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Introduction: Ischemic stroke patients commonly experience disorder of 
consciousness (DOC), leading to poorer discharge outcomes and higher mortality 
risks. Therefore, the identification of applicable electrophysiological biomarkers 
is crucial for the rapid diagnosis and evaluation of post-stroke disorder of 
consciousness (PS-DOC), while providing supportive evidence for cerebral 
neurology.

Methods: In our study, we  conduct microstate analysis on resting-state 
electroencephalography (EEG) of 28 post-stroke patients with awake 
consciousness and 28 patients with PS-DOC, calculating the temporal features 
of microstates. Furthermore, we extract the Lempel-Ziv complexity of microstate 
sequences and the delta/alpha power ratio of EEG on spectral. Statistical analysis 
is performed to examine the distinctions in features between the two groups, 
followed by inputting the distinctive features into a support vector machine for 
the classification of PS-DOC.

Results: Both groups obtain four optimal topographies of EEG microstates, but 
notable distinctions are observed in microstate C. Within the PS-DOC group, there 
is a significant increase in the mean duration and coverage of microstates B and 
C, whereas microstate D displays a contrasting trend. Additionally, noteworthy 
variations are found in the delta/alpha ratio and Lempel-Ziv complexity between 
the two groups. The integration of the delta/alpha ratio with microstates’ temporal 
and Lempel-Ziv complexity features demonstrates the highest performance in 
the classifier (Accuracy  =  91.07%).

Discussion: Our results suggest that EEG microstates can provide insights into 
the abnormal brain network dynamics in DOC patients post-stroke. Integrating 
the temporal and Lempel-Ziv complexity microstate features with spectral 
features offers a deeper understanding of the neuro mechanisms underlying brain 
damage in patients with DOC, holding promise as effective electrophysiological 
biomarkers for diagnosing PS-DOC.
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1. Introduction

Stroke is widely acknowledged as the second leading cause of death 
and a prominent contributor to disability globally (Feigin et al., 2017, 
2021), which results in severe behavioral impairments and widespread 
structural and functional network disruptions (Alkhachroum et al., 
2022). Post-stroke, patients commonly experience symptoms such as 
disorder of consciousness (DOC) or coma, which contribute to 
increasing in-hospital mortality and unfavorable outcomes upon 
discharge for stroke patients (Li et al., 2016). Therefore, it is crucial to 
diagnose post-stroke disorder of consciousness (PS-DOC) promptly 
and accurately, while gaining a comprehensive understanding of the 
neural mechanisms underlying brain injury. Traditionally, clinical 
rating scales like the Glasgow Coma Scale (GCS) and Coma Recovery 
Scale Revision (CRS-R) have been used to assess patients with 
DOC. Although clinical behavioral assessment remains the gold 
standard (Hermann et al., 2020), these scoring systems exhibit high 
inter-rater and inter-examiner variability and lack objective evidence 
of central nervous system damage following brain injury (Claassen 
et al., 2016; Giacino et al., 2018; Song et al., 2018).

Currently, the utilization of electrophysiological methods, 
specifically electroencephalography (EEG), to measure neurological 
function in patients has been demonstrated as an effective method for 
rapidly assisting in the diagnosis of DOC (Bai et al., 2021b; Ballanti 
et  al., 2022; Duszyk-Bogorodzka et  al., 2022). Extensive research 
utilizing EEG-based spectral analysis, source imaging analysis, and 
graph theory analysis has improved neurophysiological assessments 
in the fields of stroke and DOC rehabilitation and diagnosis (Finnigan 
et al., 2016; Bai et al., 2021a; Zhuang et al., 2022; Bouchereau et al., 
2023; Colombo et al., 2023). Regarding spectral patterns, previous 
studies have documented a notable reduction in alpha power after 
brain injury, including stroke (Edlow et  al., 2021). Consequently, 
stroke leads to a marked elevation in the delta/alpha ratio (DAR), 
which quantifies the ratio of delta band power to alpha band power 
(Finnigan and van Putten, 2013). Likewise, distinguishing between 
patients with DOC and healthy controls often relies on the analysis of 
delta and alpha frequency bands, where increased delta rhythms and 
diminished alpha rhythms serve as prominent indicators of reduced 
consciousness levels (Rossi Sebastiano et al., 2015). Specifically, DOC 
patients demonstrate higher delta power than healthy controls (Sitt 
et al., 2014), while an augmentation in alpha power is observed during 
the recovery of consciousness in these individuals (Stefan et al., 2018). 
These studies seem to suggest that we can observe the relationship 
between the spectral feature DAR and reduced consciousness in 
patients with PS-DOC.

Although traditional spectral analysis of resting-state EEG 
integrates brain activity over several seconds in different frequency 
bands, this method fails to capture the spatial and temporal 
characteristics of resting-state brain networks occurring at shorter time 
scales (e.g., tens of milliseconds; Li et al., 2022). In contrast, multi-
channel fusion of EEG microstate analysis can capture the 
spatiotemporal dynamics of activity in different brain regions at a 
sub-second time scale (Bréchet et  al., 2019). Microstates represent 
specific topological patterns of electrical potentials and are typically 
classified into four distinct classes (Michel and Koenig, 2018), and the 
microstates persist for a transient period of approximately 60–120 ms in 
a quasi-stable state before rapidly transitioning to another microstate 
category (Lehmann et  al., 1987). The swift transitions between 
microstates reflect rapid changes in brain dynamics, revealing the 

interconnectedness between cognitive function, information processing, 
and neural regulation in the brain (Khanna et al., 2014; Von Wegner 
et al., 2018; Liu et al., 2020). Furthermore, different microstate classes 
exhibit strong associations with specific resting-state networks (RSNs) 
in the brain, including the auditory network, visual network, salience 
network, and attention network, among others (Britz et al., 2010; Michel 
and Koenig, 2018). Increasing evidence suggests that abnormal 
alterations in temporal characteristics (such as mean duration, coverage, 
and occurrence) of microstates are observed in various neuropsychiatric 
disorders, including post-traumatic stress disorder (Terpou et al., 2022), 
schizophrenia (Rieger et al., 2016; Lin et al., 2022), Alzheimer’s disease 
(Tait et al., 2020), Parkinson’s disease (Pal et al., 2021), and depression 
(Zhao et al., 2022). However, microstate analysis research related to 
DOC primarily focuses on patients with diverse etiologies, including 
brain trauma, intracranial bleeding, hypoxic–ischemic, and other 
conditions (Guo et al., 2022; Toplutaş et al., 2023; Zhang et al., 2023). In 
contrast, there is limited research on microstate analysis in DOC 
patients with a single etiology, such as ischemic stroke, and our 
understanding of the temporal dynamics and spatiotemporal interaction 
effects in their brains remains insufficient.

Moreover, substantial evidence suggests that microstate time 
sequences display dynamic and nonlinear characteristics, including 
non-Markovian transition behaviors, where the transition to the next 
microstate class is independent of the current microstate class 
(Gschwind et al., 2015; Von Wegner et al., 2017). Increasing studies 
have introduced nonlinear measures applied to microstate sequences. 
In particular, Tait et al. pioneered the utilization of the Lempel-Ziv 
complexity (LZC) algorithm to investigate microstate transition 
patterns (Tait et al., 2020), revealing a reduction in microstate LZC 
among individuals with Alzheimer’s disease in comparison to their 
healthy counterparts. Subsequently, Zhang et  al. explored the 
alterations in the LZC of microstate sequences in patients with brain 
diseases (Zhang et al., 2021), and Zhao et al. discovered an increase in 
the LZC of microstates in adolescents with depression (Zhao et al., 
2022). Nonlinear analysis of EEG microstate sequences quantifies the 
persistent characteristics of brain electrical activity, revealing complex 
dynamic changes at very small time scales (Von Wegner et al., 2023). 
We suggest that the microstate LZC in PS-DOC patients may also 
exhibit some degree of abnormality, providing new insights into the 
neuro anomalies associated with DOC.

The aforementioned analysis indicates that the current 
understanding of EEG microstates in PS-DOC remains limited. To 
this end, the innovations and contributions of our study are 
summarized as follows.

Firstly, to the best of our knowledge, this paper is the first work to 
investigate the differences in EEG microstates between PS-DOC 
patients and post-stroke awake (PS-AW) conscious state patients. 
Comparison results show that there exist differences in microstate 
topographies between the two groups and especially exhibit significant 
alterations in temporal features among them.

Secondly, we analyze the Lempel-Ziv complexity of the microstate 
time sequences and find that, there exhibits higher repetitiveness and 
slower transition trends in the microstates of PS-DOC patients than 
that of PS-AW patients. Additionally, to supplement the spectral 
information in resting-state EEG, we calculate the DAR of spectral 
features in both groups. We find that DAR is significantly higher in 
PS-DOC patients.

Finally, we explore the potential of the aforementioned extracted 
features that are sensitive to intergroup variability in the classification 
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of DOC. In particular, we fuse these features and feed the combined 
sets into an SVM classifier to identify the DOC among stroke patients. 
The outcome demonstrates that our work could accurately identify 
92.86% of DOC patients.

In summary, our study contributes to a better understanding of 
resting-state EEG microstate features in patients with DOC post-
stroke, helps us to identify potentially valid electrophysiological 
biomarkers, and provides important insights and neurological 
evidence into the causative mechanisms of decreased levels of 
consciousness post-stroke.

2. Materials and methods

2.1. Patients

We retrospectively investigate 60 patients diagnosed with ischemic 
stroke who received treatment between June 2020 and January 2022 at 
the stroke center of Shanxi Provincial People’s Hospital. The inclusion 
criteria include (1) First-time diagnosis of ischemic stroke; (2) Subacute 
stroke (2 weeks to 3 months post-stroke); (3) Complete assessment of 
consciousness and scalp EEG measurement; (4) No other neurological 
disorders. Exclusion criteria encompass (1) Patients aged below 18; (2) 
Pregnant or lactating women; (3) Patients with traumatic brain injury 
or intracerebral hemorrhage; (4) Patients who underwent thrombolysis 
surgery. Two patients are excluded due to other neurological 
comorbidities, and two patients are excluded as a result of receiving 
thrombolytic surgery. Finally, we obtain a sample of 56 patients with 
ischemic stroke (mean age = 67.09 years, 31 males, 25 females, and 56 
right-handed individuals).

The consciousness state of the patients is assessed using the GCS 
by clinical experts in neurology, who are blinded to the patient’s EEG 
measurements. Based on the GCS scores, we divide the patients into 
two groups: 28 patients with post-stroke awake consciousness (PS-AW; 
GCS > 13; mean age = 68.96 years, 17 males, 11 females), representing 
stroke patients without DOC; and 28 patients with post-stroke DOC 
(PS-DOC; GCS < 13; mean age = 65.21 years, 14 males, 14 females), 
including 13 patients with moderate DOC (12 > GCS > 9) and 15 
patients with severe DOC/coma (3 < GCS < 8). Furthermore, the t-tests 
are performed for age and post-stroke onset time between the two 
groups and reveal no noticeable distinctions (t = −1.08, p = 0.285; 
t = 1.49, p = 0.14). The chi-square test for gender distribution also yields 
similar results (χ2 = 0.48, p = 0.49). All EEG data collection followed a 
retrospective observational cohort study which was approved by the 
local institutional review board (Ethics Committee of Shanxi Provincial 
People’s Hospital). The demographic and clinical information of all 
patients is summarized in Table 1.

2.2. Electroencephalography data 
acquisition and preprocessing

Each patient is instructed to lie supine on the bed with their eyes 
closed within 30 min after the clinical consciousness assessment. 
Resting-state EEG data are collected using a bedside monitoring 
system (Solar 2000 N, Solar Electronic Technology Co., Ltd., Beijing, 
China) with a sampling rate of 100 Hz, for a minimum duration of 
10 min. 19 Ag/AgCl ring electrodes (FP1, FP2, F3, F4, C3, C4, P3, P4, 
O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ) are positioned on the 
scalp according to the international 10–20 system (Jurcak et al., 2007), 
ensuring the impedance of all electrodes remained below 10 kΩ. The 
right mastoid serves as the reference electrode, while the forehead is 
designated as the location for the ground electrode. Additionally, a 
pair of electrooculography electrodes are also employed to capture eye 
movements and blinking patterns.

The offline preprocessing of raw EEG data is conducted using 
MATLAB (R2019a, MathWorks Inc., United States) in conjunction 
with the EEGLAB 2021.0 toolbox (Delorme and Makeig, 2004). The 
general preprocessing steps can be seen in Figure 1. Specifically, 
we utilize a finite impulse response filter for bandpass filtering in the 
frequency range of 1 Hz to 30 Hz, along with a notch filter designed 
to eliminate power line interference at 50 Hz. We conduct visual 
inspection to remove artifacts related to eye movements or blinking 
that are highly correlated with electrooculography signals, followed 
by re-referencing the EEG data using the common average reference. 
Subsequently, applying the runica algorithm from the EEGLAB, 
we perform independent component analysis on the EEG data, and 
the ICLabel and ADJUST algorithms from the plugin extension are 
employed to remove noise related to muscle activity, and eye 
movements. The count of removed artifact-independent components 
in the PS-AW group and the PS-DOC group are 2.3 ± 0.7 
(mean ± standard deviation) and 1.8 ± 0.3 (mean ± standard 
deviation), respectively, with no significant difference. After EEG 
preprocessing, each patient’s artifact-free epochs of 60 s are retained 
for data analysis.

2.3. Delta/alpha ratio calculation

In the spectral analysis of the preprocessed EEG, we utilize the 
Welch method to compute the average power within the 1–30 Hz 
frequency range for each electrode. To segment the signal, a Hanning 
window with a duration of 2.048 s is applied, using a 50% window 
overlap and a frequency resolution of 0.488 Hz approximately. The 
power spectral density within each time window is then calculated 
using the Fast Fourier Transform, resulting in power values within 

TABLE 1 Patients’ demographic and clinical information.

PS-AW patients (n  =  28) (Mean  ±  SD) PS-DOC patients (n  =  28) (Mean  ±  SD) Group comparison

Age, years 68.96 ± 11.63 65.21 ± 14.21 t(54) = −1.08, p = 0.29

Gender (Females/Males) 11/17 14/14 χ2 = 0.48, p = 0.49

Weeks post-stroke 7.82 ± 2.91 6.64 ± 3.01 t(54) = 1.49, p = 0.14

GCS >13 9 < n = 13 < 12 3 < n = 15 < 8

Consciousness state Awake Moderate DOC Severe DOC/Coma

SD, standard deviation. Group comparison: The chi-square test for gender and t-test for age and weeks after stroke are performed between PS-AW and PS-DOC patients, there are no 
statistically significant differences observed.
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the frequency range of 1–30 Hz. These power values are summed for 
each window to obtain the total power within that window. 
Subsequently, the average total power across all windows is 
computed to determine the average power. For each electrode, the 
average power spectrum is derived by averaging the results from all 
19 electrodes, resulting in the “average scalp power spectrum” 
(Finnigan et  al., 2007). Finally, the ratio of the average power 
spectrum is calculated over the specific frequency range of interest, 
including the delta band (1–4 Hz) and the alpha band (8–13 Hz), 
yielding the EEG spectral characteristic known as the DAR. It is 
worth noting that although we focus on extracting the power spectra 
for the delta and alpha bands here, we retain the broader frequency 
range of 1–30 Hz for subsequent microstate analysis.

2.4. Microstates analysis

We perform microstate analysis on preprocessed EEG data using the 
Microstate EEGLAB Toolbox (Poulsen et al., 2018). The analysis flow is 
illustrated in Figure 1. Initially, the global field power (GFP) is extracted 
from the EEG signal in both stroke groups. GFP is defined as follows:

 
GFP

u t u t

n
i
n

i mean
=

( ) − ( ) ∑ 2

Where u ti ( ) is the instantaneous potential of the ith electrode 
at time t, u tmean ( ) is the average instantaneous potential across all 
electrodes at time t, and n denotes the number of electrodes (n  is 
19 in our study). GFP is calculated as the standard deviation of the 
EEG signals from all electrodes (Murray et al., 2008). Considering 
that the local maximum (peak) of GFP exhibits a favorable signal-
to-noise ratio and stable changes in EEG topography, we  set a 
minimum interval of 10 ms between consecutive GFP peaks. 
We extract the brain topographic maps (also known as original 
maps) at 2000 randomly selected GFP peak locations. GFP peaks 
that exceed twice the standard deviation are also removed, as they 
often contain artifacts of non-neuronal origin. Subsequently, all 
obtained original maps are input into a modified k-means clustering 
algorithm (ignoring polarity). We  employ an optimized 
segmentation scheme with 1,000 iterations to obtain the best 
clustering. In line with previous studies (Zappasodi et al., 2017), 
we identify the optimal number of prototype microstates as 4 for 
both groups of resting-state EEG, considering the criteria of 
minimizing the cross-validation and maximizing the 
Krzanowski-Lai. We  assign labels to the optimal prototype 
microstates, categorizing them into four classes: Class A, Class B, 
Class C, and Class D. Next, four prototype microstates undergo 
back fitting to all EEG recordings in the two groups. Each EEG time 
point is mapped to a specific prototype microstate based on its 
maximum spatial resemblance, thereby transforming the EEG into 
a microstate sequence. Finally, to enhance the fitting quality, the 

FIGURE 1

Overview of analytical methods for this study. The contents of red boxes are the three types of group features in the study, see more details in 
“Materials and methods” section. DAR, delta/alpha ratio; GFP, global field power.
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microstate sequence undergoes temporal smoothing and excludes 
microstates with durations shorter than 30 ms (Poulsen et al., 2018).

Following the completion of the microstate analysis, temporal 
features are computed for each of the four microstate classes in every 
patient. The global explained variance (GEV) is quantified as the 
percentage of similarity between the EEG and the assigned 
microstates, expressed as a percentage (%). The mean duration 
corresponds to the uninterrupted average duration of each microstate, 
measured in milliseconds (ms). The occurrence denotes the frequency 
at which each microstate occurs within a one-second interval, 
measured in hertz (Hz). The coverage represents the proportion of 
time that each microstate occupies throughout the recording, 
expressed as a percentage (%).

2.5. Microstate Lempel-Ziv complexity 
calculation

It can be  observed that the microstate sequence represents the 
combination of four prototype microstates in the time domain, with each 
microstate having a short duration (see Figure 1). The length of the 
microstate sequence is slightly shorter than the preprocessed EEG data 
of the patients (due to the smoothing process, some microstates are 
discarded). The algorithm employed to compute the Lempel-Ziv 
complexity of the microstate time series in this study is consistent with 
previous research (Tait et al., 2020). Firstly, the microstate time sequence 
is transformed into a discrete sequence, where each time point 
corresponds to a distinct class within the four microstate topographies 
[A, B, C, D], thereby generating a string with the same number of 
sampling points as the original sequence. Then, the sequence is processed 
into a transitioning sequence (e.g., the sequence BBBCCAADDB is 
simplified to BCADB). Finally, the LZC value of the microstate sequence 
is calculated, which indicates the number of different subsequence 
patterns observed in the sequential analysis of the transformed sequence. 
Therefore, the values of microstate LZC indicate the number of distinct 
subsequences, reflecting the degree of repeatability and self-similarity 
during transitions of the four classes of microstates. Additionally, The 
algorithm determines that longer sequences have higher LZC values. As 
a result, when calculating the LZC, only the initial N substrings of the 
transitioning sequence are utilized. Since the length of our microstate 
sequence is below 60 s, we choose N = 300 to ensure that the minimum 
sequence length is greater than this value. For a comprehensive 
explanation of microstate LZC computation, please refer to Wegner et al. 
for detailed information (Von Wegner et al., 2023).

2.6. Statistical analysis

Group differences in patient age and post-stroke duration in weeks 
are evaluated through independent sample t-tests. The distribution of 
gender among patients is examined using the non-parametric 
chi-square test. To assess significant disparities in microstate temporal 
parameters between the PS-AW and PS-DOC groups, Welch’s t-test is 
employed. Moreover, DAR and microstate LZC comparisons between 
the two groups are conducted using both Welch’s t-test and the 
non-parametric Mann–Whitney U test. All statistical analyzes are 
performed using SPSS software (Version 25.0, IBM Inc., United States). 
The level of statistical significance is defined as a value of p less than 

0.05 (or p < 0.01, p < 0.001) in this study. Additionally, microstate 
topography differences among microstate classes between the groups 
are assessed using a topographic analysis of variance (TANOVA) in the 
Ragu software (Koenig et al., 2011), employing 1,000 randomizations 
to establish a significance threshold of p < 0.05.

2.7. Classification of patients with PS-DOC

Thus far, we have obtained three types of group features, including 
the spectral feature DAR, the three microstate temporal features (mean 
duration, occurrence, and coverage) of four microstate classes, and the 
microstate LZC feature based on nonlinear measurement. Based on 
subsequent inter-group feature statistical analysis results, all three types 
of features demonstrate the differentiation between the two groups. 
Therefore, these features and their combinations are used as input for 
a SVM model with a radial basis function kernel to classify PS-DOC 
patients. The choice of radial basis function kernel SVM over other 
classifiers is attributed to its better scalability concerning the size of 
samples and features, as well as its ability to handle binary classification 
problem with multiple feature sets. The SVM model is implemented 
using the scikit-learn library in Python, with the hyperparameter C set 
to 1 to control the regularization degree. To accurately assess the 
performance of the model, 10-fold cross-validation is employed, and 
the average results are used to determine the values of sensitivity, 
specificity, accuracy, and the area under the curve (AUC) of receiver 
operating characteristic, which are four evaluation metrics.

3. Results

3.1. Electroencephalography microstate 
topographies

For the PS-AW group and the PS-DOC group, four EEG microstate 
topographies in each group are shown in Figure 2. Class A and Class B 
predominantly occupy the unilateral frontal region in a diagonal 
pattern, while Class C exhibits a vertical distribution. Class D, on the 
other hand, dominates the frontal-central area. These topographies are 
consistent with previous research (Zappasodi et al., 2017; Michel and 
Koenig, 2018). After the TANOVA, only the microstate topography of 
class C demonstrates a notable distinction (p = 0.0081). In addition, the 
topographies of the four microstates explain 75.18 and 73.79% of the 
GEV in the PS-AW and PS-DOC groups, respectively, indicating that 
these four microstate topographies can largely account for resting-state 
EEG. Furthermore, the difference in GEV between the two groups is 
not statistically significant (t = −1.345, p = 0.184).

3.2. Electroencephalography microstate 
temporal features

Next, Levene’s test reveals a violation of the assumption of 
homogeneity of variances for the temporal features of microstates 
between the PS-AW group and the PS-DOC group. Consequently, 
Welch’s t-test is conducted to compare the differences between the two 
groups. The mean values of mean duration, occurrence, and coverage 
for the four microstate classes in both groups, along with the t-test 
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results, are presented in Table 2. The t-value in this context represents 
a standardized measure of the difference between sample means 
relative to the variability of the difference. A negative t-value indicates 
that the mean of the PS-AW group is smaller than the mean of the 
PS-DOC group, while a positive value indicates the opposite. Bold 
highlights in the table indicate statistically significant differences 
(p < 0.05). We observe that the temporal features of the microstate 
classes exhibit significant intergroup differences, except for the 
occurrence of microstate A and microstate C, and the coverage of 
microstate A.

Figure  3 provides violin plots and box plots for a visual 
representation of temporal features of microstates between the 
PS-AW group and the PS-DOC group. Regarding the horizontal 
comparison of the temporal features, all microstate classes, except 
for microstate D, show significant prolongation in mean duration 
for the PS-DOC group (p < 0.01). In terms of occurrence, 
significant differences are observed only for microstates B and D 

(t = −3.227, p < 0.01; t = 2.964, p < 0.01). As for coverage, microstate 
D exhibits a substantial decrease in the PS-DOC group (p < 0.001), 
while microstates B and C demonstrate an increase (p < 0.05). 
Shifting to the vertical comparison, microstates B and C 
consistently demonstrate enhancements across mean duration and 
coverage in the PS-DOC group, while microstate D consistently 
displays reductions. In other words, microstate B and microstate 
D consistently exhibit opposite patterns of change in temporal 
features between the two groups.

3.3. Delta/alpha ratio

In the spectral analysis, we compute the DAR of resting-state EEG 
for each patient in two groups, which is used to quantify the power 
spectral changes. Table 2 displays the results of intergroup comparisons 
using Welch’s t-test. The mean DAR for the PS-AW patient group is 

FIGURE 2

Four EEG microstate topographies for the PS-AW patient group (top) and PS-DOC patient group (bottom). The asterisks (**) indicate a significant 
difference in the microstate C between the two groups (p  <  0.01) after TANOVA.

TABLE 2 Comparison of EEG microstate temporal features, microstate LZC and DAR between PS-AW and PS-DOC patient groups.

PS-AW (n  =  28) PS-DOC (n  =  28) t-value Value of p

Mean SD Mean SD

Mean duration

ClassA 83.642 11.781 92.487 10.543 −2.961 0.005**

ClassB 68.250 3.544 76.805 7.492 −5.461 0.000***

ClassC 81.019 4.104 90.156 5.158 −6.417 0.000***

ClassD 87.737 6.127 84.581 4.889 2.131 0.038*

Occurrence

ClassA 3.548 0.591 3.376 0.340 1.324 0.193

ClassB 2.412 0.400 2.709 0.279 −3.227 0.002**

ClassC 3.118 0.205 3.129 0.350 −0.145 0.885

ClassD 3.288 0.219 3.014 0.438 2.964 0.005**

Coverage

ClassA 30.953 7.599 33.881 6.337 −1.566 0.123

ClassB 17.592 4.114 19.980 2.680 −2.574 0.013*

ClassC 24.643 2.727 27.530 5.604 −2.451 0.019*

ClassD 25.531 5.129 19.314 2.405 5.807 0.000***

LZC 112.02 6.577 104.139 5.114 5.006 0.000***

DAR 3.708 0.928 5.311 1.584 −4.046 0.000***

SD, standard deviation. Significant correlations are bolded after statistical analysis using Welch’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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3.708 (range: 1.26 to 5.98), while the mean DAR for the PS-DOC 
patient group is 5.311 (range: 2.48 to 9.76), and the DAR exhibits 
significant variation between the two groups (t = −4.046, p < 0.001). 
The results indicate that the average power in the delta frequency band 
is higher than that in the alpha frequency band for both patient 
groups, as the DAR ranges are not lower than 1. Furthermore, to 
provide comprehensive and reliable statistical inferences, a 
non-parametric Mann–Whitney U test is employed. As depicted in 
Figure 4A, the results likewise demonstrate that PS-DOC patients 
show a significant elevation of DAR compared to PS-AW patients 
(U = 185, z = −3.392, p < 0.001).

3.4. Microstate Lempel-Ziv complexity

For each patient’s microstate sequence, we calculate the LZC of 
their microstate transition sequence within a range of N = 300. The 
PS-DOC group has a mean microstate LZC value of 104.139, which 
is lower than the mean value of 112.02 in the PS-AW group. As 
depicted in Table 2 and Figure 4B, using Welch’s t-test and the 
non-parametric Mann–Whitney U test, we  find a significant 
decrease in microstate LZC for the PS-DOC group (t = 5.006, 
p < 0.001; U = 185, z = −3.392, p < 0.001). The reduction of 
microstate LZC indicates that the four microstates of PS-DOC 

FIGURE 3

Inter-group statistics for temporal features of four microstate classes by Welch’s t-test. Violin plots and box plots depict the (A) Mean duration 
(B) Occurrence and (C) Coverage for each microstate class in the PS-AW and PS-DOC patient groups. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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patients demonstrate higher repeatability and limited patterns of 
microstate transitions.

3.5. Classification

The results of inter-group statistical comparisons reveal that 
the EEG spectral feature DAR, along with the temporal features 
of microstates and the complexity feature microstate LZC disclose 
abnormal alterations in brain activity among patients with 
PS-DOC. We construct SVM models using different feature sets 
to assess whether the different combinations of these features 
could serve as potential effective biomarkers for PS-DOC. In 
terms of feature selection, we  consider the temporal features 
(mean duration, occurrence, and coverage) of four microstate 
classes as Feature Set 1 (12 features in total). Combining DAR and 
microstate LZC with the temporal features of microstates 
respectively, we obtain Feature Set 2 and Feature Set 3 (both sets 
have 13 features). Finally, Feature Set 4 includes all three types of 
features (14 features in total). The principal component analysis 
is employed to reduce the dimensionality of these feature sets. 
Then, the four different feature sets are input into the radial basis 
function kernel SVM to classify PS-DOC patients, respectively. As 
shown in Table 3, when the three types of features are combined, 
the accuracy, sensitivity, and specificity are all above 89%. 
Specifically, the sensitivity is 92.86% (26/28 PS-DOC patients 
classified as PS-DOC by the model), indicating better classification 
performance compared to using these features individually or in 
other combinations.

4. Discussion

Over the past decade, the integration of electrocorticography, 
functional magnetic resonance imaging, and EEG source imaging 
techniques in the analysis of EEG microstates has revealed a close 
relationship between microstates and RSNs along with their 
corresponding cortical regions (Yuan et al., 2012; Khanna et al., 2015; 
Gschwind et al., 2016; Bréchet et al., 2019; Zoubi et al., 2020; Rajkumar 
et  al., 2021; Mikutta et  al., 2023), demonstrating their capacity to 
evaluate the large-scale electrical activity in cortical networks (Tarailis 
et al., 2023). In this study, both the PS-AW group and the PS-DOC 
group exhibit four typical microstate topographies, with noticeable 
differences observed in the topological structure of microstate 
C. Regarding the source localization and specific association of 
microstate C with RSNs, a consensus has not yet been reached. Previous 
studies suggested an association between microstate C and the salience 
network (Britz et al., 2010), while recent research indicated its potential 
origins from the posterior cingulate cortex and precuneus (Custo et al., 
2017; Zanesco et al., 2021), regions known for their critical role in the 
default mode network (DMN) (Fransson and Marrelec, 2008; Hagmann 
et al., 2008). An investigation on the consciousness level of brain-injured 
patients demonstrated a significant peak in DMN connectivity within 
the posterior cingulate cortex, highlighting the strong correlation 
between activity in this region and patients’ consciousness levels 
(Cavanna and Trimble, 2006; Vanhaudenhuyse et al., 2010). Croce et al. 
found that transcranial magnetic stimulation to the two pivotal regions 
of the DMN significantly altered the microstate C topography (Croce 
et al., 2018), suggesting the potential of microstates in elucidating local 
inhibition within brain regions. These findings imply that the decreased 

TABLE 3 Classification performance comparison with 4 different feature sets.

Feature set Accuracy Sensitivity Specificity AUC Feature number

Set1: Microstate temporal features 77.59% 78.57% 82.14% 0.831 12

Set2: Microstate temporal features + DAR 84.48% 89.29% 85.71% 0.915 13

Set3: Microstate temporal features + microstate LZC 81.03% 82.14% 89.29% 0.902 13

Set4: Microstate temporal features + DAR + microstate LZC 91.07% 92.86% 89.29% 0.938 14

Set4 shows the highest classification performance and is shown in bold.

FIGURE 4

Inter-group statistics for DAR and microstate LZC by non-parametric Mann–Whitney U test. (A) DAR for the PS-AW and PS-DOC patient groups 
(B) Micostate LZC for the PS-AW and PS-DOC patient groups. ***p  <  0.001.
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consciousness level in patients with stroke-induced brain damage may 
be associated with the inhibition of key areas within the DMN. This 
inhibition is likely to result in alterations in the microstate C topography, 
reflecting changes in neural activity and connectivity.

Furthermore, we  observe a noticeable increase in the mean 
duration and coverage of microstate C in the PS-DOC patient group, 
which is in line with recent research (Toplutaş et al., 2023), although 
the DOC patients in their study cohort were of different aetiologies 
and their control group consisted of healthy subjects. These findings 
imply that the temporal features of microstate C may not be sufficiently 
sensitive to differentiate DOC patients caused by stroke and those 
with other etiologies, however, it still holds potential as a biomarker 
for DOC diagnosis. Another study reported a substantial reduction in 
the mean duration and coverage of microstate C in improving DOC 
patients during the consciousness recovery process following high-
definition transcranial direct current stimulation (Guo et al., 2022), 
which further supports this viewpoint.

Regarding microstate D, we find a noticeable decrease in the mean 
duration, coverage, and occurrence in the PS-DOC group, which is 
opposite to the increased temporal parameters of microstates B and 
C. Microstate D is negatively correlated with the BOLD signals of the 
frontal and parietal lobes’ right posterior dorsal regions, which 
correspond to the dorsal attention network (DAN) activity (Britz 
et al., 2010; Michel and Koenig, 2018). Indeed, the opposite behavior 
of microstates C and D has been found in previous cognitive 
manipulation tasks, where the temporal measures of microstate D 
showed a significant augmentation in tasks involving the DAN, while 
the metrics of microstate C decreased (Seitzman et al., 2017). These 
research findings imply dysfunction of the DAN network in PS-DOC 
patients. Moreover, microstate D is suggested to represent certain 
aspects of attention and focus switching, and its temporal parameters 
show a decrease in response to reduced alpha power (Croce et al., 
2020). The increase in DAR caused by the decreased alpha power 
observed in the PS-DOC group appears to explain the reduced time 
features of microstate D, indicating a dysregulation of attention in 
PS-DOC patients compared to PS-AW patients.

Moreover, The PS-DOC patient group shows an extended time 
parameter for microstate B, consistent with the results of Toplutaş et al. 
(2023) who found a remarkable increase in the mean duration and 
coverage of microstate B in DOC patients. Comparable results have 
been found in other neurological disorders, such as increased microstate 
B occurrence and coverage in migraine patients (Li et al., 2022), and 
higher mean duration, occurrence, and coverage of microstate B in 
adolescent depression patients (Zhao et  al., 2022). Furthermore, 
microstate B has a negative correlation with bilateral occipital lobe 
BOLD activation (Michel and Koenig, 2018), and it has a 36% overlap 
with the DAN, followed by the visual network and the ventral attention 
network (36 and 31%, respectively; Zoubi et al., 2020). This suggests a 
relationship between the attenuated indicators of microstate D and the 
enhanced indicators of microstate B in PS-DOC patients, but further 
explanation is needed using more precise brain imaging techniques. 
Lastly, similar to microstates B and C, there is a significant increase in 
the mean duration of microstate A in the PS-DOC patient group. Guo 
et al. (2022) found a negative correlation between the CRS-R scores and 
the mean duration of microstate A in patients with DOC, which 
indicates that the mean duration of microstate A decreases gradually 
during the treatment process of consciousness recovery. Similarly, a 
longer mean duration of microstates in patients with DOC was 
associated with lower brain dynamical activity (Zhang et al., 2023). 

Moreover, the sleep or anesthesia state showed an increased mean 
duration of microstates in comparison to the awake state (Bréchet and 
Michel, 2022). In our study, the PS-AW group exhibits a shorter mean 
duration of microstates compared to the PS-DOC group, indicating that 
PS-DOC patients require more time for brain information transmission 
and processing under the same microstates and RSNs, which may affect 
the patient’s consciousness level.

The quantitative analysis of the frequency domain on resting-state 
EEG is indispensable. As mentioned earlier, several investigations have 
reported augmented delta-wave activity coupled with reduced alpha-
wave activity in both stroke patients (Schleiger et al., 2014) and DOC 
patients following brain injury (Varotto et al., 2014). In this study, our 
results show an appreciable increase of DAR in the PS-DOC patient 
group, consistent with previous reports in brain injury and DOC 
patients. DAR correlated strongly negatively with functional recovery 
in acquired brain injury (Leon-Carrion et al., 2009), and Finnigan et al. 
found that a DAR ratio of 3.7 accurately distinguished ischemic stroke 
patients (Finnigan et al., 2016). Furthermore, Lechinger et al. (2013) 
found a high correlation between spectral peak frequency and CRS-R 
scores, and delta wave power exhibited a significant negative correlation 
with CRS-R scores (Bareham et al., 2018). These findings provide robust 
evidence for the increased DAR in PS-DOC patients and further 
emphasize the importance of using DAR as a quantitative EEG measure 
for DOC diagnosis and assessment.

Furthermore, there is a theoretical proposition that neural 
complexity is one of the important foundations of consciousness 
formation (Tononi, 2005, 2008), and the brain exhibits higher 
complexity in information integration and processing in states of higher 
consciousness levels (Dehaene and Changeux, 2011). These viewpoints 
have been validated in studies of EEG complexity in DOC patients, such 
as significantly lower complexity measured by LZC values in DOC 
patients (Wu et al., 2011), and a non-monotonic increase in LZC during 
the consciousness recovery process (Lei et al., 2022). In recent years, 
researchers have utilized the LZC feature of microstate time series to 
study the neurodynamics of patients with neurological disorders at a 
smaller time scale (Tait et al., 2020; Artoni et al., 2022). In our study, 
we apply the microstate LZC to DOC patients for the first time, and the 
results display lower microstate LZC values in the PS-DOC patient 
group, indicating a tendency for more repetitive and slower transitions 
of the microstates in the PS-DOC group, which may reflect a decrease 
in complexity during information integration and distributed 
processing. Additionally, a recent study found lower EEG LZC and 
permutation LZC to be associated with residual consciousness in DOC 
patients (Liu et al., 2023), which supports our results.

In recent years, significant progress has been made in the 
classification methods for DOC. This progress can largely be attributed 
to the application of electrophysiological methods in measuring brain 
neural function with the need to supplement the criteria for DOC 
classification with information from EEG (Bayne et al., 2017). Recent 
research proposed a multiple-scale convolutional few-shot learning 
network that can extract more information from EEG and applied it to 
evaluate DOC patients with residual consciousness in a P300-based 
brain-computer interface (BCIs) (Pan et al., 2023). Although there have 
been preliminary results in the assistance of diagnosing DOC patients 
using BCIs, BCI tasks often require active cooperation from patients, 
which remains a significant challenge for DOC patients (Galiotta et al., 
2022). Another research attempted to maximally utilize functional 
connectivity information in brain networks to evaluate DOC, using 
convolutional neural networks and network reconfiguration techniques 
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to classify patients with different consciousness states, achieving a 
classification accuracy of 87.2% (Cai et al., 2023). However, a recent study 
demonstrated that compared to convolutional neural networks or deep 
learning algorithms, SVM classifier showed stability in classifying 
various EEG signal preprocessing patterns for tasks such as DOC 
classification and had better interpretability, making them more suitable 
for doctors and patients to adopt (Rosenfelder et al., 2023). Our research 
explores the potential value of EEG microstates in DOC classification, 
which has not been explored in previous studies according to the 
available literature. We  employ an SVM classifier to identify DOC 
patients among stroke patients using only the temporal features of the 
four microstate classes (accuracy = 77.59%), and obtain accuracies of 
84.48 and 81.03% when incorporating the spectral feature DAR and the 
microstate complexity feature LZC, respectively. When combining DAR 
and microstates’ temporal and LZC features together, the highest 
accuracy and sensitivity are achieved (accuracy = 91.07%, 
sensitivity = 92.86%). The microstate temporal sequences and 
topographies have higher temporal and spatial resolution compared to 
EEG sequences. The features extracted from microstates can 
be complemented with frequency-domain information to improve the 
performance of classification, and higher sensitivity in classification is 
crucial for diagnosing patients with PS-DOC in a clinical setting.

Despite providing potential electrophysiological biomarkers for the 
post-stroke disorder of consciousness, this study has several limitations 
to consider. Firstly, the study only includes DOC patients caused by 
subacute ischemic stroke, which, although avoiding potential influences 
from other etiologies, still has high heterogeneity among ischemic 
stroke patients, such as lesion location and size, stroke severity, etc. 
These factors need to be considered in future studies for their impact on 
group analysis. Secondly, due to missing clinical scale scores in some 
DOC patients in the study cohort, the correlation analysis between 
different features and clinical scales is not conducted. Therefore, future 
studies need to supplement the correlation information between the 
features and scales. Finally, this study highlights the potential role of 
these features in the diagnosis and assessment of PS-DOC. However, to 
delve deeper into the observed uniqueness, future research should 
include longitudinal studies to investigate the effectiveness of these 
indicators in predicting stroke patient prognosis.

5. Conclusion

In this study, we conduct EEG microstate analysis on patients with 
DOC resulting from a single etiology, specifically ischemic stroke. Our 
findings reveal distinct differences in the topography of microstate C 
between PS-DOC patients and PS-AW patients, indicating localized 
suppression of DMN activity in PS-DOC. Microstates B and C exhibit 
significant increases in temporal features in the PS-DOC group compared 
to the PS-AW group, while microstate D shows the opposite pattern. 
These novel microstate findings provide valuable insights and additional 
information on abnormal RSN changes in DOC. Moreover, integrating 
EEG frequency domain analysis and nonlinear analysis of microstates, 
we observe notable increases in the DAR and reductions in the microstate 
LZC within the PS-DOC group. Lastly, utilizing these distinctive features 
as a comprehensive set, we achieve high accuracy in classifying PS-DOC 
patients (Accuracy = 91.07%). Our findings emphasize the potential of 
EEG microstates as promising electrophysiological biomarkers for the 
assessment of DOC among stroke patients, with further enhancements 
possible through the integration of spectral features.
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