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Developmental and epileptic encephalopathies (DEEs) are severe seizure 
disorders with inadequate treatment options. Gain- or loss-of-function 
mutations of neuronal ion channel genes, including potassium channels and 
voltage-gated sodium channels, are common causes of DEE. We  previously 
demonstrated that reduced expression of the sodium channel gene Scn8a is 
therapeutic in mouse models of sodium and potassium channel mutations. In the 
current study, we tested whether reducing expression of the potassium channel 
gene Kcnt1 would be therapeutic in mice with mutation of the sodium channel 
genes Scn1a or Scn8a. A Kcnt1 antisense oligonucleotide (ASO) prolonged 
survival of both Scn1a and Scn8a mutant mice, suggesting a modulatory effect 
for KCNT1 on the balance between excitation and inhibition. The cation channel 
blocker quinidine was not effective in prolonging survival of the Scn8a mutant. 
Our results implicate KCNT1 as a therapeutic target for treatment of SCN1A and 
SCN8A epilepsy.
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1. Introduction

Developmental and epileptic encephalopathies (DEEs) are among the most severe epileptic 
disorders. The typical disease course begins with onset of seizures during the first year of life, 
followed by developmental delay, movement disorders, intellectual disability, sleep disturbances, 
and feeding difficulties (Scheffer and Nabbout, 2019; Meisler et al., 2021; Johannesen et al., 
2022). Seizures are often resistant to treatment with current antiepileptic drugs (Scheffer and 
Nabbout, 2019; Meisler et al., 2021; Johannesen et al., 2022).

Many DEEs result from mutations in sodium and potassium channel genes (Lindy et al., 
2018; Symonds et al., 2019). Based on their roles in the neuronal action potential, excessive 
sodium current or insufficient potassium current would be predicted to cause hyperexcitability 
and epilepsy. In agreement with expectation, many missense mutations in the voltage-gated 
sodium channel gene SCN8A result in excessive sodium current (“gain-of-function”, or GOF, 
mutations) and SCN8A-DEE (Veeramah et al., 2012; Meisler et al., 2021; Johannesen et al., 
2022). Experimental expression of an SCN8A GOF mutation in excitatory neurons is sufficient 
to cause seizures and premature death, while expression limited to inhibitory neurons does not 
(Bunton-Stasyshyn et al., 2019).

Loss-of-function (LOF) mutations of the sodium channel gene SCN1A and GOF mutations of 
the potassium channel gene KCNT1 can also cause epilepsy (Barcia et al., 2012; Scheffer and 
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Nabbout, 2019; Gribkoff and Winquist, 2023). SCN1A haploinsufficiency 
reduces the excitability of inhibitory neurons, altering excitation/
inhibition balance (Cheah et al., 2012; Tai et al., 2014; Favero et al., 2018). 
The epileptogenic mechanism of KCNT1 GOF mutations is not well 
established, but a similar disinhibitory mechanism may be  involved 
(Shore et al., 2020; Gertler et al., 2022; Wu et al., 2023).

KCNT1 is a sodium-activated potassium channel (also known as 
Slo2.2, KNa1.1, or Slack) with widespread expression in the central 
nervous system (Rizzi et  al., 2016). KCNT1 regulates 
afterhyperpolarization amplitude and action potential threshold 
(Martinez-Espinosa et al., 2015; Quraishi et al., 2019; Shore et al., 
2020; Gertler et al., 2022; Wu et al., 2023). KCNT1 GOF mutations 
enhance bursting behavior in excitatory neurons and reduce action 
potential firing in inhibitory neurons (Quraishi et al., 2019; Shore 
et al., 2020; Gertler et al., 2022; Wu et al., 2023).

In the mouse, homozygous knock-in of KCNT1 GOF mutations 
results in spontaneous seizures, reduced threshold for seizure 
induction, behavioral abnormalities, and premature lethality (Quraishi 
et al., 2020; Shore et al., 2020; Burbano et al., 2022; Gertler et al., 2022). 
Burbano et al. (2022) described an antisense oligonucleotide (ASO) 
that reduces expression of Kcnt1. Administration of the ASO to a 
homozygous Kcnt1 GOF mouse prolonged survival, reduced seizure 
frequency, and corrected behavioral abnormalities. Conversely, 
homozygous loss of Kcnt1 also improves survival after electrically 
induced seizrues (Quraishi et al., 2020).

Reducing expression of Scn8a prolongs survival of epileptic mice 
with mutations in the potassium channel genes Kcna1 and Kcnq2 (Hill 
et  al., 2022). Here, we  asked whether modulating expression of a 
potassium channel can improve the phenotype of sodium channel 
mutants. Administration of the Kcnt1 ASO (Burbano et al., 2022) on 
postnatal day 2 doubled the lifespan of Scn8a mutant mice and 
extended survival of Scn1a haploinsufficient mice. Our results suggest 
a new therapeutic intervention for DEEs caused by mutations of 
SCN1A and SCN8A.

2. Methods

2.1. Mice

The Scn8acond allele, abbreviated W, contains two tandem copies 
of exon 26, the final coding exon of Scn8a (Bunton-Stasyshyn et al., 
2019). The upstream copy, designated 26a, is a floxed exon that 
encodes the wildtype channel. Deletion of exon 26a by Cre results in 
expression of exon 26b encoding the variant p.R1872W. This variant 
has been identified in multiple individuals with SCN8A epilepsy 
(Bunton-Stasyshyn et al., 2019; Johannesen et al., 2022). Scn8acond/cond 
male mice were crossed with EIIa-Cre/+ female mice (JAX 003724) 
to generate Scn8acond/+,EIIa-Cre double heterozygous mice expressing 
the R1872W variant (designated W/+ mice). Both the Scn8acond allele 
and the EIIa-Cre transgene were maintained on a C57Bl/6 J 
genetic background.

Scn1a+/− mice with deletion of exon 1 were maintained on the 
protective 129S6/SvEvTac strain background and activated in 
(C57BL/6 J X 129S6/SvEvTac) F1 mice (Miller et al., 2014). Both male 
and female mice were used for all experiments. Experiments were 
approved by the Committee on the Use and Care of Animals at the 
University of Michigan.

2.2. ASOs

ASOs were synthesized by Ionis Pharmaceuticals as described 
(Swayze et al., 2007). Both the non-targeting control and Kcnt1 ASOs are 
20-bp gap-mers with 5 2’-O-methoxyethyl modifications on the first and 
last 5 bases and phosphorothioate modifications on all 20 bases. The 
Kcnt1 ASO (5’ GCT TCA TGC CAC TTT CCA GA 3′) is complementary 
to the 3’ UTR of mouse Kcnt1 and was previously described (Burbano 
et al., 2022). The non-targeting control ASO (5’ CCT ATA GGA CTA 
TTC AGG AA 3′) is well-tolerated and is not complementary to any 
transcript encoded by the mouse genome (Swayze et al., 2007). Animals 
treated with control ASO received a 30 μg dose.

2.3. Intracerebroventricular (ICV) injections

At postnatal day 2 (P2), mice were cryo-anesthetized for 3 min. 
ASO was diluted in PBS (2 μL injection volume) and manually injected 
into the left ventricle as described (Lenk et al., 2020). Animals were 
allowed to recover for 10 min at 37°C before being returned to the 
home cage.

2.4. qRT-PCR

Brain and spinal cord from 3-week-old mice treated with control 
or Kcnt1 ASO were homogenized in TRIzol (Invitrogen Cat. 
#15596026, Waltham, MA). RNA was extracted using the Direct-zol 
RNA Mini Prep kit from Zymo Research (Irvina, CA). cDNA was 
synthesized with the LunaScript kit from New England Biolabs 
(Ipwsich, MA). Scn8a (Mm00488110_m1), Kcnt1 (Mm01330661_g1), 
and Tbp (Mm01277042_m1) transcripts were quantified using 
TaqMan gene expression assays (Applied Biosystems, Foster City, CA).

2.5. Quinidine administration

Quinidine (Sigma Aldrich, St. Louis, MO) was diluted in 
phosphate-buffered saline (50 or 100 mg/kg) and administered by 
daily intraperitoneal injection beginning at P10, the youngest age at 
which daily intraperitoneal injections were feasible.

3. Results

3.1. Characterization of the Kcnt1 ASO

We used an ASO to reduce expression of mouse Kcnt1. The 20 
base-pair “gap-mer” ASO targets the 3’ UTR of the mouse Kcnt1 gene 
(Figure 1A) and recruits RNaseH1 to degrade the transcript (Burbano 
et al., 2022). We first administered the ASO to wild-type animals by 
ICV injection at P2. Three weeks later, we measured gene expression 
in brain and spinal cord by qRT-PCR (Figure  1B; 
Supplementary Table S1). Kcnt1 expression was reduced in both brain 
and spinal cord (two-way ANOVA, p < 0.0001). For example, 
adminsitration of 45 μg Kcnt1 ASO reduced Kcnt1 expression in brain 
to 0.25 ± 0.04 of control (mean ± SD, n = 3) (Supplementary Table S1). 
Reduction of Kcnt1 transcript reduces KCNT1 protein expression 
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(Burbano et al., 2022). Expression of Scn8a was unaffected by the Kcnt1 
ASO (Supplementary Figure S1). No changes in Kcnt1 expression were 
detected in previous studies of Scn1a and Scn8a mutant mice (Sprissler 
et al., 2017; Hawkins et al., 2019; Valassina et al., 2022).

3.2. ASO-mediated reduction of Kcnt1 
extends the lifespan of an SCN8A DEE 
mouse

We previously generated a mouse with Cre-dependent expression of 
the patient mutation p.R1872W (Bunton-Stasyshyn et  al., 2019). 
Expression of this mutation by crossing with the ubiquitously expressed 
EIIa-Cre results in a single, lethal seizure at P14 (Bunton-Stasyshyn et al., 
2019). We  treated Scn8acond/+,EIIa-Cre (W/+) animals with 15–75 μg 
Kcnt1 ASO by ICV injection at P2. Mice treated with the control ASO 
exhibited median survival of 16 days (Figure 2). Mice treated with 15 μg 
Kcnt1 ASO lived three days longer (median survival = 19 days, p = 0.0493, 
Mantel-Cox log-rank test). Treatment with 30 μg Kcnt1 ASO extended 
median survival to 27 days (p < 0.0001, Mantel- Cox log-rank test). Mice 
treated with 45 μg, the optimal dose, exhibited median survival of 
36 days, more than double the lifespan of control ASO-treated mice 
(p < 0.0001, Mantel-Cox log-rank test, Figure 2). Treatment with 60 or 
75 μg Kcnt1 ASO did not further reduce Kcnt1 expression (Figure 1B) or 
further extend survival (Supplementary Figure S2).

3.3. Quinidine does not extend survival in 
the SCN8A DEE mouse

Quinidine is a nonspecific cation channel blocker used to treat 
cardiac arrhythmia. In vitro, quinidine blocks KCNT1 channel 

activity, suggesting that it could be a precision therapy for patients 
with gain-of-function KCNT1 mutations (Mori et al., 1998; Milligan 
et al., 2014). In vivo, quinidine has mixed efficacy in KCNT1 epilepsy 
patients (Mikati et al., 2015; Numis et al., 2018; Fitzgerald et al., 2019; 
Cole et al., 2021).

To determine whether inhibition of KCNT1 channels by 
quinidine would be  therapeutic in Scn8a mutant mice, 
we  administered 50 or 100 mg/kg quinidine by daily 
intraperitoneal injection beginning at P10 (Figure 3). Untreated 
mice exhibited median survival of 15 days (n = 47). Treatment 
with 50 or 100 mg/kg quinidine did not extend the lifespan of the 
SCN8A-DEE mice (median survival = 14 days; n = 7 & 9, 
respectively; Figure 3).

3.4. ASO-mediated reduction of Kcnt1 
extends the lifespan of a mouse model of 
SCN1A haploinsufficiency

We also tested the effect of the Kcnt1 ASO in Scn1a+/− mice, a 
model of Dravet Syndrome. Consistent with previous studies 
(Miller et  al., 2014; Favero et  al., 2018), approximately 1/3 of 
untreated Scn1a+/− mice died between 3 and 4 weeks of age, and 
during the remaining 6-month monitoring period, there were 
several sporadic deaths (Figure 4). We administered 45 μg Kcnt1 
ASO to Scn1a+/− mice at P2. None of the treated mice died in the 
first 4 weeks, indicating that reduced Kcnt1 expression during this 
critical period is sufficient to prevent death (p = 0.0513, Mantel-Cox 
log-rank test, Figure 4). There were four deaths during the 6-month 
monitoring period, all after 9 weeks of age (Figure  4). Since 
quinidine was not effective in the Scn8a mutant mice, we did not 
treat the Scn1a mutant mice.

FIGURE 1

Kcnt1 ASO reduces Kcnt1 transcript abundance. (A) The Kcnt1 ASO targets the proximal 3’UTR of the Kcnt1 transcript. (B) Expression of Kcnt1 in 
brain and spinal cord from P21 wildtype mice treated with Kcnt1 ASO on P2, measured by qRT-PCR (*** = p < 0.0001, Sidak’s multiple comparisons 
test).

https://doi.org/10.3389/fnins.2023.1282201
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hill et al. 10.3389/fnins.2023.1282201

Frontiers in Neuroscience 04 frontiersin.org

4. Discussion

Developmental and epileptic encephalopathies are frequently 
caused by pathological variants of ion channel genes. Here, we showed 
that reduction of Kcnt1 expression is protective in mouse models of 
Scn1a and Scn8a epilepsy. Our findings suggest that patients with 
mutations of SCN1A and SCN8A could benefit from treatment with a 
KCNT1 ASO or KCNT1-specific channel blocker.

A previous study demonstrated that the Kcnt1 ASO improved 
the survival, seizure, and behavioral phenotypes of Kcnt1 GOF mice 
(Burbano et al., 2022). Interestingly, the Kcnt1 ASO was therapeutic 
at lower doses in Kcnt1 mutant mice than in the Scn8a mutant 
studied here. In neonatal Kcnt1 mutant mice, 3.4 μg extended the 
median survival by more than 100 days (Burbano et al., 2022). In 
contrast, doses of 15–45 μg added only 20 days to survival of the 
Scn8a mutant mice. These observations suggest that the effect in the 
Scn8a mutant may be indirect. For example, gain-of-function of 
Kcnt1 reduces excitability of parvalbumin interneurons (Gertler 
et al., 2022). Reduced expression of Kcnt1 may enhance excitability 
of parvalbumin interneurons and thereby reduce seizure 
susceptibility. Consistent with this hypothesis, homozygous 
knockout of Kcnt1 reduces the lethality of electrically-induced 
seizures by more than half (Quraishi et  al., 2020). Further 
investigation may identify other types of epilepsy that respond to 
reduction of KCNT1.

We previously demonstrated that reducing Scn8a expression is 
therapeutic in Scn1a+/− mice (Lenk et al., 2020) and in mice with 
epilepsy caused by loss of the potassium channel genes Kcna1 and 
Kcnq2 (Hill et  al., 2022). P2 administration of the Scn8a ASO 
completely rescued the Scn1a+/− mice (Lenk et al., 2020). In contrast, 
4/14 of the Scn1a+/− mice treated with the Kcnt1 ASO died between 
two and six months of age. The deaths after 2 months may result from 
turnover of the Kcnt1 ASO; alternatively, reduced Kcnt1 may 
be effective only in the interval between 3–4 weeks. The long-term 
effectiveness of the Scn8a ASO in Scn1a mutant mice is interesting, 
since the effect on Scn8a expression persists for only 6 weeks (Lenk 
et al., 2020). Viral overexpression of the Kcna1 channel is protective 
against seizures induced by tetanus neurotoxin or pentylenetetrazole 
(Snowball et  al., 2019; Qiu et  al., 2022). Taken together, these 

observations suggest that modulation of ion channel expression to 
compensate for epileptogenic mutations is a promising 
therapeutic strategy.

FIGURE 2

Kcnt1 ASO prolongs survival of Scn8a mutant mice. Survival of Scn8acond/+,EIIa-Cre (W/+) mice treated with 15–45  μg Kcnt1 ASO at P2 compared with a 
cohort of contemporaneous control mice treated with control ASO [Control data was previously published in Lenk et al. (2020)]. Asterisks indicate 
significance of Mantel-Cox log-rank tests: *  =  p  <  0.05, ***  =  p  <  0.0001.

FIGURE 3

Quinidine does not prolong survival of Scn8a mutant mice. Survival 
of Scn8acond/+,EIIa-Cre (W/+) mice daily treated with 50 or 100  mg/kg 
quinidine compared to untreated mice. Grey shading indicates 
treatment period.

FIGURE 4

Kcnt1 ASO prolongs survival of Scn1a+/− mice. Survival of Scn1a+/− 
mice treated with 45  μg Kcnt1 ASO at P2 compared to untreated 
mice (p  =  0.0513, Mantel-Cox log-rank test). Grey shading indicates 
the critical period in the development of Dravet Syndrome.
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Among the ion channel genes that could be targeted to treat 
channelopathies, KCNT1 is an attractive choice because reduced 
expression is well tolerated. Heterozygous loss-of-function 
mutations of KCNT1 are present in the general population and not 
associated with disease (Lek et al., 2016; Karczewski et al., 2020). 
Kcnt1−/− mice are healthy and fertile, with minor abnormalities 
such as impaired reversal learning and slightly elevated pain 
sensitivity (Bausch et al., 2015; Lu et al., 2015; Martinez-Espinosa 
et al., 2015; Quraishi et al., 2020). In contrast, heterozygous loss of 
Scn8a is not present in the healthy population (probability of loss-
of-function intolerance, pLI = 1) (Lek et al., 2016; Karczewski et al., 
2020) and homozygous loss is lethal in the mouse (Burgess 
et al., 1995).

Quinidine has been proposed as a therapy for patients with 
KCNT1 epilepsy because of the effectiveness of high doses for 
correction of GOF mutations in vitro (Milligan et al., 2014; Numis 
et  al., 2018). The effects of quinidine are not specific to KCNT1 
(Roden, 2014). Clinical application of quinidine in KCNT1 epilepsy 
has mixed success. Some individuals achieved seizure freedom (Mikati 
et al., 2015; Fitzgerald et al., 2019), but most patients report no benefit 
or worsening seizures (Mikati et al., 2015; Numis et al., 2018; Cole 
et  al., 2020). Quinidine concentration sufficiently high to block 
KCNT1 may be difficult to achieve in vivo without deleterious effects 
on other ion channels (Liu et al., 2022). We found that quinidine was 
not protective in Scn8a mutant mice. More specific KCNT1 channel 
blockers (Cole et al., 2020; Griffin et al., 2021) may be more effective 
for treatment of KCNT1, SCN8A, and SCN1A epilepsy.
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