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Introduction: The Balloon Analog Risk Task (BART), a computerized behavioral 
paradigm, is one of the most common tools used to assess the risk-taking 
propensity of an individual. Since its initial behavioral version, the BART has 
been adapted to neuroimaging technique to explore brain networks of risk-
taking behavior. However, while there are a variety of paradigms adapted to 
neuroimaging to date, no consensus has been reached on the best paradigm with 
the appropriate parameters to study the brain during risk-taking assessed by the 
BART. In this review of the literature, we aimed to identify the most appropriate 
BART parameters to adapt the initial paradigm to neuroimaging and increase the 
reliability of this tool.

Methods: A systematic review focused on the BART versions adapted to 
neuroimaging was performed in accordance with PRISMA guidelines.

Results: A total of 105 articles with 6,879 subjects identified from the 
PubMed database met the inclusion criteria. The BART was adapted in four 
neuroimaging techniques, mostly in functional magnetic resonance imaging or 
electroencephalography settings.

Discussion: First, to adapt the BART to neuroimaging, a delay was included 
between each trial, the total number of inflations was reduced between 12 and 
30 pumps, and the number of trials was increased between 80 and 100 balloons, 
enabling us to respect the recording constraints of neuroimaging. Second, 
explicit feedback about the balloon burst limited the decisions under ambiguity 
associated with the first trials. Third, employing an outcome index that provides 
more informative measures than the standard average pump score, along with a 
model incorporating an exponential monotonic increase in explosion probability 
and a maximum explosion probability between 50 and 75%, can yield a reliable 
estimation of risk profile. Additionally, enhancing participant motivation can 
be achieved by increasing the reward in line with the risk level and implementing 
payment based on their performance in the BART. Although there is no universal 
adaptation of the BART to neuroimaging, and depending on the objectives of a 
study, an adjustment of parameters optimizes its evaluation and clinical utility in 
assessing risk-taking.
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1. Introduction

Decision making is a fundamental process in our daily lives. 
While some of our decisions have trivial consequences, others are 
associated with risks and can alter the course of our lives. Decision 
making requires an assessment of the positive or negative 
consequences resulting from the choice made, especially when the 
decision involves risk (Leota et al., 2021). Thus, it depends on the 
perception of risks and possible benefits. Indeed, prior research has 
demonstrated that risk assessments are needed during decision 
making to evaluate the risk–benefit ratio (Blais and Weber, 2006). 
Inadequate analysis of choices and excessively risky approaches can 
yield to poor decision making and have deleterious consequences for 
health and safety. Risk-taking behavior has been evaluated with 
various instruments, such as self-report measures with the Domain-
Specific Risk-Taking scale (Blais and Weber, 2006), neuropsychological 
assessments with the evaluation of executive functions, or behavioral 
laboratory measures (Palmer and Harmell, 2016). The Balloon Analog 
Risk Task (BART), is a computerized behavioral paradigm frequently 
used to assess risk-taking behavior (Lejuez et al., 2002). In the BART, 
each pump can either inflate the balloon and increase the reward or 
lead to the balloon bursting and losing all rewards for that trial. The 
monetary reward can be collected in a permanent bank. Thus, a larger 
balloon is associated with a higher reward but also a higher probability 
of bursting. Consequently, the challenge in the BART is to balance the 
potential increase in reward by pumping the balloon with the risk of 
losing all rewards. In the initial BART, each balloon is inflated by 
repeatedly pressing the computer mouse or keyboard and the outcome 
probabilities are implicit. The objective of the BART is to obtain the 
highest possible reward. The average adjusted number of pumps 
represents risk-taking propensity and corresponds to the average 
number of pumps before a participant successfully banks their reward. 
A high adjusted score indicates high-risk behavior.

In the initial paradigm, each pump is worth $0.05 and there are a 
total of 90 balloons (30 for each color: orange, yellow, and blue). Each 
balloon color is associated with a specific explosion probability. The 
probability distribution ranges from 1 to 8 for orange balloons, 1 to 32 
for yellow balloons, and 1 to 128 for blue balloons. Thus, the 
probabilities of exploding on the first pump are 1/8, 1/32, and 1/128, 
respectively, and increase linearly with each subsequent pump until 
the last pump, at which point the probability of an explosion is 1.00. 
In blue balloons, the average adjusted number of pumps is significantly 
correlated with self-report measures of personality traits, including 
sensation seeking and impulsivity, as well as real-world risk behaviors, 
including the domains of substance use (i.e., smoking), gambling, 
unsafe sex, and delinquency (i.e., stealing) (Lejuez et al., 2002, 2003a,b, 
2004). Based on these results, the BART is often used to measure the 
risk-taking propensity of individuals, both in healthy and clinical 
samples, especially with its blue balloon characteristics. Since its initial 
development, the BART paradigm has varied according to the 
objectives of experiments and their environmental constraints, such 
as the number and type of trials, the number of pumps, the reward per 
pump, or the probability of explosion. However, the most common 
parameters in these various behavioral BART paradigms, as 
demonstrated by the blue balloons in the initial paradigm, included 
30 trials, 128 possible pumps, a probability of 1/128 at the first pump, 
and a $0.05 reward per pump (White et al., 2008; Rose et al., 2014; 
MacLean et al., 2018).

Despite the BART’s popularity, its ecological validity as a 
behavioral measure of risk taking remains controversial. While a 
majority of articles found links between risk-taking behavior in the 
BART and real-world risk behaviors (substance abuse: alcohol, 
tobacco, drug) and gambling (Lejuez et al., 2002, 2003b; Aklin et al., 
2005; Bornovalova et al., 2005; Hunt et al., 2005; Crowley et al., 2006; 
Lejuez et al., 2007; Skeel et al., 2008; Bishara et al., 2009; Bornovalova 
et al., 2009; Ledgerwood et al., 2009; MacPherson et al., 2010; Mishra 
et al., 2010; Swogger et al., 2010; Coffey et al., 2011; Krmpotich et al., 
2015; Hobkirk et al., 2019), some other experiments suggested low 
associations. Similarly, some experiments identified positive (Reddy 
et  al., 2014) and negative (Dominguez, 2011) associations with 
symptom severity, whereas no association was found in another 
experiment (Cheng et al., 2012). Previous research on risk-taking 
behavior has shown that sensation seeking and impulsivity are the 
main personality characteristics involved in the development of real-
world risk behaviors (Reynolds et al., 2006; Zuckerman, 2007). A 
meta-analysis focused on the relation between personality such as 
impulsivity and sensation seeking, and the risk-taking in the BART 
(Lauriola et al., 2014). Sensation seeking is considered one of the main 
determinants of real-world risk behaviors during adolescence. Despite 
the relation between sensation seeking and real-world risk behaviors, 
some studies found the expected positive relationship (Lejuez et al., 
2002, 2005, 2007; Pleskac, 2008; MacPherson et al., 2010) while some 
other studies did not find it (Lejuez et al., 2003b, 2007; Aklin et al., 
2005; Benjamin and Robbins, 2007; Killgore et  al., 2008). Several 
studies showed that the impulsivity trait is a reliable predictor of risk 
behaviors, such as drug abuse, risky driving, unprotected sex, and 
problem gambling (Chambers et al., 2003; Dahlen et al., 2005; de Wit, 
2009). Similar to sensation seeking, while a relationship between 
impulsivity and risk taking in the BART was found in some studies 
(Moeller et al., 2001; Hopko et al., 2006; Holmes et al., 2009; Tull et al., 
2009), other experiments did not find such an association (Hunt et al., 
2005; Reynolds et  al., 2006; Pleskac, 2008; Skeel et  al., 2008; 
Bornovalova et al., 2009; Romer et al., 2009; Cyders et al., 2010; Marini 
and Stickle, 2010). However, three recent studies suggest an indirect 
relationship between impulsivity and risk-taking behavior (Hüpen 
et  al., 2019; Teti Mayer et  al., 2021; Henn et  al., 2023). Thus, the 
literature is controversial about the link between BART and the 
symptom severity, impulsivity and sensation-seeking. The different 
results between the studies can be  explained by the lack of 
homogeneity between the studies in terms of: (i) the population 
studied (healthy or clinical sample; gender; age); (ii) the conditions 
under which the BART was administered (stress condition, sleep 
deprivation); (iii) the characteristics of the BART (design, number of 
balloons, probability of bursting and its consequences). Previous 
researches demonstrated that risk-taking behavior differs according 
to the pathology, gender and age of the sample studied (Cauffman 
et  al., 2010; Gowen et  al., 2019; Hall et  al., 2023). Similarly, the 
conditions under which BART was administered (depending on the 
aim of the study) and the parameters of the paradigm may have 
influenced participants’ risk-taking behavior (Gardner and Steinberg, 
2005; Kessler et al., 2017; Henn et al., 2023).

Although the BART has been used in many studies in its initial 
version paradigm, it has limitations that may hinder the usefulness 
of the collected data. Indeed, previous research discussed 
methodological problems and identified four main shortcomings: 
biased scores of the average adjusted number of pumps indicating 
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risk-taking propensity, confusion of risk with the expected value, 
a lack of distinction between uncertainty and risk during the early 
trials, and poor decomposability into adaptive and maladaptive 
risk behavior (Schonberg et al., 2011; De Groot and Thurik, 2018; 
De Groot, 2020; Canning et  al., 2021). These methodological 
shortcomings may lead to interpretational problems, such as false-
positive and false-negative results. However, these limitations in 
assessing risk-taking propensity can be  resolved by different 
solutions depending on the research objectives.

In addition to behavioral studies, the BART has been used in 
neuroimaging to assess the brain networks underlying risk taking. The 
BART adapted for neuroimaging is based on the same principle, with 
the presentation of a balloon that must be inflated to obtain a reward. 
Nevertheless, these paradigms have been adapted for neuroimaging 
in order to obtain a sufficient number of trials, to limit motor activity 
that affects signal quality, and to limit the duration of the run.

Nowadays, several techniques of neuroimaging exist to study 
brain activity in different ways. For example, Electroencephalography 
(EEG), an electrophysiological technique, permits the analysis of the 
brain’s electrical activity with high temporal resolution (Beniczky and 
Schomer, 2020). Magnetoencephalography (MEG), another 
neuroimaging technique with strong temporal resolution, records the 
magnetic fields resulting from the joint activity of several thousand 
neurons (Schnitzler and Hirschmann, 2012). By using functional 
magnetic resonance imaging (fMRI) (Amaro and Barker, 2006) or 
near-infrared spectroscopic imaging (fNIRS) (Wilcox and Biondi, 
2015), a mapping of the brain can be  obtained with high spatial 
resolution. These two techniques record cerebral activity associated 
with hemodynamic phenomena by detecting local changes in blood 
flow. The fMRI measures the local ratio between oxyhaemoglobin 
and deoxyhaemoglobin, resulting in the appearance of a magnetic 
signal, whereas fNIRS measures changes in the absorption of infrared 
light between oxyhaemoglobin and deoxyhaemoglobin (Cuccia et al., 
2009; Glover, 2011). As each neuroimaging technique measures brain 
activity differently, the use of BART during combined explorations 
would provide a better understanding of the neural mechanisms 
associated with decision-making under risk in terms of temporality 
and localization.

As the reliability of the BART risk-taking assessment remains 
controversial, a meta-analysis was conducted on the brain networks 
underlying risk-taking during the BART (Wang et al., 2022). The 
authors utilized a combination of activation likelihood estimation 
and connectivity analysis to identify the involvement of the reward, 
salience, and cognitive control networks in the BART. These 
findings confirm the usefulness of the BART in assessing risk-
taking in neuroimaging, providing insight into the central brain 
networks involved.

One challenge in identifying brain networks is that the original 
BART paradigms used in functional neuroimaging need to 
be adapted due to specific recording constraints associated with 
each neuroimaging technique. As a result, there is a large variability 
of paradigms in the literature, significantly limiting the ability to 
explore the common brain networks involved during the BART 
(Rao et  al., 2008; Euser et  al., 2011; Mussel et  al., 2015; Kiat 
et al., 2016).

To adapt the BART paradigm to neuroimaging techniques, the 
most appropriate parameters must be  identified to respect 
environmental constraints related to neuroimaging and limit biases in 

the assessment of risk-taking behavior related to the research question. 
Considering the increasing use of neuroimaging techniques, the main 
goal of the present review was to describe the different BART 
parameters, which aimed to, first, address adaptation constraints of 
functional neuroimaging techniques and, second, minimize the error 
in approximating risk-taking profiles.

In this comprehensive literature review, the quality and utility 
of each BART parameter were explored to identify the most 
appropriate BART paradigm for neuroimaging. This study 
proposed several solutions for adapting BART to neuroimaging 
and for addressing each of BART’s shortcomings previously 
described. The presentation of an optimal paradigm will guide 
researchers in adapting and/or improving the BART to their 
research objectives owing to time and instrument limitations, and 
to obtain reliable data on risk-taking propensity.

2. Methods

We conducted a systematic review of the literature on BART 
adaptations in neuroimaging settings. Systematic reviews aim to 
include, according to a rigorous and reproducible methodology, all 
articles meeting specific inclusion and exclusion criteria in order to 
establish a global overview of the literature on a given subject.

2.1. Search strategy

This comprehensive literature search was implemented, according 
to PRISMA guidelines, on July 5, 2023, on the PubMed, MEDLINE 
and PsycInfo database (Shamseer et  al., 2015). The studies were 
further considered according to the following inclusion criteria: (i) the 
study was conducted on a clinical and/or non-clinical sample, (ii) the 
BART was applied to a neuroimaging technique, and (iii) the study 
was published in a peer-reviewed journal in English. Articles were 
excluded on the basis of the following criteria: the study was a case 
report, commentary, short communication, review, meta-analysis, 
protocol, or abstract or did not perform the BART in a functional 
neuroimaging setting.

The search keywords included (“Balloon Analog Risk Task” OR 
“BART”) AND (“EEG” OR “fMRI” OR “fNIRS” OR “PET” OR 
“MEG”). The various neuroimaging techniques were identified by 
their classic abbreviated form, their full name, and intermediate 
forms. For example, the keywords used for “fMRI” included “fMRI OR 
“functional MRI” OR “functional Magnetic Resonance Imaging.” The 
search did not include restrictions concerning the date of publication. 
Two authors (CC and JTM) independently conducted this review and 
compared their samples for internal consistency. All discrepancies 
between reviewers were solved by a third and blind review carried out 
by one of the author (TT), based on the inclusion and exclusion criteria.

After duplicates were removed, the articles were first selected on 
the basis of their title, then the abstract to ensure that the studies 
included the BART in neuroimaging and not only in behavioral. Next, 
a full-text reading assessed the inclusion criteria. Finally, the references 
of each included article were screened following the same steps, which 
allowed for the identification of additional studies. A PRISMA 
diagram of the search process and article selection is detailed in 
Figure 1.
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2.2. Extraction of information

An extraction grid was used to analyze the selected articles. This 
extraction grid was constructed on the basis of studies that have used 
BART in behavioral analysis to identify all the parameters that may 
impact the participant’s behaviors (Lejuez et al., 2002, 2003a,b, 2005, 
2007). The data of interest were neuroimaging technique, participant 

data (age, gender, laterality, healthy or clinical sample), and all 
characteristics of the BART paradigm (design, delay between each 
pump and trial, number of trials, type of trial, number of possible 
pumps, duration of the paradigm, reward per pump, probability of 
explosion and its consequences, assessment of risk-taking propensity, 
and reward for participation). All BART parameters were studied in 
this review.

FIGURE 1

PRISMA diagram of the stages in the selection process (identification screening, inclusion) of the studies using BART during neuroimaging.
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2.3. Data synthesis

To present the results in a synthetic way, the extracted data were 
grouped according to two modalities.

First, we provided a general and brief description of the overall 
results of our research strategy (number of publications, imaging 
technique, and subjects). Second, we presented the characteristics of 
the BART, which vary according to the constraints of neuroimaging 
techniques or the objectives of the studies.

2.4. Ethics statement

Our systematic review used exclusively published data and did not 
involve any direct interactions with human subjects. It was therefore 
exempt from institutional review board approval.

3. Results

3.1. Selection of publications for inclusion

The search initially yielded a total of 301 studies, from which 119 
unique articles were extracted after removing duplicates. Three articles 
were excluded from screening based on their titles: two were protocol 
studies, and the third was a literature review. Four studies were also 
excluded from abstract screening. Two of them did not use the BART 
during neuroimaging recording, and one study was a short 
communication. The fourth article, using BART during MEG technique, 
was a poster abstract, the study has not been published. After screening 
titles and abstracts, 112 articles were selected for full-text review. Out of 
the 112 articles, 14 were excluded as they did not meet the eligibility 
criteria. Reasons for exclusion included: neuroimaging not being used 
during BART in nine studies, one study being a short communication, 
three studies using data from another study, and one study using a social 
BART paradigm that differed significantly from the initial BART. Based 
on an analysis of the list of references in the selected studies, 7 additional 
articles were added. Thus, this review encompassed 105 articles, 
involving a total of 6,879 subjects. The 105 articles referred to four 
distinct neuroimaging techniques: 56 fMRI, 41 EEG, 6 fNIRS, and 2 PET.

Among the fMRI articles, 32 were on healthy volunteers and 24 
involved a clinical sample suffering either from Schizophrenia (Potvin 
et al., 2018; Tikàsz et al., 2019; Purcell et al., 2023), Parkinson’s disease 
(Rao et al., 2010), depressive disorders (Gao et al., 2021; Ji X. et al., 
2021), bipolar disorders (Ji S. et al., 2021), traumatic brain (Chiu et al., 
2012), attention-deficit/hyperactivity (Dir et al., 2019; Minchul and 
Jiwon, 2021), disruptive behavior disorders with histories of suicidal 
ideation (Dir et al., 2020), type 1 diabetes (Jorge et al., 2022), internet 
gaming disorder (Qi et  al., 2015, 2016) or polysubstance users or 
dependencies such as alcohol, drug, or tobacco abuse (Bogg et al., 
2012; Claus and Hutchison, 2012; Galván et al., 2013; Kohno et al., 
2014; Hulvershorn et al., 2015; Forster et al., 2016, 2017; Claus et al., 
2018; Burnette et al., 2020; Raymond et al., 2020).

Among the 6 articles in fNIRS recording, 5 studies were on 
healthy volunteers and one study on a sample suffering from opioid 
abuse (Huhn et al., 2019).

Concerning EEG studies, 32 were on sample healthy volunteers 
and 9 involved a sample suffering from alcohol abuse (Fein and 

Chang, 2008; Fuentemilla et al., 2013; Lannoy et al., 2017; Sehrig et al., 
2019, 2020), anxiety (Nash et al., 2021), substance abuse (Euser et al., 
2013; Zhong et  al., 2020), and major depressive disorder (Fan 
et al., 2021).

Among the two PET studies, one combined fMRI and PET in 
healthy volunteers (Kohno et  al., 2014), and one study included 
alcohol-dependent sample (Zorick et al., 2022).

3.2. Behavioral paradigms

From the initial paradigm, several parameters have been modified.

3.2.1. General design
All paradigms in neuroimaging use a common base, with the 

presentation of a realistic image of a balloon or a circle. Among the 
articles, four paradigm types were identified.

Like the initial paradigm design (Lejuez et al., 2002), the most 
common paradigm presented an uninflated balloon, which grew in 
size with subsequent pumps, and accumulated earnings. Under this 
paradigm, participants had to press a key or their mouse to manually 
pump the balloon without time restrictions for decision making. This 
first paradigm was proposed in 93 articles (54 fMRI, 31 EEG, 6 fNIRS, 
and 2 PET). In this paradigm, several differences were found in the 
parameters used, such as the number of trials and possible pumps, 
type of trial, the duration of the BART, the probability of explosion, 
and reward conditions.

The second paradigm, used in 9 studies (7 EEG, 2 fMRI), 
presented an automatic response version (Euser et al., 2011, 2013; Yau 
et al., 2015; Hoffmann et al., 2018; Bernoster et al., 2019; Freeman 
et al., 2020; Morie et al., 2021; Yakobi and Danckert, 2021; Poudel 
et  al., 2022). In this specific design, the number of pumps was 
determined at the beginning of each trial and then the valence of 
feedback was presented: either the size of the balloon was bigger and 
the money was earned or the balloon had popped and the money 
was lost.

The third paradigm proposed by one EEG study included inflation 
(gain) and compression (loss) condition. Here, either a little balloon 
had to be inflated with successive pumps or a large initial balloon 
could be compressed after each pump (Kiat et al., 2016). In the loss 
condition, the balloon started out initially large and had a maximum 
monetary reward. In this condition, the goal was for the participants 
to compress the balloon as much as possible using successive pumps 
to lose the reward.

In the last paradigm, found in only one EEG study, the beginning 
of the trial was associated with a monetary value and the participants 
could cash out before they had inflated the balloon (Mussel 
et al., 2015).

The variability of the BART parameters in neuroimaging studies 
is presented in Table 1. Details of each paradigm can be found in 
Supplementary Table S1.

3.2.2. Training
In 50 studies (28 fMRI, 21 EEG, 1 fNIRS), participants received 

training before starting BART to familiarize them with the paradigm. 
The duration of the training session varied between studies, ranging 
from a few balloons (Wang et al., 2021) to a time session of 8 min 
(Fukunaga et al., 2012; Hoffmann et al., 2018).
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3.2.3. Delay
Owing to neuroimaging recording constraints, all paradigms 

included a variable randomized delay, either between each decision 
(inflation, cash out) and feedback (explosion, successful inflation) or 

between each trial. The delay permits to separate activation of the 
brain networks during decision-making and feedback processes.

In the fMRI studies, the delay between the decision and the 
feedback ranged from 0.2 s (Claus and Hutchison, 2012) to 6 s 

TABLE 1 Variability of the BART parameters in neuroimaging studies.

BART’s parameters Variable parameters The initial BART (Lejuez 
et al., 2002)

Design

(i) Paradigm using an uninflated balloon, which grew in size with subsequent pumps, and 

accumulated earnings, (ii) automatic response paradigm (Euser et al., 2011; Yakobi and Danckert, 

2021; Poudel et al., 2022), (iii) paradigm including inflations and compressions conditions (Kiat 

et al., 2016), (iv) paradigm where the beginning of the trial was associated with a monetary value 

(Mussel et al., 2015).

Paradigm using an uninflated 

balloon, which grew in size with 

subsequent pumps, and accumulated 

earnings.

Delay
A delay between (i) each pump, (ii) each trial (mostly EEG studies) or (iii) delay the beginning and 

end of each block of trials (Sehrig et al., 2019; Tikàsz et al., 2019; Raymond et al., 2020).
No delay

Number of trials (i) Predetermined (Petropoulos Petalas et al., 2020), (ii) undetermined (Minchul and Jiwon, 2021). 90 (30 trials of each color)

Number of inflations

(i) Number of pumps possible was reduced (Xu et al., 2016; Li et al., 2020), (ii) large number of 

pumps possible (128) (automatic response paradigm) (Euser et al., 2011; Yakobi and Danckert, 2021; 

Poudel et al., 2022)

128 inflations

Duration of the BART
(i) Indeterminate depending on the speed of response of the participants (Lannoy et al., 2017) or (ii) 

determined with timed session (Kohno et al., 2017).

Indeterminate, depending on the 

speed of response of the participants

Type of balloons

(i) Several colors of balloons associated with specific probability (Kohno et al., 2015), (ii) control 

condition (fMRI and fNIRS studies) (Congdon et al., 2013), (iii) gains or losses conditions (Xu, 

2021)

3 colors of balloons associated with 

specific explosion probability

Reward by inflation
(i) Same, (ii) double for each inflation (Weber et al., 2014), or (iii) increases according to the risk 

level (Rao et al., 2010), or several rewards conditions (one high and one low) (Xu et al., 2019).

Same for all balloon colors and 

inflations.

Duration of the training 

session
Variable across studies. No training

Probability of explosion

(i) Uniform probability distribution [p = 1/(maximum - pumps+1)] (Rao et al., 2014, 2018), (ii) the 

probability of explosion was set to monotonically increase from 0 to 89.6% (Potvin et al., 2018), (3) 

probabilities of win and loss were equal throughout a trial (Euser et al., 2011; Gu et al., 2018), (iii) 

probability of explosion increased from 15 to 100% by intervals of 7 percentage points per level 

(Mussel et al., 2015).

Uniform probability distribution 

[p = 1/(maximum - pumps+1)]

Specific parameters to the 

probability of explosion

(i) No burst during the first or the first two inflations (Kóbor et al., 2015; Kardos et al., 2016; Sehrig 

et al., 2019, 2020), or (ii) a minimum number of pumps before cash out (Claus and Hutchison, 2012).
Burst during the first pump

Consequences of explosion
(i) The value is lost on that trial alone, (ii) the value is subtracted from the persistent bank (Burnette 

et al., 2020; Quan et al., 2022) or (iii) payment of participation (Xu et al., 2019, 2020a; Xu, 2021).
The value is lost on that trial alone

Information’s about 

probability of explosion

(i) Participants were not informed of explosion probabilities (Peng et al., 2020), (ii) participants 

knew that balloon colors might differing explosion distributions (Schonberg et al., 2012), (iii) the 

number of pumps where the balloon burst, was provided to the participants after a balloon popping 

(Yakobi and Danckert, 2021; Poudel et al., 2022), (iv) the maximum number of inflations was explicit 

(Poudel et al., 2022), or (v) the probability of explosion was explicit (Gu et al., 2018).

Participants were not informed of 

explosion probabilities

Assessment of risk behavior

(i) Average adjusted number of pumps and average adjusted number of pumps in trials following a 

negative and positive feedback (Ba et al., 2016), (ii) number or proportion of cash out and losses 

trials (Raymond et al., 2020; Gao et al., 2021), (iii) average number of pumps in loses trials (Huhn 

et al., 2019), (iv) average number of pumps in all trials (Euser et al., 2011), (v) minimum/maximum 

pump ratio (Dir et al., 2019), (vi) total earnings, earnings per trial or average total earnings before 

the balloon burst (vii) risky ratio (Lannoy et al., 2017), (viii) ratio of each participant’s total earnings 

to the average number of pumps per balloon (Poudel et al., 2022), maximum number of pumps 

(Euser et al., 2013), (x) average reaction time of each pump (Yu et al., 2016).

Average adjusted number of pumps

Reward for participation

(i) Standard compensation not depending to BART’s performance, and the amount earned (Takács 

et al., 2015), (ii) additional bonus in accordance BART’s performance (Yakobi and Danckert, 2021), 

(iii) Reward according BART’s performances (Gu et al., 2018), No reward (Zhong et al., 2020; Nash 

et al., 2021)

Reward according BART’s 

performances
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(Fukunaga et al., 2012), but random intervals in the range of 1–2.5 s 
were most frequently used. In this context, 26 studies used a small cue 
that changed from red to green with a jittered time interval to control 
the timing of the inflation period (Rao et al., 2010; Minchul and Jiwon, 
2021). In 19 studies, a fixation period ranging from 10 to 60 s was also 
included at the beginning and end of each run to establish a baseline 
activity (Tikàsz et al., 2019).

Concerning the fNIRS articles, the delay of 15 s separated each 
trial into five studies (Cazzell et al., 2012; Lin et al., 2014; Li et al., 2017; 
Huhn et al., 2019; Huang et al., 2022). Only one study included a 
latency of 1 and 2.5 s between each pump to separate activations 
(Huhn et al., 2019; Huang et al., 2022; Zhao et al., 2023).

In all EEG studies, a variable delay between 0.6 and 1.5 s was 
added between each pump and a delay of 10 milliseconds to 3 s 
between each trial. In three studies, a fixation period was presented at 
the beginning of the balloon (Hassall et al., 2013; Chen and Wallraven, 
2017; Petropoulos Petalas et al., 2020). In 4 studies, the timing of the 
inflation of the balloon was controlled by a cue (Hassall et al., 2013; 
Sehrig et al., 2019, 2020; Petropoulos Petalas et al., 2020).

In the two PET studies, a variable delay between 1 and 3 s was 
added between each pump and a delay of one to 14 s between each trial.

3.2.4. Number of inflations and trials
The maximum number of pumps was reduced significantly in all 

neuroimaging studies, except in 13 articles that retained a high 
number of pumps (range: 60–128 pumps). The reduction of pumps 
per trial allowed researchers to increase the number of trials (range: 
15–500 trials per study) while preventing the task from being too 
lengthy (Chen and Wallraven, 2017; Gu et al., 2018).

The fMRI studies significantly reduced the maximal number of 
pumps per trial from 8 to 30 pumps, except in five studies where it 
remained high (i.e., 64–128 pumps) (Chiu et al., 2012; Lighthall et al., 
2012; Hoffmann et al., 2018; Poudel et al., 2022; Hu et al., 2023). In 24 
studies, two or three time sessions of 6–16 min duration were offered, and 
so the number of trials depended on the speed of the participants’ 
response. The number of trials was predetermined in 13 studies (Chiu 
et al., 2012; Pletzer et al., 2016; McCormick and Telzer, 2017a,b; Hoffmann 
et al., 2018; Rao et al., 2018; Gentili et al., 2020; Ji S. et al., 2021; Jorge et al., 
2022; Poudel et al., 2022; Chen et al., 2023; Hu et al., 2023; Leota et al., 
2023). One study used a small predetermined time, composed of four 
cycles of 30 s to pump an unlimited number of balloons (Lee et al., 2009).

In all fNIRS studies, 12 pumps were possible per trial and the number 
of trials was fixed at 15 or 20 trials (Cazzell et al., 2012; Huang et al., 2022).

All EEG studies significantly reduced the maximal number of 
pumps (range: 3–50 pumps), except for 9 studies that used the 
automatic response paradigm with a high number of pumps (i.e., 128 
pumps). Nevertheless, 12 pumps were mainly used in the BART 
paradigm (Zhang C. et al., 2022; Zhang K. et al., 2022). However, 
unlike most fMRI studies, the number of trials was predetermined at 
the beginning in all EEG studies and the BART’s duration varied 
across participants according to the speed of response.

The two PET studies proposed time sessions of 10 min.

3.2.5. Duration of the BART
Thus, the duration of the BART was not limited in EEG and 

fNIRS, unlike the most fMRI and all PET studies that offered timed 
sessions. In this context, participants had a limited time to complete a 
maximum of trials.

3.2.6. Types of balloons

3.2.6.1. Control condition
A control condition was included in 30 studies (24 fMRI, 5 fNIRS, 

1 EEG) studies, whereas most EEG paradigms did not include it. These 
studies offered an “active” and “passive” mode. Unlike the control 
balloon in the passive mode, colored balloons in the active mode were 
associated with rewards and could explode. In the active mode, 
participants could choose between pump or cash out as they were 
being forced to inflate the balloon, until the choice disappears from the 
screen in the passive mode. Among these studies, 8 separated control 
balloons and balloons with potential rewards into distinct runs (Rao 
et al., 2008, 2010, 2014, 2018; Lee et al., 2009; Lighthall et al., 2012; 
Congdon et al., 2013; Pan et al., 2019), while 14 other fMRI studies and 
one PET study randomized the two types of balloons throughout the 
paradigm (Claus and Hutchison, 2012; Schonberg et al., 2012; Galván 
et al., 2013; Kohno et al., 2014, 2015, 2016, 2017; Yu et al., 2016, 2017; 
Lei et al., 2017; Claus et al., 2018; Burnette et al., 2020; Peng et al., 2020).

3.2.6.2. Balloon colors
Several balloon colors associated with various explosion 

probabilities in the active mode was included in 14 fMRI and 1 PET 
studies, as in some behavioral BART paradigms. The reward remained 
the same, but the maximum number of pumps varied according to the 
color of the balloon. In our review, we found a paradigm that included 
up to four different types of balloons (Schonberg et al., 2012). Only 
one study included two colors of balloon but they did not differ in any 
other attributes (i.e., reward level, size, and the distribution of 
explosion probability) (Hu et al., 2023).

3.2.7. Reward per pump
The type and value reward for each pump were not consistent 

across studies.

3.2.7.1. The type of reward
In 71 paradigms, the balloons were associated with a monetary 

reward, while in 24 paradigms, the accumulation of points constituted 
the reward. Moreover, 9 studies did not specify the type of reward nor 
the amount of reward (Lee et al., 2009; Claus and Hutchison, 2012; 
Fukunaga et al., 2012; Wei et al., 2016; Claus et al., 2018; Neal and 
Gable, 2019; Freeman et al., 2020; Korucuoglu et al., 2020a; Ji S. et al., 
2021). In 2 studies, the uninflated balloon was associated with a small 
initial value (Kessler et al., 2017; Petropoulos Petalas et al., 2020). In 
one EEG study, the beginning of the trial was associated with a high 
monetary value (1000€), and participants determined if they wanted 
to inflate the balloon or cash out before they had inflated the balloon 
(Mussel et al., 2015).

In addition, 2 paradigms included real and hypothetical monetary 
rewards (Xu et al., 2016, 2018), whereas, 4 EEG studies included a gain 
and loss condition (Kiat et al., 2016; Xu et al., 2020b, 2021; Xu, 2021; 
Zhang C. et  al., 2022). In the loss condition, the amount lost 
represented positive feedback or each successful compression 
increased the participant’s reward.

3.2.7.2. The value of reward
In 37 studies (24 fMRI, 11 EEG, 2 PET), the same reward for each 

inflation was proposed across all trials, while 18 paradigms (10 fMRI, 
8 EEG) increased the reward amount proportionally to the risk (i.e., the 
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number of pumps). In 5 studies (3 EEG, 1 fMRI, 1 fNIRS), the reward 
amount doubled at each inflation (Weber et al., 2014; Gu et al., 2018; 
Wang et al., 2019; Teti Mayer et al., 2021; Zhao et al., 2023). In 6 studies, 
the reward increased from 0 to 5.15 dollars, from the smallest balloon 
to the largest balloon (Rao et al., 2008, 2010; Li et al., 2020; Korucuoglu 
et al., 2020b; Ji X. et al., 2021; Hu et al., 2023). In 2 studies, the difference 
between each pump was outcome variance, but not expected value (i.e., 
the sum of each possible value multiplies its probability) (Zhang and 
Gu, 2018; Morie et al., 2021). In addition, the reward increased 1.6 
times the amount of the previous pump in 2 studies (Zhang C. et al., 
2022; Zhang K. et al., 2022). However, one EEG study offered two 
reward conditions, a high and a low reward (Xu et al., 2019).

3.2.8. Explosion probability and consequences
The probability of explosion, its consequences and information 

about it varied according to the study’s objectives.

3.2.8.1. Information about the explosion probabilities
In accordance with the initial BART paradigm (Lejuez et al., 2002), 

participants were not informed of the explosion probability. As detailed 
above, participants were mainly aware of the number of trials, 
increasing amounts, and increasing probabilities, but not of the precise 
probabilities (Kessler et  al., 2017). In all paradigms that included 
several colors of balloons in active mode, participants knew that 
balloon colors might have differing explosion distributions, but the 
exact risk and reward contingencies were unknown (Schonberg et al., 
2012). Participants were likewise informed about the condition (low or 
high reward vs. low or high explosion risk condition) in one EEG study 
(Xu et al., 2019). Three automatic response paradigms informed the 
participants about the number of pumps when a balloon burst after the 
balloon popped (Freeman et al., 2020; Yakobi and Danckert, 2021; 
Poudel et al., 2022). However, in 3 studies, the maximum number of 
pumps was known by participants (Euser et  al., 2011; Yakobi and 
Danckert, 2021; Poudel et  al., 2022). Then, four studies informed 
participants of the payoff of each pump and the winning probability 
(Euser et al., 2013; Gu et al., 2018; Zhang and Gu, 2018; Morie et al., 
2021). In one study, participants were told that the most advantageous 
number of pumps was 64 across all balloons, but that individual 
explosion points were different between the balloons (Freeman et al., 
2020). In one study, the participant was allowed to gain on 10–12 
consecutive trials at the outset of each block (Crowley et al., 2009).

3.2.8.2. The explosion probability
In all studies but six (Euser et al., 2013; Yau et al., 2015; Gu et al., 

2018; Zhang and Gu, 2018; Korucuoglu et al., 2020a; Morie et al., 2021), 
the probability of explosion increased with the number of pumps. In 
these six paradigms (5 EEG, 1 fMRI), the explosion probability remained 
the same for all pumps. Thus, participants could predict the risk of each 
pump because the probabilities of win and loss were equal throughout a 
trial (Euser et al., 2011; Gu et al., 2018; Zhang and Gu, 2018).

In 57 studies (30 EEG, 26 fMRI, 1 fNIRS), the explosion 
probability increased with the number of pumps, with a uniform 
probability defined as p = 1/(max – n + 1), with max denoting the 
maximum number of pumps and n denoting the number of prior 
attempts. In 21 studies (17 fMRI, 4 fNIRS), the probability of explosion 
over successive pumps usually increased parametrically, from 0 to 89.6 
at the last pump (Wei et al., 2016; Potvin et al., 2018; Raymond et al., 
2020; Nash et al., 2021).

In two studies, the probability changed during the task. In the first 
block, balloon explosion probabilities followed a normal distribution 
[i.e., p = 1/(max – n + 1)], than in the second block, probabilities of win 
and loss were equal as long as the number of pumps was not extremely 
low (below 10) or extremely high (above 118) (Yau et al., 2015; Morie 
et al., 2021). In one study, the probability of an explosion increased by 
5% with each pump (Kessler et al., 2017). In the last type of paradigm, 
which included the possibility of cashing out before inflating the 
balloon, the risk of bursting increased from 15 to 100% by intervals of 
7 percentage points per level (15%, 22%; 29%…) (Mussel et al., 2015).

Moreover, in 10 studies (5 fMRI, 10 EEG), no burst could occur 
during the first pump (Dir et  al., 2019, 2020; Gentili et  al., 2020; 
Petropoulos Petalas et al., 2020) or the first two pumps (Chiu et al., 
2012; Kóbor et al., 2015; Kardos et al., 2016; McCormick and Telzer, 
2017b; Sehrig et al., 2019, 2020). In addition, three fMRI paradigm 
included a minimum number of pumps for each balloon (2–5 pumps) 
in the active mode before cash out to ensure that the participant tried 
to earn this minimum (Claus and Hutchison, 2012; McCormick and 
Telzer, 2017a; Claus et al., 2018).

3.2.8.3. The consequence of balloon explosion
In accordance with the initial design, the consequences of balloon 

explosion included a loss of reward associated with exploded balloons in 
all studies. The same loss was also subtracted from cumulative earnings 
in the permanent bank in 17 studies (9 fMRI, 7 EEG, 1 fNIRS) (Rao 
et al., 2008, 2010; Weber et al., 2014; Wei et al., 2016; Xu et al., 2016, 2018, 
2019, 2020a; Tikàsz et al., 2019; Burnette et al., 2020; Li et al., 2020; Fan 
et al., 2021; Xu, 2021; Quan et al., 2022; Zhang et al., 2022b; Zhao et al., 
2023) and from the cumulative earnings given for research participation 
in 3 EEG experiments (Xu et al., 2019, 2020a; Xu, 2021) as a penalty.

3.2.9. Assessment of risk-taking behavior
The assessment of risk-taking behavior was to retain the adjusted 

number of pumps in 77 studies (42 fMRI, 29 EEG, 4 fNIRS, 2 PET) 
(Lee et al., 2009; Lei et al., 2017; Gentili et al., 2020), but other scores, 
such as the numbers of cash out and losses trials, number of pumps in 
loss trials, and total earnings, were also calculated (Lannoy et  al., 
2017). In 20 studies (10 fMRI, 10 EEG), the average number of pumps 
across all trials represented the assessment of risk taking (Fukunaga 
et al., 2012; Takács et al., 2015; Yakobi and Danckert, 2021).

Other scores such as the number of burst balloons, the number of 
balloons resulting in a gain or the number of pumps on burst balloons 
were also indices of risk propensity (Lannoy et al., 2017). In addition, 
the proportion of cash out or loss trials (i.e., number of cash out or 
losses trials divided by the number of total trials) was also calculated 
in 11 studies (Qi et al., 2015, 2016; Yu et al., 2016; Claus et al., 2018, 
p. 20; Gu et al., 2018; Tikàsz et al., 2019; Gao et al., 2021; Ji S. et al., 
2021; Yakobi and Danckert, 2021; Ren et al., 2023; Zhao et al., 2023). 
However, the pump ratio was used to assess the risk-taking propensity 
by dividing the number of gambling decisions (pump) by the total 
number of decisions (pump + cash out) for each participant in only 
one study (Zhang and Gu, 2018). The maximum number of pumps 
reflected the risk-taking behavior in one study (Euser et al., 2013). In 
only one study, the coefficient of variation (standard deviation of 
adjusted number of pumps divided by the mean of the adjusted 
number of pumps) was also calculated (Congdon et al., 2013). In 9 
studies, the reaction time of each pump was used as an indicator of 
risk taking (Qi et al., 2015, 2016; Yau et al., 2015; Yu et al., 2016; 
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Forster et al., 2017; Gu et al., 2018; Petropoulos Petalas et al., 2020; 
Gao et al., 2021; Morie et al., 2021).

In 4 EEG studies, the mean number of adjusted pumps in trials 
following a positive and negative feedback was likewise calculated to 
show the impact of the valence of the outcomes (Ba et al., 2016; Xu et al., 
2020b; Fan et al., 2021; Wang et al., 2021). In one study, the percentage 
to which the participants decided to inflate the balloon to a certain level 
(1–4) after they had made the decision to inflate the balloon to that 
particular level during preceding trials was calculated (e.g., participant 
decided to inflate the balloon to level 3, and the balloon exploded. How 
often is it the case that the subject inflated the balloon to level 4 again?) 
(Kessler et al., 2017). In 3 fMRI studies, the numbers of trials between 
the active and passive modes were compared (Rao et al., 2008; Claus 
et al., 2018; Li et al., 2020). In addition, the ratio minimum/minimum 
number of pumps was calculated in two studies (Hulvershorn et al., 
2015; Dir et al., 2019). In one study in EEG, total pumps on cash out 
trials on the first five trials subtracted from total pumps on cash out 
trials on the last five trials was calculated (Nash et al., 2021). In one 
study, the risk ratio, calculated by dividing the number of risky decisions 
(i.e., pump on balloon explosion) by the total of number of divisions 
indicated the risk-taking at the BART (Gu et al., 2018). In two studies, 
the reward collection rate (number of win trials divided by the number 
of total trials) was calculated (Qi et al., 2015, 2016).

Most studies also retained the total earnings. This provided 
information on BART’s performance. In addition, the ratio of each 
participant’s total earnings to the average number of pumps per 
balloon was calculated in only one study (Poudel et al., 2022).

3.2.10. Rewards for participation
To facilitate recruitment and participation, a monetary reward 

was often offered to all participants at the end of the BART, except in 
two EEG studies that did not have financial compensation for study 
participation (Zhong et al., 2020; Nash et al., 2021). The reward was 
variable in type of money (gift card or cash) and amplitude.

A fixed amount of reward that is, not according to BART’s 
performance and the amount earned was offered for participation in 
61 studies (29 EEG, 28 fMRI, 3fNIRS, 1 PET). Among these 61 
articles, 27 (19 EEG, 8 fMRI) studies proposed additional bonus 
money according to the final score of the participant on top of the 
predefined compensation for taking part in the study (Hassall et al., 
2013; Nash et al., 2021). Only 27 studies (17 fMRI, 7 EEG, 2 fNIRS) 
offered a proportional reward at the performance (Lin et al., 2014; Dir 
et al., 2019; Pei et al., 2020; Xu, 2021).

4. Discussion

Since its initial version, the BART has become one of the most 
popular tools to assess the propensity for risk-taking of individuals, 
and several studies, using different versions, have adapted the BART 
to neuroimaging. The present review synthesized the methodological 
parameters and main results in neuroimaging of studies that used an 
adapted version of the BART paradigm.

The BART was adapted in four neuroimaging techniques: EEG, 
fMRI, fNIRS, and PET. There was no consensus about the 
uniformization of research methods addressing the neural processes 
of risk taking. Among these adaptations, four designs of the BART 
paradigms, including their variable parameters, were found.

Regarding the parameters used, some were specific to the 
neuroimaging techniques and others to the assessment of risk-
taking behavior.

4.1. Specific parameters to neuroimaging 
techniques

The main constraint of the behavioral BART is that it generates 
significant movements that can alter the signal in cerebral recordings, 
especially in EEG. To avoid this issue, the most common parameter is 
to include a delay between decision and feedback periods. In most 
EEG studies that used the first design, the delay was included between 
each pump, whereas in fMRI and fNIRS studies, a delay was 
programmed between each trial and/or each pump according to the 
data analysis perspectives. Although inserting a delay presents the 
advantage of reducing motor interference, decisions are less emotional 
and more cognitive, which may (Young and McCoy, 2019) or may not 
impact (Crosetto and Filippin, 2013) risk taking. Indeed, motor 
impulsivity reduces with the delay, thus permitting the study of the 
inhibition response, especially the overriding of a planned or already 
initiated action (Bari and Robbins, 2013). As stated in the introduction 
section, risk taking in the BART was correlated with self-reports of 
trait-like impulsivity, including the Barratt Impulsiveness Scale (Patton 
et al., 1995) and the Sensation-Seeking Scale (Zuckerman and Link, 
1968). A solution for this issue is to include only a delay between the 
feedback and the next trial (Rao et al., 2008) or include only decisions 
that do not involve risk taking, such as the control balloon (Teti Mayer 
et al., 2021). Another solution is to limit the time of the paradigm, 
with the number of trials varied according to the response speed of 
participants, to maintain emotional commitment and motivation. 
Setting a time limit, like in most fMRI studies, has the advantage of 
increasing the motivation and risk-taking of participants as they try 
to inflate as many balloons as possible to obtain the highest score (Ji 
X. et al., 2021). However, to solve issues associated with delays and 
respect the time constraints of imaging protocols, most studies 
significantly reduced the inflation capacity of the balloons. Decreasing 
the balloons’ capacity to between 10 and 16 pumps allowed researchers 
to have enough trials with a short administration, although more 
possible inflations would allow for more accurate risk profiles (Yu 
et al., 2016; Kessler et al., 2017; Di Plinio et al., 2022). Additionally, a 
control condition was sometimes necessary, mainly for fMRI and 
fNIRS studies, to differentiate the brain activity of risk taking from the 
baseline activity (Rao et  al., 2008; Schonberg et  al., 2012). Such 
controls facilitated the analysis of contrasts and the objectification of 
activations only related to decision and feedback without influencing 
visual and motor components. To summarize, including a delay only 
between each trial, setting a time limit, increasing the number of trials 
to between 80 and 100, and reducing the number of possible inflations 
between 12 and 20 allowed studies to respect the recording constraints 
of the neuroimaging technique.

4.2. Specific parameters for risk-taking 
propensity

As we said in the introduction section, despite the popularity and 
quality of BART in assessing risk taking, several methodological 
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shortcomings on the assessment of risk-taking behavior depending on 
the BART parameters were identified by several papers, reviews, and 
meta-analysis (Schonberg et al., 2011; De Groot and Thurik, 2018; De 
Groot, 2020; Canning et al., 2021; Coon and Lee, 2022). Several solutions 
have been proposed for each shortcoming to reduce interpretational 
problems, including false-positive and false-negative results. Depending 
on the objectives of a given study, these methodological problems can 
be limited by the choice of appropriate experimental parameters.

4.2.1. Indices for assessing risk-taking propensity
Risk tendency was calculated by the average number of adjusted 

pumps in the majority of paradigms, except for the automatic response 
version. However, a systematic review focused on the relationship 
between risk-taking propensity in the BART and alcohol consumption 
(Canning et al., 2021), suggested that the adjusted mean scores of the 
pumps may not be specific enough to capture the amount of information 
required to understand its relationship with alcohol outcomes. In the 
initial paradigm, the adjusted score represented the risk-taking 
propensity, which is the mean number of pumps for banked trials (i.e., 
the adjusted number of pumps) to compensate for the unadjusted biased 
score, including trials that exploded (Lejuez et al., 2002). When trials end 
with the explosion of the balloon, risk propensity appears biased because 
the number of pumps does not reflect the risk that participants are 
willing to take. In this context, the unadjusted score is biased (Pleskac, 
2008; Dijkstra et al., 2022) and the inter-subject variability is reduced 
(Lejuez et al., 2002). Similar to the unadjusted score, the adjusted score 
seems to be biased because the end of trials depends on the participants’ 
behavior, given that the risk increases with the number of pumps 
(Lauriola et al., 2014). using an outcome index that is more informative 
than the standard average pump score. One solution is to analyze the 
risk-taking behavior in different ways, with a model of which decompose 
behavior into risk taking, response consistency, and learning (Wallsten 
et al., 2005); Bayesian models based on a model of behavior in terms of 
risk propensity and behavioral consistency (Coon and Lee, 2022); or 
computational models (Weller et al., 2019; Young and McCoy, 2019; 
Dijkstra et al., 2022). All these models provide a reliable measure of risk-
taking behavior. In addition, using an outcome index that is more 
informative than the standard average pump score like the risk score 
used in other risk-taking paradigms, such as the Iowa Gambling Task 
(IGT; Bechara et al., 1994), allows to measure the risk-taking behavior of 
participants in all trials. Another solution is to modify the standard 
design and use the automatic response version of the BART (Pleskac, 
2008). As a reminder, in this design, participants indicate the number of 
pumps that they intend to do at the beginning of each trial. Under this 
paradigm, the assessment of risk propensity is not biased because it takes 
into account the number of pumps in all trials. A minimum number of 
pumps for each balloon before cash out or balloon explosion can also 
be included to limit errors in risk-taking assessment, as early pumps are 
less associated with risk-taking behavior.

4.2.2. The probability of explosion
In addition, probability explosion was modulated by linear or 

exponential functions across successive pumps and increased from 0 to 
89.6% or 100% in all studies, except in two studies that retained the same 
probability of explosion for all pumps. As the value of the balloon and 
the probability of explosion increase with successive pumps, decision 
making in the BART is influenced by both risk and value, complicating 
the measure of participants’ risk propensity (De Groot, 2020). An equal 

probability between win and loss allows the study to limit the impact of 
the value on decision making (Gu et al., 2018). In addition, using a 
model explosion probability with exponential monotonic increases and 
a lower maximum threshold of explosion probabilities between 50 and 
75% reduces stochasticity related to the BART paradigm and provides a 
reliable estimation of risk profiles (Di Plinio et al., 2022).

4.2.3. The type of decision: risky and ambiguous
One of the limitations of the BART paradigm is the lack of clarity 

about the type of decision, that is, whether it is made under uncertainty 
or risk (De Groot and Thurik, 2018; De Groot, 2020; Di Plinio et al., 
2022). Communication about the probability of explosion to 
participants can also affect risk-taking behavior and the type of 
decision. Indeed, in ambiguous conditions, the probability of reward is 
initially unknown, whereas it is communicated to participants in risk 
conditions (Wilson and Vassileva, 2018). Since explosion probabilities 
are unknown to participants in the initial paradigm, the behavior 
should be more uncertainty-driven than associated with risk during the 
early stages of the BART until the time participants learn more about 
the probabilities (de Groot and Van Strien, 2019). However, it is unclear 
when the type of decision changes, and the timing where decisions shift 
from uncertainty to risk varies across individuals and depends on the 
characteristics of the paradigm (Brand et al., 2006, 2007). In addition, 
including several balloon colors associated with specific probabilities 
of explosion reinforces the measurement of risk behavior but increases 
participants’ learning, so the time transition from decision under 
ambiguity and risk can improve (Claus and Hutchison, 2012; Kohno 
et al., 2014; Peng et al., 2020). A first solution is to add a sufficiently 
long training time to limit uncertainty-driven behavior, so the behavior 
in the early stages of the BART might be directly related to risk taking. 
Furthermore, the control balloon included in fMRI and fNIRS studies 
allows participants to estimate the maximum size and probability of 
winning more quickly, which reduces participants’ learning. To assess 
only the decision making under risk, another solution is to inform 
participants about the range of the number of inflations possible but 
not the optimal strategy (Bernoster et al., 2019; de Groot and Van 
Strien, 2019) or to provide explicit feedback about the number of 
pumps when the balloon explodes, which improves the timing of 
participants’ learning across trials (Yakobi and Danckert, 2021).

4.2.4. Motivational and attentional components
The motivational and attentional components are important 

elements of BART, particularly in the performance of participants to 
obtain the highest score. During the BART, participants may lose 
motivation to achieve the highest score due to a low reward per pump. 
Prior research has demonstrated the importance of the motivational 
system in risky decision-making processes (Franken and Muris, 2006; 
Luna et al., 2013; Urosevic et al., 2014; Kim-Spoon et al., 2016). In that 
respect, the nature and magnitude of BART rewards, such as 
compensations for participation in research, have a major influence 
on the participants’ BART performance (Bornovalova et al., 2005; Xu 
et al., 2016, 2018, 2019). Risk taking decreases more steeply in real-
reward conditions after negative feedback compared to hypothetical 
rewards. In addition, the punitive aspect of balloon explosions, 
particularly when there is a direct impact on cumulative earnings (i.e., 
payment for research participation), could reinforce conservative 
behavior and the motivation of participants (Xu et al., 2020a). Thus, 
increasing the reward according to the level of risk, paying participants 
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based on their BART performance, and subtracting the value of the 
balloon bursting from the payment for participation, increases 
participants’ emotional engagement and their motivation to obtain the 
highest score (Schonberg et al., 2011).

4.2.5. Adjustment of parameters to limit bias in 
the assessment risk-taking propensity

The assessment of risk-taking behavior may be affected by the 
design of the paradigm and its characteristics. In the initial BART 
design, participants may tire from inflating the balloons one pump at 
a time and thus limit their effort out of laziness or a desire to finish 
sooner (Young and McCoy, 2019). In the same way, participants might 
need time to learn the optimal strategy. According to our results, the 
automatic response version (Pleskac, 2008) seems to be  the most 
appropriate paradigm for adapting the BART to neuroimaging and 
addressing the identified limitations (De Groot, 2020). Indeed, this 
paradigm has the following advantages: (i) it includes an automatic 
response paradigm limiting motor activity, tiredness, and weariness; 
(ii) it maintains a high balloon capacity and enough trials with a short 
administration; (iii) it includes a delay between decision and feedback, 
allowing the recording of brain activity; (iv) it provides explicit 
feedback to participants, which increases their learning time and 
limits ambiguous decisions associated with the first trials; and (v) it 
uses an unbiased score in all trials for more accurate risk profiles. 
Although the automatic response version offers many advantages, the 
time between decision and feedback is increased, and outcome that 
can impact the risk-taking behavior of participants (Young and 
McCoy, 2019), with decisions less impulsive and more planned 
(Pleskac, 2008). The motor aspect, although complicating the 
neuroimaging recording, is an essential part of the initial BART 
paradigm because it allows the impulsivity trait to be maintained in 
the response procedure by inflating the balloon one pump at a time.

Thus, the BART might have infinite applicative variants with a 
large variability of parameters, and the choice of appropriate 
experimental parameters is not always straightforward and intuitive. 
In order to generate reliable data, researchers should select the most 
appropriate and unbiased BART experimental settings (Di Plinio 
et al., 2022). An adjustment of the BART parameters would optimize 
its assessment of risk-taking behavior, but this needs to be tested in 
future research.

4.3. Limits

Although this review presented adaptations to the BART used in 
neuroimaging studies, several limitations of these paradigms should 
be noted.

Firstly, this study provides descriptive information on various 
BART parameters and does not rely on statistical tests, as is typically 
the case in a meta-analysis. The methodological limitations and 
proposed solutions are the result of synthesizing articles structured on 
the basis of discussions from previous systematic reviews and meta-
analyses. The wide variability of paradigms limited the possibilities of 
comparing the impact of BART parameters on risk-taking behavioral 
outcomes. Although some authors have proposed meta-analyses of 
functional neuroimaging data on BART, we find that the variability of 
paradigms and the contrasting analysis approaches we have highlighted 
make it tricky to combine the resulting data for meta-analyses.

Secondly, the scientific quality of the articles included in the 
review was not homogeneous. The quality of the articles in this review 
varied according to the homogeneity of the sample (confounding 
factors of sample characteristics: age, sex, size, healthy or pathological), 
and the protocols used (double-blind, randomized). However, since 
our focus is not on studying the results of the primary studies but 
rather the procedures for performing the behavioral task, 
we considered that the quality of the articles did not significantly 
interfere with the characteristics of the paradigms described in the 
methodological section of the included studies. In fact, we examined 
all BART parameters to analyze the various modifications linked to 
adaptations for neuroimaging techniques. We have simply noted the 
studies in which details were not provided on certain points 
of analysis.

Third, this review is limited to paradigms that were published, 
which restricts the scope of comparisons especially for the study on 
the impact of various parameters on risk behavior.

5. Conclusion

The BART is a widely used paradigm to measure people’s risk 
propensity, both in behavioral and neuroimaging studies. Several 
versions of the BART adapted in four neuroimaging techniques were 
compared to determine which parameters perform best in terms of 
reliability and validity for measuring risk propensity. The most 
appropriate paradigm for adapting the BART to neuroimaging should 
have the following characteristics: (i) decreases the number of possible 
pumps (limits motor aspect and fatigue) while including enough trials 
for a short administration, (ii) includes a delay between the decision 
and outcomes for the recording of brain activity, (iii) defines a 
monotonic exponential probability that increases to a maximum burst 
probability between 50 and 75%, (iv) informs participants about the 
number of pumps when the balloon bursts to limit decisions under 
uncertainty associated with the first few trials, (v) increases the reward 
according to risk level, and pay participants based on their BART 
performance (keep participants motivated), (vi) uses an unbiased 
score across trials for more accurate risk profiles. Although there is no 
universal adaptation of the BART to neuroimaging, the adjustment of 
parameters optimizes its evaluation and clinical utility in assessing 
risk taking.
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