we choose the middle 30 s of each video as the experimental 
video data, and set the size of the sliding window to 0.5 s without 
overlapping, so that a total of 30,000 samples can be obtained, with 
1,200 samples for each person.

The pre-processed EEG signals were fed into the 3D feature 
construction module. Each time-slice sample was first decomposed 
into four frequency bands, i.e., θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz) 
and γ (31–50 Hz), using a Butterworth filter (Zheng and Lu, 2015), 
and then the differential entropy (DE) features of these four bands 
were calculated separately. The researchers found that the differential 
entropy feature is currently the most effective feature in the field of 
emotion recognition (Chen et al., 2019), and the formula is shown in 
Eq. (1).

 
D x f x logf x dx

x
( ) = − ( ) ( )∫

 
(1)

where f x( ) is the probability density function of x. According to 
Zheng et al. the differential entropy characteristic formula for the 
Gaussian distribution is shown in Eq. (2), where e is Euler’s constant 
and σ  is the standard deviation of the EEG sequence.
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The differential entropy features of each frequency band were then 
projected onto a two-dimensional matrix (Li et al., 2018; Nguyen et al., 
2019; Sha et  al., 2023), with the length and width of the 
two-dimensional matrix set to H = 9 and W = 9, respectively, and the 
relative positions of the actual recording electrodes corresponding to 
the positions of the recording electrodes in the two-dimensional 
matrix. Figure 4 shows the two-dimensional matrix obtained from the 
projection based on 32 sampled electrodes, with the unused channel 
signals filled with zeros. Finally, the four frequency bands of each EEG 
sample were stacked to obtain a three-dimensional feature 
representation of each EEG signal and as shown in Eq. (3):

 E E E E E Ri T
T B H W= …[ ]∈ × × ×

1 2 3, ,  (3)

2.2.2 Frequency band attention module
The band attention module used in this paper is inspired by the 

ECAnet Convolutional Attention Module (Han et al., 2021) in the field 
of image recognition, and uses a one-dimensional convolution to 
interact with the information in each band, with the size of the 
convolution kernel varied by an adaptive function. Specifically, for the 
EEG sample Ei∈ RB × 9 × 9, the matrix with feature maps [B,H,W] is first 
converted to a vector of [1,c] by a global average pooling layer, and then 
the one-dimensional convolution kernel size kernel_size is obtained by 
an adaptive function, the formula of which is shown in Eq. (4):

 
k

c
y

b
y

=
( )

+
log

 
(4)

Where y=2 and b=1, We calculate the size of kernel_size and 
apply it to the one-dimensional convolution, then multiply to [1,c] 
reshape into [c,1] and multiply by with the one-dimensional 
convolution to get the weight for each band in the feature map, and 
finally normalize the weights and multiply with by the original feature 
map to get the weighted feature map and as shown in Eq. (5):

 
E E Sigmoid D filters Kenel size c xi i
∗ = ⊗ = =( )( )cov ( _1 1,

 (5)

2.2.3 The CNN-LSTM networks
The CNN-LSTM networks consists of four successive convolutional 

layers, a maximum pooling layer, a fully connected layer and an LSTM 
layer. There are four successive convolutional layers with convolutional 
kernel sizes of 5×5, 4×4, 3×3 and 1×1, and output channels of 64, 128, 
256 and 128, in respectively, all of which apply the zero-filling and 
RELU activation functions are applied. A maximum pooling layer with 
convolutional kernel size 2×2 and step size 2 is used to improve the 
robustness of the network, the output of the pooling layer is flattened 
and fed into the fully connected layer, which outputs 512 units, and Et 
is set as the input of the CNN, Et∈  R1 × B × H × W, and Eqs. (6)–(11) are 
used to describe the computation of the layers in the CNN:

FIGURE 3

Framework for the EEG model.
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4 4

2 2
= ( )( ) ∈ ×
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 C f Conv C w W Rc c4 3
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 C f Conv C w W Rc c5 4
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5 5
= ( )( ) ∈ ×

, ,  (10)

 y linea flatten Ct = ( )( )5  (11)

Where f .( )  denotes the Relu activation function, Wc1, Wc2, Wc3, 
Wc4, Wc5 denote the convolution kernel of each convolutional layer, 
and Et  is the input matrix, and we  input Et  into the spatial 
convolutional network to obtain the spatial feature representation of 
Et , yt. where, yt t = 1,2,…T denotes the feature vector from the 1st 
sample, 2nd sample to the Tth sample.y* is obtained by concatenating 
all the feature vectors yt in chronological order.

The CNN output sequence is y* = (y1, y2, y3 … yt, where 
yt∈ R1 × 512, t = 1,2,3. yt, where yt∈ R1 × 512, t = 1,2,3… T), y* is input to 

the LSTM layer, the number of LSTM layers is set to 2, and the 
number of hidden units is set to the sample number, so it can 
be considered that the output of each time step is the spatial–temporal 
feature information of each sample, and the output of the LSTM 
network is computed as shown in Eqs. (12)–(16):

 i W y W h W c bt yi t hi t ci t i= + +( )− − +σ 1 1  (12)

 f W y W h W c bt yf t hf t cf t f= + +( )− − +σ 1 1  (13)

 c f c i W y W h bt t t t yc t hc t c= + + +( )− −1 1tanh  (14)

 o W y W h W c bt yo t ho t co t o= + +( )− +σ 1  (15)

 h o ct t t= ( )tanh  (16)

where σ  is the logical sigmoid activation function, i, f, and o are 
the input, forgetting, and output gates, respectively, and C is the cell 
activation vector. ht. denotes the Tth output hidden state of the 
seconds recursive layer and its expression is shown in Eq. (17):

 
h h Lstm y t T h Rt t t t

T| = ( ) = … ∈ ×
, , , ,1 2 3

128

 (17)

2.2.4 Self-attention module
As shown on the right side of Figure 3, the self-attention module aims 

to assign different weights to each EEG sample in order to explore the 
importance between different samples and to extract more discriminative 
spatial–temporal feature information. The feature score vector St is first 
computed for each hidden state ht and the formula is shown in Eq. (18):

 S f h d W W h W d b bt t t t t t= ( ) = + +( ) +, σ 1 2 1 2 (18)

where f t( ) denotes the importance of the Tth coded sample, and 
dt is the aligned pattern vector generated from ht by linear 
transformation with the same dimension as ht. The activation function 
is set to Relu, Wt  and b2 denote the weight matrix and bias term of the 
activation function, respectively. W1, W2 are the weight matrices of ht 
and dt and b1 is the bias term. The similarity Nt within each sample of 
different points is obtained by dot-multiplying the transpose StT  of the 
feature score vector with the output hidden state ht The probabilistic 
representation of Nt by SoftMax function, the probability of the Tth 
hidden layer state can be expressed as shown in Eqs. (19), (20):

FIGURE 4

The 32 sampled electrodes are projected onto the 2D map on the right according to their relative positions.

https://doi.org/10.3389/fnins.2023.1330077
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fnins.2023.1330077

Frontiers in Neuroscience 07 frontiersin.org

 N s ht t
T
t=  (19)

 
P

N
N

t
t

t
T

t
=

( )
( )=

exp

expΣ
1  

(20)

Each output hidden layer ht is then allowed to multiply with its 
computed probability to obtain the features extracted by the self-
attention module: A = {A1,A2,A3…At}, t = 1,2,3…T. Finally, the 
extracted spatial–temporal attention features are fed into a classifier 
consisting of a fully connected layer and a SoftMax layer to output the 
final emotion type labels.

2.3 EEG network enhanced by visual 
network

We use the knowledge gained from the visual network to improve 
the performance of the EEG network. Firstly, the facial expression 
video frames in the emotion database are used to pre-train the visual 
model, then, the trained visual network is used to extract the features 
of the visual modality in the target dataset, and finally, the raw EEG 
signals together with the corresponding labels and features obtained 
from the visual network are input into the EEG network in an offline 
manner, and the EEG network is trained using the weighted sum of 
the cross-entropy function and the L1 loss function as the loss function 
to make the whole The training process is more controllable, and its 
formula is as shown in Eq. (21):
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where Yt denotes the label of the Tth EEG sample, Pt  denotes the 
predicted probability of the Tth sample, Vt  and Vs  denote the 
spatial–temporal features of the visual and EEG networks, 
respectively, and ρ  is a hyperparameter that is manually set to 0.8. 
The cross-entropy loss function is the primary loss function, which 
updates the weight matrix w in the model by the discrepancy 
between the actual prediction and the expected label, and reduces 
the distance between the actual prediction and the expected label, 
and a lower cross-entropy loss function represents a higher emotion 
recognition accuracy; the L1 loss function is the auxiliary loss 
function, inspired by Romero et  al. (2015), which extracts 
knowledge by enforcing the proximity of the intermediate features 
graphs using the L1 loss function, and the L1 loss function is 
computed as shown in Eq. (22):
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where Ui ∈ RT × F and Vi ∈ RT × F denote the feature sequences 
obtained at each time step, and w∗ is the hyperparameter, and the 
optimal w∗ is found by grid search. The multi-task loss function Lc 
guides the training process of the EEG network so that the EEG 
network can learn the Knowledge of the visual network, thus achieving 

the purpose of improving the emotion recognition performance of the 
EEG network using the visual modality.

3 Results

3.1 Introduction to source datasets

To evaluate the efficacy of the proposed network model, 
we conducted experiments on two multimodal data sets, DEAP and 
MAHNOB-HCI; Table  1 provides the relevant details for the 
two datasets.

The MAHNOB-HCI is a multimodal emotion database of 30 
young healthy adult participants, 17 females and 13 males. Age 
ranging from 19 to 40 years (M = 26.06 SD = 4.39). The MAHNOB-HCI 
was used to record responses to emotional stimuli and to record facial 
expression videos, audio signals, EEG signals and other physiological 
signals from the 30 participants. After viewing 20 emotional video 
clips, participants rated their emotional experience on each of the four 
dimensions of arousal, valence, control and predictability, labeling the 
dimensions of arousal, valence, control and predictability on a scale of 
1–9 on each trial. Facial expression videos were transmitted at 60 
frames per second. Due to problems with the experimental equipment 
or the experimental recording, data were incomplete for five 
individuals, so the actual number of participants in our experiment 
was 25, with 20 trials per person for each dimension.

The DEAP dataset is a multimodal dataset for the analysis of 
human emotional states. EEG and peripheral physiological signals 
were recorded from 32 participants. 22 of the 32 participants recorded 
frontal videos using a Sony DCR-HC27E camcorder, so we used the 
data from these 22 subjects. Subjects watched 40 one-minute music 
video clips and rated their emotional experience on five dimensions: 
arousal, valence, dominance, liking and familiarity, on a discrete scale 
of 1–9, except for familiarity, which was rated on a discrete scale of 
1–5. Setting the transmission speed of facial expression videos was set 
from the original 50 to 60 fps, which is the same as the MAHNOB-HCI 
dataset, to facilitate subsequent unified processing.

We conducted subject-related emotion recognition experiments 
on the DEAP dataset and the MAHNOB-HCI dataset to assess the 
feasibility of the proposed method.

Initially, we examined the efficacy of the 3FACRNN network in 
identifying emotions using the DEAP dataset and the MAHNOB-HCI 
dataset. The emotion categories for each trial were hierarchically 
designated along the dimensions of arousal and valence, respectively, 
using the subjects’ own levels of arousal and valence from the DEAP 

TABLE 1 Detailed information on the DEAP dataset and the MAHNOB-
HCI dataset.

Item DEAP MAHNOB-HCI

Subjects 22 25

Trail of each subject 40 20

Each clip duration 60s 30s

Available channels 32 32

Sampling rate 128 Hz 256 Hz

Items for rating emotion Valence, Arousal Valence, Arousal
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and MAHNOB-HCI datasets as the criteria for self-rating emotions. 
On a scale from 1 to 9, participants rated their arousal and valence, 
and we chose 5 as the threshold to divide the labels into two binary 
classification problems. The overall performance of the approach was 
evaluated by considering the average classification accuracy, precision, 
recall, and F1 scores across all participants. Next, we  performed 
ablation experiments on the 3FACRNN network to examine the 
impact of the 3D construction module, attention module, and visual 
modality on the classification accuracy. Additionally, we calculated the 
attentional weights of the various bands to assess the significance of 
each band in the emotion recognition process. Ultimately, 
we compared the 3FACRNN network model with previously reported 
methods for the DEAP dataset and the MAHNOB-HCI dataset.

The models used in this paper are implemented by Openface, 
Keras2.6.0, Keras2.6.0 is extended by Tensorflow2, all model training 
is performed on NVIDIA GeForce RTX 3060 laptop GPU.

3.2 Emotion recognition using 3FACRNN

In order to train the 3FACRNN network model, we  initially 
trained the visual network on the AFEW-VA dataset. This was done 
as a fine-tuning step for the facial expression recognition task. The 
learning rate for the visual model was set to 1e-5, the maximum 
number of epochs was set to 100, and the batch size was set to 128. 
Additionally, the optimal model parameters were loaded at the end of 
each epoch. The learning rate for the EEG network model was set to 
1e − 6. The maximum number of epochs was set to 100, and the batch 
size was set to 128. A grid search was performed using Eq. (22), with 
the parameter w ranging from 0.5 to 1.5 and a step size of 0.1. The 
hyper-parameters were optimized using the test set. Five times tenfold 
cross-validation is applied on each subject. The average classification 
accuracy and standard deviation of all subjects were used as the final 
results to represent the performance of the 3FACRNN network model.

The 3FACRNN network produced the greatest recognition 
results when the grid search parameter w = 1.0. The average 
recognition accuracy and standard deviation of the 3FACRNN 
network for all subjects in the DEAP dataset were 96.75 ± 1.75 and 
96.86 ± 1.33. This is marginally inferior to the performance on the 
MAHNOB-HCI dataset, and it is possible that this is due to the fact 
that the mood induction situation varied between subjects. In 
addition, for a comprehensive evaluation of the performance of the 
3FACRNN network, the F1 Score, a reconciled average of precision 
and recall, is used as the network model evaluation result. Table 2 
demonstrates that the F1 scores of the 3FACRNN network on the 
emotion and arousal dimensions of the two datasets are 96.09, 96.34, 
97.38, and 97.33, respectively. All F1 Scores are greater than 96%, 
indicating that the 3FACRNN network achieves satisfactory 
classification results on both datasets. Figure 5 present the accuracies 
for all subjects in the DEAP dataset and the MAHNOB-HCI dataset, 
revealing that the 3FACRNN network can achieve more accurate 
classification results for all subjects in the two datasets, thereby 
demonstrating its superiority on the two datasets. Figure 6 depict the 
confusion matrices derived for the 3FACRNN network on the DEAP 
dataset and the MAHNOB-HCI dataset. Figure 6 demonstrate that 
the recognition rate of the 3FACRNN network is greater for low 
valence and low arousal samples than for high valence and high 
arousal samples, and that the 3FACRNN network can achieve the 

optimal classification of the emotions for low valence and low 
arousal samples.

3.3 Ablation experiment

In this paper, we  validate the effects of multiple attentional 
mechanisms in the 3FACRNN network model on an emotion 
recognition task and design four models to compare their performance 
in an emotion EEG recognition task: the first model contains both the 
banded attention module and the self-attention module, the second 
model contains only the banded attention module, the third model 
contains only the self-attention module, and the fourth model does 
not contain any attention module. The purpose of constructing these 
four models was to verify the validity of the self-attention module and 
the frequency band attention module. Table  3 displays the mean 
accuracy and standard deviation for each of the four models.

To investigate the effect of various attention modules on the 
performance of the 3FACRNN network, we compare and analyze the 
mean accuracy of each network model in Table 3. The first network 
model, which includes all attention modules, has the greatest 
improvement in recognition accuracy compared to the fourth network 
model on the arousal and valence dimensions of the DEAP and 
MAHNOB-HCI datasets, with improvements of 6.64%, 7.43%, 9.02%, 
and 7.19%, respectively. With the addition of the self-attention 
module, the average accuracy of the first network model increased by 
1.91%, 2.51%, 3.33%, and 4.22% when compared to the third model. 
The recognition performance of the network model with the addition 
of the self-attention module alone is superior to that of the network 
model with the addition of the frequency-band attention module 
alone. This is because the frequency-band attention module captures 
the feature information of different frequency bands in the EEG 
samples from the local time-slice domain, while The self-attention 
module captures the intrinsic attentional information 
between samples.

In order to determine the significance of the 3D feature 
construction module in the 3FACRNN network model, we input the 
raw EEG signals directly into the spatial–temporal convolutional 
network to extract the local spatial–temporal features, bypassing the 
3D feature construction module. Because the differential entropy 
characteristics of the frequency bands in the EEG signal are not 
utilized in this procedure, the frequency band attention module in the 
3FACRNN network is also eliminated, while the other inherent 
network structures are preserved. First, the raw EEG signals are 
maintained, then each sampling point is projected onto a spatial 
matrix, and lastly, the signal matrix is fed directly into a spatial–
temporal convolutional network for feature extraction and 

TABLE 2 Accuracy, precision, recall and F1 score obtained by 3FACRNN 
network on DEAP dataset and MAHNOB-HCI dataset.

Dataset DEAP MAHNOB-HCI

Index Arousal Valence Arousal Valence

Accuracy 96.75% 96.86% 97.55% 98.37%

Precision 97.57% 97.95% 98.89% 99.13%

Recall 94.66% 94.79% 96.42% 97.26%

F1 score 96.09% 96.34% 97.38% 97.33%
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FIGURE 5

Recognition accuracy of the 3FACRNN network on the DEAP dataset and MAHNOB-HCI dataset for all subjects: (A) DEAP dataset; (B) MAHOB-HCI 
dataset.

FIGURE 6

Confusion matrix of the proposed 3FACRNN on DEAP dataset and MAHNOBHCI dataset: (A) DEAP:Arousal; (B) DEAP:Valence; 
(C) MAHNOBHCI:Arousal; (D) MAHNOBHCI:Valence.
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classification. The average accuracy and standard deviation of the two 
datasets for the valence and arousal dimensions are displayed in 
Table  4. Table  4 reveals that the average accuracy and standard 
deviation of the network model on the two datasets are 94.22 ± 3.12, 
93.80 ± 2.69, 93.99 ± 2.57, and 93.74 ± 2.32, with the raw EEG signals 
as inputs, and that it is lower than the average accuracy of the 
3FACRNN network model by 2.53%, 3.06%, 3.56%, and 4.63%, 
respectively. Experiments have shown that adding the 3D feature 
construction module to the 3FACRNN network can improve 
recognition accuracy. This is because the EEG signals processed by the 
3D feature construction module are more complex at the feature level 
and contain more useful emotional information.

To investigate the effect of visual modalities on the recognition 
accuracy of the network, we conducted experiments without including 
visual modalities. Table 5 shows the average accuracy and standard 
deviation of the network without and with visual modalities. In Table 5, 
the average accuracy with standard deviation of the network on the two 
datasets without considering visual modality is 93.47 ± 3.01, 
93.18 ± 3.83, 92.46 ± 3.36, and 94.54 ± 3.02, and it is lower than that of 
the 3FACRNN network considering visual modality by 3.28%, 3.68%, 
5.09%, and 3.83%, respectively. This due to the fact that multimodality 
captures more comprehensive feature information in the global time 
domain than unimodality, and experimental results show that allowing 
the EEG modality to learn the dark knowledge of the visual modality 
improves the recognition performance of the 3FACRNN network.

3.4 Analysis of the attention weighting of 
the frequency average band

To comprehend the significance of different frequency bands in 
the emotion recognition process, we calculated the average frequency 

band attentional weight values of all subjects after training, which 
represents the significance of different frequency bands in the network 
training process, and plotted the average frequency band weight 
rectangles of the four frequency bands in Figure  7. Because the 
attention weights for each frequency band have been normalized, 
Figure 7 displays values in the range [0,1] for the attention weights for 
the four frequency bands. In the DEAP and MAHNOB-HCI datasets, 
the network assigned the highest attentional weights to the gamma 
band. Since the network continuously updates the band attentional 
weights during training, this also suggests that the differential entropy 
feature of the gamma band provides a more discriminative feature 
during emotion recognition. Due to the shorter EEG sample duration 
of subjects in the MAHNOB-HCI dataset, the average band attentional 
weights of the four bands are lower in the MAHNOB-HCI dataset 
than in the DEAP dataset.

3.5 Method comparison

We compared the proposed 3FACRNN network model with the 
state-of-the-art methods on the DEAP dataset and MAHNOB-HCI 
dataset, as shown in Table 6, with a brief description of each method 
as follows:

 1 DBN (Wang and Shang, 2013): A Deep Belief Network (DBN)-
based emotion recognition system that automatically extracts 
features from four channels of raw EEG data in an unsupervised 
manner and accomplishes emotion classification.

 2 M-CLASS (Sander and Ioannis, 2013): A Multimodal Emotion 
Recognition Method for Emotion Recognition after Fusion of 
Facial Expression Features and EEG Features at Decision Layer 
or Feature Layer.

TABLE 3 Average accuracy and standard deviation obtained by the 3FACRNN network for different attention situations.

Attention DEAP MAHNOB-HCI

Arousal Valence Arousal Valence

With all attention 96.75 ± 1.75% 96.86 ± 1.33% 97.55 ± 1.51% 98.37 ± 1.07%

With only Frequency Band-attention 92.61 ± 3.91% 93.59 ± 3.55% 93.61 ± 3.91% 93.59 ± 3.65%

With only Self-attention 94.84 ± 2.61% 94.35 ± 2.89% 94.22 ± 0.2.37% 94.15 ± 2.46%

W/O any attention 90.11 ± 3.58% 89.43 ± 4.49% 88.53 ± 3.74% 91.18 ± 4.66%

TABLE 4 Comparison of recognition performance of 3FACRNN networks with raw EEG signal as input and processed by 3D constructor module as 
input.

Input EEG signals DEAP MAHNOB-HCI

Arousal Valence Arousal Valence

With 3D-feature structure 96.75 ± 1.75% 96.86 ± 1.33% 97.55 ± 1.51% 98.37 ± 1.07%

With raw EEG signals 94.22 ± 3.12% 93.80 ± 2.69% 93.99 ± 2.57% 93.74 ± 2.32%

TABLE 5 Comparison of recognition performance of 3FACRNN networks with and without visual pattern involvement.

Visual feature DEAP MAHNOB-HCI

Arousal Valence Arousal Valence

With visual feature 96.75 ± 1.75% 96.86 ± 1.33% 97.55 ± 1.51% 98.37 ± 1.07%

W/O visual feature 93.47 ± 3.01% 93.18 ± 3.83% 92.46 ± 3.36% 94.54 ± 3.02%
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 3 Conti-CNN (Yang et al., 2018b): A three-dimensional input 
continuous convolutional neural network combining features 
from multiple bands to improve the accuracy of emotional 
EEG recognition.

 4 CRAM (Zhang et al., 2019): An emotion recognition network 
that uses CNNs to abstractly encode EEGs and a recursive 
attention mechanism to extract spatial–temporal features in 
EEGs for emotion classification.

 5 GCNN (Song et al., 2020): A network that uses spectrogram 
filtering to extract different differential entropy features for 
emotional EEG recognition.

 6 CNN-LSTM (Chen et al., 2020): An emotional EEG signal 
recognition network using a hybrid convolutional recursive 
module of CNN and LSTM.

 7 4D-CRNN (Shen et  al., 2020): A four-dimensional 
convolutional recurrent neural network is proposed to convert 

FIGURE 7

Mean spectral attention masks for all subjects in the DEAP and MAHNOB-HCI datasets in four frequency bands (i.e., theta, alpha, beta, and gamma 
frequency bands):(A) DEAP dataset; (B) MAHOB-HCI dataset.

TABLE 6 Comparison of mean accuracy and standard deviation (acc  ±  std.%) between the baseline method and the proposed 3FACRNN network on the 
DEAP dataset and the MAHNOB-HCI dataset.

Author Methods Year DEAP MAHNOB-HCI

Arousal Valence Arousal Valence

D. Wang DBN 2013 60.9 51.2 - -

K. Sander M-CLASS 2013 - - 66.5 71.5

T. F. Song GCNN 2018 87.72 ± 3.32 88.24 ± 3.18 - -

Y. Yang Conti-CNN 2018 81.55 ± 6.55 82.77 ± 4.47 - -

D. Zhang CRAM 2019 84.46 ± 9.27 87.09 ± 7.49 - -

Y. G. Huang Multi-CNN 2019 - - 74.17 75.21

J. Chen CNN-LSTM 2020 93.26 93.64 - -

F. Shen 4D-CRNN 2020 94.58 ± 3.69 94.22 ± 2.61 - -

J. Liu CSDNN 2020 92.86 89.49 - -

Z. Wang MDBN 2020 87.32 83.69 - -

X. L. Zhong MA-attention 2020 - - 70.25 73.27

Z. Gao DCNN 2021 92.92 92.24 - -

X. Deng SFENet 2021 91.94 92.49 - -

Y. Yin GCN-LSTM 2021 90.60 90.45 - -

Siddharth Deep learning 2022 - - 80.42 80.77

Yong Zhang HC-MFB 2022 - - 90.37 90.50

C. Li CADD-DCCNN 2023 92.42 90.97 - -

G. Q. Peng TR&CA 2023 95.58 ± 2.28 95.18 ± 2.46 - -

Ours proposed 3FACRNN 2023 96.75 ± 1.75 96.86 ± 1.33 97.55 ± 1.51 98.37 ± 1.07
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the differential entropy features of different channels into a 3D 
structure to train the network model.

 8 CSDNN (Liu J. et al., 2020): An emotion recognition network 
combining convolutional neural networks with 
sparse autoencoders.

 9 MDBN (Wang et al., 2020): Multimodal emotion recognition 
using deep belief networks.

 10 DCNN (Gao et  al., 2021): A dense convolutional neural 
network for sentiment recognition using channel 
fusion methods.

 11 SFENet (Deng et al., 2021): An emotion recognition network 
based on spatial folding integration.

 12 GCN-LSTM (Yin et  al., 2021): An emotion recognition 
algorithm based on graph convolutional neural networks and 
long and short-term memory neural networks.

 13 Multi-CNN (Huang et al., 2019):A deep convolutional neural 
network combining facial expressions and EEG for enhanced 
emotion recognition.

 14 MA-attention (Zhong et  al., 2020): A convolutional neural 
network using moving average (MA) and attentional 
mechanisms was designed to recognize emotional EEG signals.

 15 Deep learning (Siddharth and Jung, 2022): A deep learning 
method is designed to implement a multimodal vision and 
EEG based affective computing network using deep 
learning methods.

 16 HC-MFB (Zhang et al., 2022):A multimodal emotion learning 
network model based on heterogeneous convolutional neural 
networks and multimodal factorized bilinear pools is designed.

 17 CADD-DCCNN (Li et al., 2023): A causal convolutional neural 
network based on cross-attention mechanism for EEG 
emotion recognition.

 18 TR&CA (Peng et al., 2023): An emotion recognition network 
based on channel attention mechanism and time relative 
coding mechanism.

Table 6 reports the comparison of the recognition performance of 
all the above methods and the proposed 3FACRNN network in this 
paper on DEAP and MAHNOB-HCI datasets. Overall, the proposed 
3FACRNN network outperforms the state-of-the-art methods with 
average recognition accuracies of 96.75, 96.86, 97.55, and 98.37 on 
DEAP and MAHNOB-HCI datasets, respectively, with standard 
deviations of 1.75, 1.33, 1.51, and 1.07, respectively.

We compared the 3FACRNN network with the Conti-CNN 
method proposed by Yang et al. The 3FACRNN network outperforms 
the Conti-CNN method in average recognition accuracy by 15.2% and 
14.09%, respectively, which is due to the fact that Yang et al. only 
considered the feature information of the EEG signals in terms of 
spatial domain, and did not take into account the EEG signals in terms 
of time domain feature cues, while the 3FACRNN network utilizes the 
LSTM network to obtain the long-term temporal features of emotional 
EEG signals, which improves the network’s prediction performance of 
emotional states.

Although Chen et  al. used a hybrid CNN and LSTM 
convolutional recurrent neural network to extract the feature 
information of EEG signals in both spatial and temporal domains, 
the average recognition accuracy was still 3.49% and 3.22% lower 
than that of the 3FACRNN network, which is due to the fact that 

the 3FACRNN network not only uses a convolutional recurrent 
neural network based on CNN and LSTM to extract the spatial and 
temporal feature information of the EEG signals but also 
incorporates a frequency band attention module and a self-attention 
module to enhance the discriminative property of the feature 
information. In addition, Zhang et  al. incorporated a recursive 
attention mechanism into a convolutional neural network to 
explore the effect of different time-slice samples on the emotion 
recognition process, but their average recognition accuracy was 
lower than that of the method proposed in this paper, which further 
illustrates the effectiveness and advanced nature of the multi-
attention mechanism chosen in this paper.

Yin et  al. used EEG signals obtained from different electrode 
channels to construct a brain network, and adopted the brain network 
representation learning method of graph neural network to obtain the 
feature representation of EEG signals in spatial and temporal 
dimensions, and finally extracted the temporal features of emotional 
responses using LSTM network, which can achieve an average 
recognition accuracy of 90.60% and 90.45%, but since graph neural 
network needs to perform the feature vector computation while 
adjusting the structure between brain network graphs, so the efficiency 
of the algorithm will show a significant decrease with the increase of 
feature graphs. The 3FACRNN network spatially projected the EEG 
features in order to maintain the relative relationship between the 
placement of EEG electrodes on the head. The EEG features of each 
frequency band were first mapped into a 2D matrix and then 
organized into a 3D structure according to the frequency bands, the 
3FACRNN network outperformed the GCN-LSTM method of Yin 
et al. by 6.15 and 6.41%, respectively, in terms of average recognition 
accuracy, and also outperformed the GCN-LSTM method in terms of 
algorithmic efficiency.

Siddharth et al. used deep convolutional network to extract the 
emotional feature information of visual modality and EEG modality 
and combined the two feature information for the prediction of 
emotional state with an average recognition accuracy of 74.17% and 
75.21%. Zhang et  al. proposed a multimodal emotion learning 
network model based on heterogeneous convolutional neural 
network and multimodal factorized bilinear pool. The network model 
fuses the feature information of visual modality and EEG modality 
in the decision layer, and the average recognition accuracy can reach 
90.37% and 90.50%. In this paper, we propose a multimodal emotion 
recognition network, 3FACRNN, which utilizes a multitask loss 
function Lc to force approximation of intermediate feature vectors of 
visual and EEG modalities in order to improve the recognition 
performance of the EEG network through visual knowledge. The 
3FACRNN network takes into account the differences between 
different modal features, and its average recognition accuracy is 
higher than that of the Zhang et  al. and Siddharth et  al. 
proposed methods.

4 Discussion

In this paper, we  conducted extensive experiments using 
3FACRNN networks on two public datasets and obtained satisfactory 
performance, and we next discuss points in the 3FACRNN networks 
that can be further refined.
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We add a 3D feature construction module to the 3FACRNN 
network, which projects the electrode position information of 
the EEG samples into a 2D matrix to facilitate the subsequent 
convolution operation. We set the length and width of the 2D 
matrix to 9×9. We designed a more compact 2D matrix compared 
to the sparse matrix used by Li et al. The compact matrix has a 
smaller size and requires relatively fewer convolutional kernels, 
consuming less time cost, while the sparse matrix requires more 
convolutional kernels to extract more features from the EEG 
samples, which is more favorable for the subsequent recognition 
classification task. So next we  will investigate the 
application of sparse maps in the field of multimodal EEG 
sentiment recognition.

From Table  6, we  can see that the 3FACRNN network 
outperforms the CRAM method in both dimensions of the DEAP 
dataset, producing a significant increase of 12%, which can 
be  attributed to the fact that the convolutional recurrent neural 
network of the 3FACRNN network is much deeper, containing four 
convolutional layers, one pooling layer, one linear layer and one 
LSTM layer, and producing a feature map with {64,128,256,128} 
feature maps, whereas the CRAM method contains only one 
convolutional layer, one pooling layer and one LSTM layer, producing 
{40} feature maps, and its network depth is much lower than that of 
the 3FACRNN network. Deeper convolutional and pooling layers 
also allow the 3FACRNN network to extract and retain more 
emotion-related cues.

5 Conclusion

In this paper, we  propose a 3FACRNN network model for 
multimodal emotion recognition, which includes two parts, the EEG 
network and the visual network. A 3D feature construction module 
was added to the EEG network with the aim of complexly extracting 
the electrode information, frequency band information and spatial–
temporal information from the original EEG signal to provide more 
feature cues to the convolutional recurrent network; In addition, 
we used the frequency band attention module and the self-attention 
module to make the feature information extracted by the 
convolutional recurrent network more discriminative at both local 
and global time slice scales. Finally, the two network models reduce 
the proximity of the intermediate feature maps through a multi-task 
loss function LC, which allows the EEG network to learn the 
knowledge of the already trained visual network and improves the 
performance of the EEG network for affective computing. 
We pre-train the visual models using CNN and TCN, and then use 
the spatial–temporal features in the trained visual networks as dark 
knowledge to improve the recognition performance of EEG networks. 
The experimental results demonstrate the effectiveness of our 
proposed 3FACRNN network model. The 3FACRNN network can 
understand the feature information of different modalities, and it can 
also complexify the feature information through the 3D feature 
construction module and the multi-attention mechanism, so as to 
make it contain more information conducive to the recognition of 
emotions, and to improve the recognition performance of the 
network. In future work, we will apply the 3FACRNN network to 
topic-independent and cross-session tasks to improve the 
generalization of the model.
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