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A diagnosis model for brain
atrophy using deep learning and
MRI of type 2 diabetes mellitus

Saba Raoof Syed and Saleem Durai M. A.*

Vellore Institute of Technology, School of Computer Science and Engineering, Vellore, Tamilnadu, India

Objective: Type 2 Diabetes Mellitus (T2DM) is linked to cognitive deterioration and

anatomical brain abnormalities like cerebral brain atrophy and cerebral diseases.

We aim to develop an automatic deep learning-based brain atrophy diagnosis

model to detect, segment, classify, and predict the survival rate.

Methods: Two hundred thirty-five MRI images a�ected with brain atrophy

due to prolonged T2DM were acquired. The dataset was divided into training

and testing (80:20%; 188, 47, respectively). Pre-processing is done through

a novel convolutional median filter, followed by segmentation of atrophy

regions, i.e., the brain shrinkage, white and gray matter is done through the

proposed TRAU-Net model (Transfer Residual Attention U-Net), classification with

the proposed Multinomial Logistic regression with Attention Swin Transformer

(MLAST), and prediction of chronological age is determined through Multivariate

CoX Regression model (MCR). The classification of Brain Atrophy (BA) types

is determined based on the features extracted from the segmented region.

Performance measures like confusion matrix, specificity, sensitivity, accuracy, F1-

score, and ROC-AUCcurve are used tomeasure classificationmodel performance,

whereas, for the segmentationmodel, pixel accuracy and dice similarity coe�cient

are applied.

Results: The pixel accuracy and dice coe�cient for segmentation were 98.25

and 96.41, respectively. Brain atrophy multi-class classification achieved overall

training accuracy is 0.9632± 1.325, 0.9677± 1.912, 0.9682± 1.715, and 0.9521±

1.877 for FA, PA, R-MTA, and L-MTA, respectively. The overall AUC-ROC curve for

the classification model is 0.9856. The testing and validation accuracy obtained

for the proposed model are 0.9379 and 0.9694, respectively. The prediction

model’s performance is measured using correlation coe�cient (r), coe�cient

determination r
2, and Mean Square Error (MSE) and recorded 0.951, 0.904, and

0.5172, respectively.

Conclusion: The brain atrophy diagnosis model consists of sub-models to

detect, segment, and classify the atrophy regions using novel deep learning

and multivariate mathematical models. The proposed model has outperformed

the existing models regarding multi-classification and segmentation; therefore,

the automated diagnosis model can be deployed in healthcare centers to assist

physicians.
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1. Introduction

Type 2 Diabetes Mellitus (T2DM) is a chronological disorder

caused by high glucose levels in the blood for a significant period.

T2DM is usually known as hyperglycemia, an acute condition

due to reduced insulin synthesis and resistance. Around 90% of

Diabetic Mellitus cases are of T2DM, leading to various severe

disorders and complications affecting multiple organs if untreated

and uncared for a prolonged period. T2DM complications are

classified into two types based on the blood vessels affected:

microvascular (small blood vessels) andmacrovascular (large blood

vessels). Generally, type 2 diabetes leads to various health problems,

including diabetic retinopathy, neuropathy, nephropathy, vascular

diseases, stroke, and heart disease. It also leads to rapid cognitive

deterioration, Alzheimer’s, dementia, and Cerebral Small Vascular

Diseases (CSVD) like brain atrophy (BA), lacunar infracts, and

WhiteMatter Hyperintensities (WMH) (Forbes and Cooper, 2013).

According to the research done on Type 2 Diabetes Mellitus

(T2DM), it appears that it can have an impact on cognitive

abilities such as memory, processing speed, and executive function

(Kodl and Seaquist, 2008; Cherbuin and Walsh, 2019). The exact

mechanism by which T2DM affects cognitive function is not

yet fully understood, but several factors have been associated

with it, including hyperglycemia, vascular disorders, hypoglycemia,

and insulin resistance. These factors contribute to an increased

risk of cognitive impairment. Additionally, researchers, some

evidence suggests that T2DM may be linked to the development

of Alzheimer’s disease and CSVD (Kawamura et al., 2012).

Several research studies have revealed that the human brain’s

Magnetic Resonance Imaging (MRI) can be utilized to identify

structural transformations that may be correlated with T2DM.

Brain volumetry is a prevalent technique employed to measure

the extent of brain atrophy, which has consistently demonstrated

that T2DM is linked with a reduction in the average total

brain volume. According to research, individuals with type 2

diabetes mellitus (T2DM) experience a mean total brain volume

reduction of 0.2–0.6 standard deviation units. This reduction is

equivalent to 3–5 years of normal aging, as studies conducted

(Van Harten et al., 2006; Cheng et al., 2012; Zhang T. et al.,

2022). An increase in the size of the fluid-filled spaces in the

brain, known as ventricular enlargement, has been seen in people

with type 2 diabetes. This suggests that the subcortical areas

surrounding the ventricles, which are important for movement

and coordination, may be particularly vulnerable to the effects

of T2DM. However, we still do not understand how much brain

atrophy is caused by T2DM, which brain structures are most

affected, and when these changes occur during old age (De Bresser

et al., 2010).

People with T2DM have more brain lesions and white matter

hyperintensities than people without T2DM, likely due to the

increased vascular damage that occurs in T2DM. The brain

structural differences associated with T2DM may also be related to

the duration of the disease and blood glucose levels. Studies have

also found that T2DM is associated with reduced volume in specific

brain regions, such as various cortical regions, basal ganglia, and

hippocampus, even in cognitively healthy people (De Bresser et al.,

2010; Kooistra et al., 2013).

Furthermore, T2DM has been linked to a higher incidence

of brain lesions and greater white matter hyperintensities, most

likely due to increased vascular pathology. These differences in

brain structure could also be linked to the duration of T2DM

and blood glucose levels. Studies that have focused on specific

brain regions have discovered that there are negative links between

T2DM and the volume of sub-regions, including the hippocampus,

basal ganglia, and numerous cortical regions among cognitively

healthy individuals (Manschot et al., 2006; Tiehuis et al., 2008;

Bruehl et al., 2011; Espeland et al., 2013).

The connection between Type 2 Diabetes Mellitus and brain

shrinkage was investigated in a meta-analysis study (Zhang T.

et al., 2022). Individuals with T2DM had significantly smaller

total brain volume, gray matter volume, white matter volume, and

hippocampal volume (∼1–4%) (Zhang T. et al., 2022). This paper

surveys machine learning techniques applied to structural MRI

data to obtain clinical classifiers for various diseases and disorders

(Mateos-Pérez et al., 2018). This paper reviews the progress in

quantifying the common cerebral small vessel disease (CSVD)

neuroimaging features. It explores the clinical consequences of

these features and the possibilities of using them as endpoints in

clinical trials (Zhao et al., 2021). The research paper (Ghose et al.,

2022a) proposes a CNN model for diagnosing COVID-19 from

chest X-rays. The model achieved remarkable accuracy, sensitivity,

specificity, precision, and F1-score rates, with 98.5, 99.2, 98.9, 99.2,

and 98.3%, respectively. It also demonstrated a 99.60% accuracy in

distinguishing COVID-19 from pneumonia patients. This model

can potentially revolutionize the medical industry’s approach to

COVID-19 diagnosis, leading to more efficient and effective patient

care. Another study (Ghose et al., 2022b) proposes a transfer

learning-based approach to detecting COVID-19 infection status

from chest radiographs and computed tomography (CT) scans with

an accuracy of 99.59 and 99.95%, respectively.

The study in Callisaya et al. (2019) explored the connection

between Type 2 Diabetes and brain atrophy and its impact on

cognition. The findings revealed that T2DM is linked to increased

cerebral infarcts and reduced total gray, white, and hippocampal

volumes. Additionally, T2DM-related gray matter loss is primarily

concentrated in themedial temporal, anterior cingulate, andmedial

frontal lobes. The study further demonstrated that T2DM is

associated with poorer visuospatial construction, planning, visual

memory, and speed (Mehta et al., 2014). This study investigated

the relationship between urine albumin-to-creatinine ratio (UACR)

and regional brain volumes in type 2 diabetes mellitus patients.

It found that UACR is associated with lower gray matter volume

and worse executive function, independent of diabetes control and

hypertension. Researchers in Hughes et al. (2018) analyzed the

connections between cognitive function and brain structure in

African Americans with type 2 diabetes. The findings revealed that

individuals with smaller gray matter volume and increased white

matter lesion volume tended to perform more poorly on global

cognitive and executive function tests. These results suggest that

there may be a complex relationship between brain health and

cognitive performance in diabetic patients. The study in Tejasree

and Agilandeeswari (2022) presents a gradient boosting-based

ensembled classification technique to classify brain cancer in vivo

using hyperspectral images. It employs a graph-based clustering
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approach for feature selection and a multi-scale CNN method

for feature extraction. According to the experiment’s findings, the

proposed model performs better than the Random Forest (RF) and

Support Vector Machine (SVM) classification approaches.

Early detection and diagnosis of brain atrophy is important

for the best possible treatment and to increase the patient’s life

span. Traditionally, brain atrophy classification is done by human

experts who examine medical images of the brain, such as MRI

scans. However, this is a time-consuming and subjective process

accounting for the need for an automated computerized model

to classify brain atrophy more accurately and efficiently. Deep

learning models have shown potential advantages over traditional

methods in themedical sector. Thesemodels can analyze datasets to

identify complex patterns and provide more accurate predictions,

which could lead to earlier detection and better management of

neurodegenerative disorders. Thus, there is a growing need for

a deep learning-based brain atrophy diagnosis model that can

enable early detection of neurodegenerative disorders and identify

the specific features of a brain image that have high significance

for classifying and predicting brain atrophy. This model can give

clinicians more insights into the patient’s condition and guide

treatment decisions. Some potential advantages are as follows:

facilitates early detection, improves accuracy and efficiency,

classifies different types of brain atrophy, predicts the progression

of brain atrophy, and identifies the risk of brain atrophy.

The major contributions of this study are as follows.

• We proposed a Transfer Residual Attention U-Net (TRAU-

Net) model based on U-Net and transformer for segmenting

the affected brain region’s white matter, gray matter, and

cerebral spinal fluid.

• A multi-class classification model, Multinomial Logistic

Regression with Attention Swin Transformer (MLAST), is

proposed to classify the multiple types of brain atrophy.

• AMultivariate CoX Regression (MCR) model is developed for

prediction.

• XAI models and k-fold cross-validation techniques have been

employed to validate the proposed model. Additionally, a

comparison with existing systems has been performed to

evaluate the effectiveness of the proposed model.

2. Proposed methodolgy

2.1. Dataset acquisition

Our study gathered 259 patients of T2DM with brain atrophy

and without T2DM brain atrophy and normal individuals as

subjects. The National Institute on Aging-Alzheimer’s Association

(NIA-AA) study criteria for probable AD1 were used to

diagnose atrophy and Alzheimer’s. We defined subjects with

normal cognition as those without any history of neurologic or

psychiatric disorders; normal cognitive function was determined

using neuropsychological tests and diabetic history. The results

of our study provide important insights into the diagnosis and

management of atrophy disease andmay have broader implications

for understanding the underlying causes of cognitive decline.

FIGURE 1

MRI sample representation from the dataset of (A) original MRI scan

and (B) brain region image, i.e., an image after processing with BET

to remove non-brain regions.

2.2. Pre-processing

After obtaining the MRI dataset, various pre-processing

methods are applied to accurately segment the images into different

brain tissues, as shown in Figures 1, 2, i.e., brain region extraction,

bias correction, and image normalization.

2.2.1. Brain region extraction
Brain MRI scans show components such as tissue, head, eye,

fat, spinal cord, and skull. To identify the voxels as either brain or

non-brain, skull stripping must be performed; a Brain Extraction

Tool (BET) is used for this purpose in our study. The skull-stripped

images were obtained using BET with a Fractional Intensity (FI)

value of 0.01. The output of skull stripping can be an image

containing only brain voxels or a binary value that assigns a value

of 1 for brain voxels and 0 for non-brain voxels.

2.2.2. Bias correction
Image contrast due to magnetic field inhomogeneity can be

fine-tuned with the help of bias field correction. The bias field

depends on the strength of the magnetic field and is almost

negligible when the MRI is performed at 0.5 T; when the magnetic

field strength is 1.5 T, 3 T, or larger, it is considered strong and can

impact the analysis of the MRI. Figure 2B shows the bias field, and

Figures 2A, C shows the MRI before and after bias field correction,

respectively.

The significant challenge in the quantitative analysis of MRI is

obtaining comparable results between consecutive scans, different

anatomical regions, and even within the same scan. This is largely

due to undesirable signals that must be suppressed before the

segmentation. Among these signals, the bias field is one of the most

important to eliminate. The bias field is a low-frequency magnetic

field variation within the MR images that can cause brightness and

contrast irregularities while obscuring fine details. To address this

issue, a normalization filter is required to remove the low-frequency
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FIGURE 2

Sample representation of pre-processed images (A) brain region, (B) bias intensity, and (C) bias-corrected image after pre-processing.

FIGURE 3

Architecture of proposed TRAU-Net segmentation model; each layer consists of convolutions, activation function (LeakyReLu), down-sampling, and

up-sampling. The transformer layer architecture is depicted in Figure 4.

bias field and preserve the image’s details. This normalization filter

optimizes the images’ brightness and contrast and regulates the

MRI signals’ intensity. The filter also improves the accuracy of

segmentation algorithms by removing the intensity variation in

the image.

A normalization method was employed in this study to

remove the bias field present in MRI images. The method utilizes

a sliding window approach, where a region is defined within

the image, and the bias field is compensated for by analyzing

the histogram of pixel values within the region. To calculate

the normalization factor, all the pixels within the region of the

sliding window (SW) are gathered as input data. The standard

deviation (SD) of all the gathered pixel values is then calculated.

Additionally, the midline standard deviation (MSD) of the SW

is also computed. The pixel data in the mid-line is then shifted

to the desired offset where the value of MSD meets that of SD.

This ensures that the pixel data compensates for the bias field

effect.

To further adjust the pixel values for the bias field effect, the

difference between the SD and MSD is added to the pixel values

of the mid-line. The minimum and maximum pixel values of the

mid-line are then obtained, after which the mid-line pixel data is

stretched to its maximum data resolution. The minimum value is

set to zero during this process, and the maximum value is set to

255, as demonstrated in the equation below.

PN =
(P − Pmin)× Pbdmax

Pmax − Pmin
(1)

Where P is the pixel value, PN represents the normalized pixel,

Pmin is the minimum pixel value, Pmax is the maximum pixel value,

and the maximum value of pixel bit depth is denoted by Pbdmax. By
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utilizing this method, the algorithm can effectively remove the bias

field from the MRI images, leading to more accurate and reliable

results. This normalization technique ensures that the images are

of the highest possible quality and free from any potential bias,

essential for accurate diagnosis and treatment planning in medical

imaging.

2.2.3. Image normalization
The Convolutional Normalized Mean Filter (CNMF) is a

method for normalizing and enhancing MRI scans, which removes

noise from images while preserving their edges. The CNMF

algorithm first divides the image into small patches. Then, for each

patch, it calculates the median value of the pixels in the patch. The

convolved median value then replaces the distorted pixels in the

patch. The mathematical formulation of the CNMF algorithm is

given below.

cmi = conv.median[In−1
i iǫK.W] (2)

In the above Equation (1) cmi represents the convolved median

value; the convolved median value is obtained through the dot

product of convolutional kernel (K) and window size (W), In−i is

the iteration of image sequence i. NMF is used as the backbone for

the CNMFmodel. Themain difference betweenNMF and CNMF is

that CNMF can improve image quality without distorting the image

information or edges. This is because CNMF uses a convolutional

filter to remove noise and apply a convolved filter, as shown in

Equation (1). Normalization transforms image I into a normalized

image IN with minimum MinN and maximum MaxN intensity

values, as shown below.

IN = (I −Min)
MaxN −MinN

Max−Min
+MinN (3)

All the scans were randomly divided into a training and test

set in an 80:20 ratio, n = 188 and n = 47, respectively. The initial

image correction step is image rotation, assuming each sample is

parallel to the horizontal boundaries. Various data augmentation

techniques were applied to enhance the training data, including

random shifting, random rotation from −5◦ to 5◦, left-right

flipping, and random zoom.

2.3. Segmentation

For segmentation, we proposed a TRAU-Net (Transformer

Residual Attention U-Net) model that provides a residual self-

attention process for sequence-to-sequence prediction. TRAU-Net

is a hybrid model comprising CNN, UNet, and Transformer to

exploit the global context stored by transformers and the detailed

high-resolution spatial information from CNN to neutralize the

loss of feature resolution caused by transformers. The transformer’s

encoded self-attentive features are up-sampled and integrated

with several CNN high-resolution features to enable accurate

localization. The proposed segmentation model for segmenting

the brain shrinkage region in MRI scans is developed based upon

the TransUNet model in Chen et al. (2021), which consists of

an encoder and decoder units (CNN transformer is used as an

encoder and UNet decoder as a decoder). The approach involves

utilizing an attention transformer model as the backbone of

the U-Net architecture, followed by adding residual modules to

enhance the performance of the segmentationmodel. The attention

transformer model is a variant of the transformer model, a type of

neural network architecture that uses a self-attention mechanism

to compute input representations. The attention mechanism allows

the model to attend to the relevant parts of the input and ignore

the irrelevant ones. In TRAU-Net, the attention transformer model

is used to enhance the feature representation of the input, which is

then passed to the U-Net architecture.

The encoder unit of the model comprises a residual module

with skip connections. This module enhances the feature

representation of the input by allowing the model to learn residual

mappings between input and output. The output of the residual

connection is then passed through a transfer attention mechanism,

which aims to identify the critical regions of the image that

contain the relevant information for the model to learn. In our

work, the brain’s gray matter, white matter, and cerebral spinal

fluid regions are the regions of interest. The attention mechanism

combines feature maps and spatial maps to achieve this objective.

The feature maps generated by the convolutional layers are used

to compute the attention scores, which measure the importance

of each feature map for each spatial location. The spatial maps

provide the location information for each pixel and are used to

weight the feature maps. The output of the attention mechanism

is a weighted feature map that highlights the essential regions of

the input image. This map is then passed to the next layer in the

network, the decoder path, which is used to reconstruct the output

image. Therefore, the proposed TRAU-Net differs from existing

U-Net models.

2.3.1. Working
The pre-processed images are fed into the encoder units to

extract higher-level features, and these features are passed to the

decoder units, where spatial information is restored. Residual units

are employed in the network to increase the number of feature

maps produced by convolution operations, as the resolution will

decrease and enhance the segmentation result. As seen in Figure 3,

the dark blue units represent the encoder. In contrast, the light blue

units represent the decoder and skip connections are redesigned

for both network pathways. Inter-connection between the single

network (an encoder-decoder pathway) with full-length simple skip

connections by addressing the issue of U-Net, i.e., a dense and

nested skip connection. The TRAU-Net model comprises essential

blocks: Atrous Convolution (AC) block, Depth-wise Separable

Convolutional (DSA), Gated Convolutions (GC) block, as shown

in Figure 4, and residual block. Consider anMRI image IǫRH×W×C

as spatial image resolutions (H and W are the height and width

of the image, and C represents several channels) are given as

input to the model, the main objective is to identify the equivalent

feature map with H × W size. In general, learning algorithms like

CNN or UNet are trained on the image data, which encodes the

image into higher-level features and then decodes to generate the

original spatial resolution. The proposed model uses a transformer

mechanism to introduce a self-attention model in the encoder
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FIGURE 4

Transformer layer of the segmentation model TRAU-Net [
⊕

represents the concatenation, Atrous Convolution (AC), Gated Convolution (GC), Blue

lighter conv. block represents 3× 3, and gray blue block represents 1× 1].

TABLE 1 Description of features acquired from segmented images for

multi-class classification.

Features Description

Volumetric ratio GMV Volumetric ratio of gray matter in the

whole brain

WMV Volumetric ratio of white matter in the

whole brain

GMWMV The sum of the volumetric ratio of gray

and white matter in the whole brain

VSV Total number of ventricle voxels in the

whole-brain volume’s

Area ratio GMA Area ratio of gray matter in a particular

region

WMA Area ratio of white matter in a particular

region

GMWMA The sum of the area ratio of gray and

white matter in a particular region

VSA Pixel number of ventricle voxels in the

particular region

unit. The following section explains the working of TRAU-Net

briefly.

As seen in Figure 2, the input image I is reshaped through

tokenization into a series of two-dimensional flattened sub-regions

InS ǫR
S2·C; i = 1, ...,N. The size of each sub-region is denoted as S×S,

and the series of sub-regions are defined by the following Equation

(4).

N =
HW

S2
(4)

Vectorization is performed on the subregions, and the obtained

patches aremapped to anN-dimensional embedding space through

a linear transformation technique. The patch spatial information

is encoded, and position embeddings are applied to ensure the

spatial information is not lost. These embeddings are added

to the patch embeddings, preserving the positional information

required for precise analysis. By retaining this information, data is

effectively analyzed and interpreted more accurately and efficiently,

as explained in Equation (5).

Y0 = [I1SE; I
2
SE; ....; I

N
S E]+ Epos (5)

In the above equation, the position embedding is denoted by

Epos = RN×D and the embedding projection of the sub-region is

denoted by EǫR(S
2·C)×D. Similar to the model in Chen et al. (2021),

the encoder of the proposed ATU-Net is a transformer-based U-

Net model comprising an attention mechanism in the transformer

layers of the encoder to process and transform the sequence data.

The encoder consists of a series of Transformer layers, and the

attention mechanism is a powerful tool that allows the model

to learn long-range dependencies in images by transforming to

different parts of the image. Therefore, when the transformer is

employed as an encoder, initially, image sequentialization must

be performed to convert 3D images to 2D image subregions, as

explained in Equation (5). The outcome is then transformed to

the transformer layer consisting of atrous attention convolutions

(AC) and gated convolutions (GC) blocks, as shown in Figure 4. To

acquire features from various receptive fields, the model comprises

1 : 3 × 3 convolution operation and two AC modules with 3 × 3

convolution rates of two and three, respectively. To guide the

discriminative extraction process of the original feature, we input

the features acquired by the 3 × 3 conv. and the AC module with

an atrous rate of two r = 2 into the GC. To further extract the

discriminative feature, the feature from the first GC andACmodule

with a r = 3 are re-fed into the GC as illustrated in Figure 4.

The decoder of the TRAU-Net model consists of up-sampling

layers, normalization layers, ReLU function, skip connections, and

a swin transformer. In the decoder stage, the input features are up-

sampled and concatenated with the corresponding skip connection

feature maps from the encoder stage. This is done in each decoder

step to ensure the output is accurate. Once the concatenation is

completed, the output is fed into the swin transformer layer for

further processing. It produces H
4 × H

4 resolution output image,

which is down-sampled intoH×W and H
2 ×

H
2 resolution to obtain

the low-dimensional features, and finally, the output segmented

mask is produced. The final segmented mask will be generated

using all these output features combined through a skip connection

and softmax function.
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FIGURE 5

The overall architecture of the proposed deep learning-based brain atrophy diagnosis model. Comprising four stages: pre-processing, segmentation,

feature extraction, and classification using brain MRI. MRI scans are pre-processed to remove the non-brain tissues and then segmented using the

proposed TRAU-Net model during the pre-processing stage. Features are extracted from the segmented regions and fed as input to the classification

model MLAST along with categorical data for multi-class classification of BA, i.e., FA, PA, R-MTA, and L-MTA.

2.4. Classification

The CT axial images of the brain were analyzed to determine

the cortical atrophy level in various brain regions. Specifically,

the visual rating of cortical atrophy in the frontal, parietal, and

medial temporal lobes was assessed. To evaluate frontal atrophy

(FA), the simplified Pasquier scale or global cortical atrophy for

the frontal lobe (GCA-F) was utilized. Parietal atrophy (PA) was

measured using the axial template of the posterior atrophy scale.

Finally, the medial temporal atrophy (MTA) was assessed using

the hippocampus and surrounding CSF, demonstrating excellent

agreement with Scheltens’ coronal visual rating scale5. When

evaluating FA and PA, a four-point scale of 0–3 was used. More

severe atrophies were measured when there was asymmetry for FA

and PA.

In contrast, bilateral atrophies were separately measured for

MTA evaluated on a five-point scale of 0–4. These careful

evaluations allowed for a detailed understanding of the cortical

atrophy level in the brain’s various regions. For classification,

features such as White Matter (WM), gray Matter (GM), and

Ventricular Size (VS) from the segmented masks were used as

described in Table 1. Periventricular hyperintensity (PVH), FA,
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FIGURE 6

Sample representation of segmented images (A) pre-processed input image to segmentation model, (B) Global Cortex Atrophy (GCA), and (C) GM,

WM, & CSF [red represents gray matter (GM), blue represents white matter (WM), and yellow represents cerebral spinal fluid (CSF)].

TABLE 2 Performance measures and achieved results for the proposed

segmentation model TRAU-Net.

Brain region
performance measure

GM WM CSF

DSC 0.9624 0.9688 0.9713

AVD 1.50 1.91 2.13

HD 0.96 1.14 1.05

and MTA are the most common atrophy measures in diagnosing

atrophy and other brain disorders. Extracting the features is

difficult. Therefore, the Global Cortical Atrophy (GCA) measure

was used, which provided valuable insights for the diagnosis.

After extensive research, the presence of atrophy was classified

using the output of the segmentation model and the features

described in Table 1. As shown in Figure 5, the categorical data

is also used to train the classification model, such as age,

gender, fasting glucose, systolic and diastolic blood pressure,

body mass index (BMI), weight, smoking history, insulin usage,

high cholesterol, and duration of DM. A Multinomial Logistic

regression with Attention Swin Transformer (MLAST) model

was proposed for classification. The analysis involved training

a Multi-nominal Logistic Regression (MLR) classifier with an

attention swin transformer to differentiate between these classes,

which proved highly effective. Furthermore, the age, gender,

and medical history of diabetic and non-diabetic patients were

incorporated into the model to develop a more comprehensive

and integrated approach. These findings demonstrate the potential

of this approach as a valuable tool for early detection and

diagnosis of atrophy-related conditions. The MLR model was

ensembled with the proposed TRAU-Net model as the classifier

to classify the atrophy regions. The key difference between

MLAST and TRAU-Net models is the convolutional swin

transformer with MLR is used after the encoder model instead

of a decoder of TRAU-Net, which employs a swin transformer

to classify the BA. In the decoding path, the convolutional

transformer with MLR uses intermediate high-resolution CNN

feature maps to enhance model performance. To inherently deal

with multi-class classification issues, the multinomial logistic

regression technique extends the logistic regression model by

changing the loss function to cross-entropy loss and the

predicted probability distribution to a multinomial probability

distribution.

2.5. Prediction

Chronological age prediction for the proposed model is made

by computing the features of all the images and segmented

labels. ROI mean intensity value of each image type and WM,

GM, and CSF volume are also used to predict the chronological

age. Therefore, eight features are considered, comprising eight

mean intensity values and six volumes. High-order Features

(HoF) were not considered as they resist changes in basic

image features, making them difficult to predict. Multivariate Cox

Regression (MCR) model was used to predict the chronological

age of T2DM patients with BA. The MCR model is a

statistical approach considering semi-parametric distributions for

survival time predictions over multiple predictors mathematically

(Christensen, 1987) defined as follows.

z(t) = z0(t) ∗ e
∑

xi∗βi (6)

The study estimates the probability of occurrences before a

certain point in time using the hazard function z(t) based on a

random hazard model at time t. The exponential function of the

hazard model
∑

xi ∗ βi. It is computed while all independent

variables are nullified, and the regression factor β of x is considered.

Only features with a probability p < 0.05 were considered, while

those with p > 0.05 were eliminated. After finalizing the features,

a logistic regression model was used to predict the survival rate,

and the accuracy was evaluated using a validation set and leave-

one-out cross-validation. The model performance was measured

using correlation coefficient (r), coefficient determination r2, and

Mean Square Error (MSE); the obtained outcome for the prediction

model is presented in Table 4.
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FIGURE 7

Performance measures obtained for segmentation models in terms of DSC, AVD, and HD.

TABLE 3 Illustration of achieved performance of proposed classification model for brain atrophy types FA, PA, R-MTA, and L-MTA in terms of accuracy,

precision, recall, F1-score, and AUC measured in % (frontal atrophy, parietal atrophy, right-medial temporal atrophy, and left-medial temporal atrophy).

Brain atrophy type
performance measure

FA PA R-MTA L-MTA

Accuracy 0.9632± 1.325 0.9677± 1.912 0.9682± 1.715 0.9521± 1.877

Precision 0.9688± 1.011 0.9717± 0.983 0.9791± 1.012 0.9583± 1.247

Recall 0.9487± 1.114 0.9639± 2.008 0.9581± 1.304 0.9331± 1.248

F1-score 0.9586± 0.814 0.9676± 1.267 0.9684± 0.026 0.9455± 0.953

AUC 0.9856± 0.741 0.972± 0.026 0.9824± 1.082 0.9637± 1.037

FIGURE 8

Confusion matrix of the classification model for classifying the types of brain atrophy: FA, PA, R-MTA, and L-MTA.

2.6. Experimental results

Results of segmentation from the proposed TRAU-Net model

for people with BA are shown in Figure 6. As discussed in the

above segmentation and classification sections, the GCA is closely

associated with diagnosing BA and other brain disorders. Dice

Similarity Co-efficient (DSC) was calculated for every subject,

and the average was 0.9154 ± 0.0132. It was observed that

the proposed segmentation model has outperformed the existing

models. Additionally, the MRI image was segmented into three
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FIGURE 9

Graphical representation achieved performance measures for the proposed classification model of brain atrophy.

regions: white matter (WM), gray matter (GM), and Cerebral

Spinal Fluid (CSF), as shown in Figure 6C; red represents GM, blue

represents WM, and yellow region represents CSF, for evaluation

of segmentation model three different measures were applied DSC,

Absolute VolumeDifference (AVD), and Hausdorff Distance (HD).

The similarity between a predicted segmentation mask (S) and the

actual segmentation mask/ground truth mask (G) can be measured

using the Dice score, DSC. A score of 1 shows complete overlap,

while a 0 indicates no overlap; mathematically, it is defined as in

Equation (7).

DSC =
2 |G+ S|

|G| + |S|
(7)

The AVD is the ratio of the difference between the VS VG

segmentation volume to the ground truth mask VG. A lower

AVD value indicates amore accurate segmentation, mathematically

defined as in Equation (8).

AVD =
VS − VG

VG
(8)

The Hausdorff distance determines the distance between

segmentation results and actual data. A smaller value of HD

indicates that the ground truth and segmentation results are closer

together, which translates to a higher level of accuracy in the

segmentation process; Equation (9) represents the mathematical

formula to calculate HD.

HD = mx
{

h95(S,G), h95(G, S)
}

(9)

Table 2 demonstrates the results of the segmentation model,

and the graphical representation of acquired results is illustrated

in Figure 7. Figure 6 represents the ground truth image and

segmentated image, differentiating three categories, i.e., WM, GM,

and CSF. The proposed classification model was also applied for

segmentation but didn’t achieve performance compared to TRAU-

Net. Similarly, the segmentation model is applied to perform the

multi-class classification task.

FIGURE 10

Graphical representation achieved performance measures for the

proposed classification model in terms of precision and recall.

Different performance measures were applied to evaluate the

proposed classification model’s performance: accuracy, precision,

recall, f1-score, and ROC-AUC curve, as illustrated in Table 3.

A confusion matrix is a matrix that displays a machine learning

model’s performance on a set of test data. It is frequently used to

assess how well categorization models work. These models try to

predict a category label for each input event. The matrix shows

how many true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) the model generated using the test

data. Classification accuracy refers to the proportion of correct

predictions compared to the total data. Computation of accuracy

is done by using Equation (10).

A =
TP + TN

TP + TN + FP + FN
(10)
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FIGURE 11

Receiver operating curve along with area under curve generated by proposed classification model for multi-classification of brain atrophy types FA,

PA, R-MTA, and L-MTA.

TABLE 4 Performance measures in terms of r, r2, MSE, and accuracy for

the chronological age prediction.

Measure r r
2 MSE

Testing data 0.951 0.904 0.5172

Validation data 0.937 0.878 0.7358

Training data 0.96 0.922 0.7496

TABLE 5 Comparison of proposed segmentation model with existing

segmentation models.

S. no Method Dice score

1 UNet (Montaha et al., 2023) 93.9

2 2DUNet (Webber et al., 2022) 91

3 Residual UNet (Kermi et al., 2019) 86.7

4 3D UNet (Ballestar and Vilaplana, 2020) 83.16

5 3D UNet (Oktay et al., 2018) 93.41

6 Proposed model 96.24

Precision is essentially the proportion of positive samples

correctly categorized as true positives out of the total number of

samples classified as positive. Equation (11) is used to calculate the

precision.

P =
TP

TP + FP
(11)

The recall is determined as the proportion of Positive samples

properly identified as Positive to all Positive samples, as illustrated

in Equation (12). The recall measures how well the model can

identify positive samples. A higher recall signifies that the model

has correctly identified many positive samples.

TABLE 6 Comparison of proposed multi-class classification model with

existing models.

S. no Method Dice
score

1 3D CNN (Bäckström et al., 2018) 90

2 Vision transformer (Dosovitskiy et al., 2020) 89.2

3 Diffusion kernel attention transformer (Zhang J.

et al., 2022)

95.1

4 TransBTS (Wang et al., 2021) 90.98

5 Swin transformer (Hatamizadeh et al., 2021) 85.3

6 Proposed model 96

R =
TP

TP + FN
(12)

An alternative machine learning assessment statistic called the

F1 score evaluates a model’s predictive ability by focusing on its

performance inside each class rather than its overall performance,

as is done by accuracy. F1 score combines a model’s accuracy and

recall scores, two measures that compete with one another. It is

defined as the harmonic mean of precision and recall, as shown in

Equation (13).

F1 =
2× (P × R)

P + R
(13)

The AUC-ROC curve is a statistical measure used to evaluate

the performance of a classification model across different threshold

levels. The Receiver Operating Characteristic (ROC) curve is

a useful tool for evaluating the performance of a classification

model. It plots the True Positive Rate (TPR) against the False
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TABLE 7 Five-fold performance measure for proposed segmentation model.

Performance→ DSC AVD HD

Folds ↓ GM WM CSF GM WM CSF GM WM CSF

K1 0.9243 0.9456 0.9359 1.54 1.88 2.47 1.58 1.08 0.96

K2 0.9461 0.9182 0.9614 1.47 1.95 2.21 1.72 1.13 1.78

K3 0.9275 0.9338 0.9407 1.52 1.90 2.50 1.00 1.57 1.15

K4 0.9384 0.9392 0.9423 1.49 1.93 2.19 0.98 2.42 0.92

K5 0.9338 0.9445 0.9330 1.53 1.86 2.73 1.26 2.21 1.06

Average 0.9340 0.9362 0.9426 1.51 1.904 2.42 1.308 1.682 1.174

FIGURE 12

Training, validation, and testing (A) accuracy and (B) loss for 5-fold cross validation.

TABLE 8 Five-fold performance measure for proposed classification model.

Performance→ Accuracy Loss

Folds ↓ Training Validation Testing Training Validation Testing

K1 0.9489 0.9235 0.9134 0.1414 0.1694 0.0917

K2 0.9246 0.9477 0.9478 0.0763 0.1247 0.1526

K3 0.9431 0.9118 0.9509 0.1352 0.1506 0.1537

K4 0.9357 0.9415 0.9384 0.1736 0.1749 0.1173

K5 0.9694 0.9663 0.9391 0.0962 0.1288 0.0857

Average 0.9443 0.9382 0.9379 0.1245 0.1496 0.1202

Positive Rate (FPR) as illustrated in Equations (14) and (15),

respectively, at different threshold levels. This graph helps to

visualize how well the model can distinguish between the

positive and negative classes and can be used to calculate the

area under the curve (AUC) to quantify the model’s overall

performance. By analyzing the ROC curve, we can determine the

optimal threshold level that maximizes the model’s accuracy and

minimize errors.

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

The confusion matrix shows the number of diabetic patients

diagnosed with various types of brain atrophy, FA, PA, R-MTA, &

L-MTA, and vice versa. Figure 8 illustrates the confusion matrix

for the highest and lowest accuracy outcomes for R-MTA & PA

with 0.9682 and 0.9477%, respectively. The main reason for the

lower accuracy is the misclassification of label FA labels PA, L-

MTA, and R-MTA. Similarities among the atrophy types cause

this; therefore, classification is difficult. However, the overall fault

diagnosis findings demonstrate that the proposed categorization
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system can accurately identify different forms of atrophy in diabetic

individuals.

Various performance measures are used to evaluate the

classification model, such as confusion matrix, accuracy, precision,

recall, f1-score, and AUC-ROC curve. Table 3 and Figure 9

represent the achieved classification results. It is observed from

the above table that R-MTA BA type achieved the highest accuracy

0.9682 ± 1.715, followed by 0.9632 ± 1.325 for FA, 0.9521 ± 1.877

for L-MTA, & PA recorded 0.9477 ± 1.912 of accuracy. Figure 10

represents the precision-recall curve. The highest AUC value was

recorded for FA 0.9856 ± 0.741, followed by R-MTA 0.9824 ±

1.082, 0.9637 ± 1.037 for L-MTA, & 0.972 ± 0.026 for PA as

illustrated in Figure 11.

The outcome of the segmentation model TRAU-Net and the

features extracted from the segmented ROI are used to predict the

chronological age as explained in the prediction section. various

performance measures are used to validate the model, as described

in Table 4.

To demonstrate that the proposed segmentation and

classification models are more advanced versions of existing

models, a thorough comparison is conducted between the proposed

and existing models using the same datasets, similar parameters,

and the same platform. The proposed segmentation model is

compared with UNet (Montaha et al., 2023), 2DUNet (Webber

et al., 2022), residual UNet (Kermi et al., 2019), and 3DUNet

(Oktay et al., 2018) as described in Table 5. As the base models for

the proposed classification model are CNN and transformer, the

performance of the classification model is compared with 3DCNN

(Bäckström et al., 2018), vision transformer (Dosovitskiy et al.,

2020), diffusion kernel attention transformer (Zhang J. et al., 2022),

and swin transformer (Hatamizadeh et al., 2021) as illustrated in

Table 6. Furthermore, the segmentation model is validated using

XAI approaches to verify its performance and effectiveness.

2.6.1. Cross validation
Cross-validation (CV) evaluates the model’s performance by

dividing the dataset into multiple folds and training the model

on different combinations. The model’s performance can then be

evaluated on the remaining fold. CV helps to ensure that the

model is generalizing well and producing accurate segmentations

on unseen data. CV helps ensure that deep learning models

for medical images are reliable and generalizable, essential for

accurate decisions and diagnosis. Therefore, our study applied 5-

fold cross-validation to validate the proposed segmentation and

classification models. In 5-fold validation, the dataset is divided

into five subsets known as folds, and then the training is performed

on all the subsets except one (5-1). The remaining subset is then

used for evaluating the trained model. This process is repeated

five times with a different subset reserved for testing each time.

Table 7 represents the recorded validation performance of the

segmentation model. Overall classification model accuracy and loss

of training, validation, and testing datasets are depicted in Figure 12

and Table 8. Table 9 presents the validation performance of the

classification model for each fold obtained for each class of brain

atrophy FA, PA, R-MTA, and L-MTA. T
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2.7. Explainable AI

Explainable AI (XAI) has become increasingly important in

domains where critical decisions need to be made, such as in

medical image analysis. XAI has demonstrated the black-box

approach recognized in DL models, revealing the precise reasoning

behind their predictions. As DL models have become more

complex, medical experts have been able to understand the results

of these models better and use them to quickly and accurately

diagnose (Bhandari et al., 2022, 2023; Gaur et al., 2022; Ahmed

et al., 2023; Saranya and Subhashini, 2023). To achieve this, two

popular XAI algorithms, Shapley Additive Explanation (SHAP) and

Local Interpretable Model-agnostic Explanation (LIME), were used

in this study.

1. SHAP: To evaluate the impact of the model, SHAP employs a

technique known as normalizing the marginal feature values.

This technique assigns scores to each pixel in an image to

exemplify their significance in predicting the class of the image.

These scores are then used to substantiate the classification of

the image. To obtain the shapley value for each feature, all

possible combinations of characteristics of brain atrophy are

considered. The shapley value for each feature is computed

as the average marginal contribution of the feature across all

possible coalitions of features that include the feature. Once

the shapley values are computed, they are converted into pixel

values, where red pixels indicate an increase in the likelihood of

predicting a class. In contrast, blue pixels indicate a reduction

in the likelihood, as demonstrated in Figures 13–16. This

conversion of shapley values to pixel values allows us to easily

visualize the region of interest most significantly predicting a

particular class. The following Equation (16), is used to generate

the shapley values.

phii =
∑

S⊆
N
{i}

|S|!(M − |S| − 1)!

M!
[fx(S∪){i} − fx(S)] (16)

Where, for a particular feature, I, S, and N are the feature

subsets, fx do shapely values generate the output, |S|!(M−|S|−1)!
M!

represents the weighing factor, which calculates the number of

ways the subset S can be permutated, and the predicted result is

denoted by fx(S) calculated as follows

fx(S) = E[f (x)|xS] (17)

To perform the replacement of each original trait xi using

SHAP, a binary variable z‘
b
is introduced to represent whether xi

is absent or present, as illustrated in Equation (18)

g(z‘) = φ0 +

M
∑

i=1

φiz
‘
i =

∑

FC + B (18)

Where g(z‘) is the local surrogate model, where feature i is

derived from the output, and φi aids in the comprehension of

the model. The SHAP results explain the four output classes—

GM, Normal, WM, and CSF—for individual Brain Atrophy

cases. The input images are presented on the left-hand side of

all figures. In Figure 13, the first explanation image exhibits red

pixels that increase the probability of predicting the input image

as GM. In contrast, the Normal and WM explanations lack red

or blue pixels. The last image in the cluster displays blue pixels,

effectively decreasing the likelihood of the input image being

identified as CSF. Figure 14 highlights the absence of red pixels

in the GM and CSF explanations, a significant number of blue

pixels in the WM explanation, and a concentration of red pixels

in the Normal explanation. These findings are vital in identifying

the image as Normal and provide a deeper understanding of the

image features. Similarly, Figure 15, on the other hand, focuses

on the WM and highlights the areas where the model identifies

the features of WM. Finally, Figure 16 provides a more in-depth

view of the CSF. The SHAP result highlights the areas where the

model identifies the features of the infection, which is crucial for

accurate diagnosis and treatment.

2. LIME: Locally Interpretable Model Agnostic Explanations

(LIME) explains any black box machine learning model. It

creates a local, interpretable model to explain each prediction.

This technique is independent of the original classifier and

works locally, explaining the prediction relative to each

observation. LIME fits a local model using sample data points

similar to the explained observation. The local model can be

from the class of interpretable models such as linear models,

decision trees, etc. Finally, the explanations provided by LIME

for each observation x are obtained by fitting a linear model

around the observation as explained in Equation (19).

φ(x) = argmingǫGL(f , g,πx)+ �(g) (19)

Where g represents the explainable model for the sample

x, which is intended to minimize a loss function L while also

measuring the proximity of its interpretations to the predicted

value of the initial model f . The process is carried out while

ensuring that the complexity of the model, represented by �(g),

is kept to a minimum. For this purpose, we consider G the set of

realizable explanations, which may include decision tree models

in a hypothetical scenario. The measure of closeness, πx, is

defined to determine the extent of the locality around the sample

x and is used for explanation. As illustrated in Figure 17, the

input image is displayed on the left-hand side, followed by the

segmented image portion of GM, WM, and CSF, representing

the LIME model’s output.

3. Discussion

In a comprehensive longitudinal study by Jokinen et al. (2012),

the researchers visually evaluated the severity of brain atrophy

through MRI. The study revealed that brain atrophy contributes

to cognitive decline in patients with small vessel diseases.

Furthermore, the research highlighted that medial temporal lobe

atrophy (MTLA) subcortical and cortical atrophy exacerbate the

impact of white matter lesions (WML) and lacunae on cognitive

decline. These findings were corroborated by another MRI study

(Nitkunan et al., 2011) that used automated brain volume

assessment. It is imperative to closely monitor brain atrophy in

patients with small vessel diseases, as it significantly contributes
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FIGURE 13

Sample representation of SHAP explainability for the presence of GM (high concentration of red pixels observed in the first explanation image infers

that the image indicates the presence of GM).

FIGURE 14

Sample representation of SHAP explainability for normal image (high concentration of red pixels observed in the second explanation image infers

that the image is normal).

FIGURE 15

Sample representation of SHAP explainability for WM (high concentration of red pixels observed in the second explanation image infers that the

image indicates the presence of WM).

to cognitive decline. By doing so, healthcare practitioners can take

proactive measures to prevent further deterioration in cognitive

function and improve patient outcomes.

Our work has made significant progress in the field of brain

atrophy assessment. We have developed and tested a new pipeline

that differs from the end-to-end approach and focuses on linear

measurement. A fully automated brain atrophy classificationmodel

is developed, incorporating machine learning and deep learning

techniques. The classification model can be effectively used for

diabetic and brain disorder patients. Clinical information, age,
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FIGURE 16

Sample representation of SHAP explainability for CSF (high concentration of red pixels observed in the second explanation image infers that the

image indicates the presence of CSF).

FIGURE 17

Sample representation of LIME explanability. (A) Original input image, (B) GM, (C) WM, and (D) CSF (the highlighted part indicates the LIME regional

explanation for GM, WM, and CSF, respectively).

gender, and diabetic patient history were also incorporated into

the model, and as a result, the classification performance has

improved significantly. This model can be integrated into clinical

decision support tools, providing valuable assistance to medical

professionals. The motivation for this study is brain atrophy

becoming a significant risk factor for brain health with CSVD

among prolonged diabetic patients (Mayer et al., 2021). Recent

studies (Ter Telgte et al., 2018) have demonstrated that a high strain

of white matter hyperintensity (WMH) can significantly impair the

integrity of the white matter, ultimately leading to a loss of volume

and neurons.

Furthermore, cortical atrophy has been attributed to the

neurodegenerative processes triggered by the degeneration of white

matter tracts, which can disrupt the functional connections within

the brain. These findings emphasize the importance of maintaining

optimal brain health and proactively preventing the onset of

symptoms related to cerebral small vessel disease. By preventative

measures and seeking an early diagnosis, the patient’s health and

cognitive abilities can be maintained and ensure a higher quality of

life.

Our research aims to achieve an essential and innovative goal,

which is to implement and validate the approach for automated

evaluation of brain atrophy in T2DM on MRI scans of people with

type 2 diabetes mellitus. Due to this primary objective, we did not

include other diabetes variations or neuroimaging characteristics of

cerebrovascular disease patients in our research. This study is the

first approach to automate the diagnosis of brain atrophy on MRI

images. Using WM, GM, and VS features is an effective method

for evaluating brain structure. These features indirectly reflect the

structural information of different brain regions, which is crucial

for accurately diagnosing brain shrinkage in type 2 diabetic mellitus

patients. In the future, the survival rate of the patients can be

predicted through statistical and machine learning models by using

the features of segmented regions and patient categorical data.

Our work has made significant progress in the field of

brain atrophy assessment. We have developed and tested a new

pipeline that differs from the end-to-end approach and focuses on

linear measurement. Through this pipeline, we have developed a

fully automated brain atrophy classification model incorporating

machine learning and deep learning techniques. This classification

model can be effectively used for diabetic and brain disorder

patients. Clinical information, age, gender, and diabetic patient

history were also incorporated into the model, and as a result, the

classification performance has improved significantly. This model

can be integrated into clinical decision support tools, providing

valuable assistance to medical professionals. Our motivation for
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this study was fueled by brain atrophy becoming a significant

risk factor for brain health with CSVD among prolonged diabetic

patients (Mayer et al., 2021). Recent studies (Ter Telgte et al.,

2018) have demonstrated that a high burden of white matter

hyperintensity (WMH) can significantly impair the integrity of the

white matter, ultimately leading to a loss of volume and neurons.
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