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Alzheimer’s disease (AD) is a neurodegenerative condition characterized by a

gradual decline in cognitive functions. Currently, there are no e�ective treatments

for AD, underscoring the importance of identifying individuals in the preclinical

stages of mild cognitive impairment (MCI) to enable early interventions. Among

the neuropathological events associated with the onset of the disease is the

accumulation of amyloid protein in the brain, which correlates with decreased

levels of Aβ42 peptide in the cerebrospinal fluid (CSF). Consequently, the

development of non-invasive, low-cost, and easy-to-administer proxies for

detecting Aβ42 positivity in CSF becomes particularly valuable. A promising

approach to achieve this is spontaneous speech analysis, which combined with

machine learning (ML) techniques, has proven highly useful in AD. In this study, we

examined the relationship between amyloid status in CSF and acoustic features

derived from the description of the Cookie Theft picture in MCI patients from a

memory clinic. The cohort consisted of fifty-two patients with MCI (mean age

73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic

parameters were extracted from voice recordings using the extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were

used to classify the amyloid status. Furthermore, interpretability techniques were

employed to examine the influence of input variables on the determination of

amyloid-positive status. The best model, based on acoustic variables, achieved

an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of

amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation

(LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66).

Our results showed that the automated analysis of voice recordings derived from

spontaneous speech tests o�ers valuable insights into AD biomarkers during the

preclinical stages. These findings introduce novel possibilities for the use of digital

biomarkers to identify subjects at high risk of developing AD.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, early diagnosis, cerebrospinal fluid,

biomarkers, machine learning, speech acoustics, automated pattern recognition
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1. Introduction

Alzheimer’s disease (AD) stands as the primary contributor

to dementia cases worldwide, with no effective treatment

available (Alzheimer’s & Dementia, 2023). This progressive

neurodegenerative disease impacts different cognitive domains,

including memory, language, attention, and behavior, ultimately

incapacitating the individual from performing daily tasks

(Alzheimer’s & Dementia, 2023). The disease’s pathophysiology

involves the formation of amyloid-β plaques (Aβ) and

neurofibrillary tangles of phosphorylated tau protein (p-tau)

in the brain. The accumulation of these two substrates eventually

leads to neuroinflammation, reduced brain metabolism, and

atrophy, which underlie the observed cognitive alterations

(Peña-Casanova et al., 2012). However, compelling evidence

suggests that the pathophysiological events related to AD begin

several years, even decades, before the onset of clinical symptoms

(Sperling et al., 2011). Therefore, much of the efforts in the field

have been focused on identifying individuals in the early stage

of mild cognitive impairment (MCI) (Alzheimer’s & Dementia,

2023).

Once an individual with AD has progressed to the dementia

stage and there is a loss of autonomy, i.e., cognitive impairment is

already evident, the opportunities for potential disease-modifying

interventions become limited. Consequently, several AD diagnostic

criteria recommend the use of biomarkers tightly associated

with AD pathological hallmarks (McKhann et al., 2011; Dubois

et al., 2014) in the evaluation of patients with cognitive decline,

including quantification of Aβ and p-tau in the cerebrospinal

fluid (CSF) (Molinuevo et al., 2018) and positron emission

tomography (PET) (Johnson et al., 2012). In individuals with

MCI, the detection of positive AD biomarkers is relevant for

future planning, identifying suitable patients for clinical trials,

and establishing early interventions (Weimer and Sager, 2009).

Nevertheless, currently available AD biomarkers are expensive,

invasive, and not widely accessible, usually restricted to applied and

research settings (Whelan et al., 2022; Thijssen et al., 2022).

As a result, the evaluation of cognitive functions through

neuropsychological tests has been extensively utilized as an

accessible alternative to disease biomarkers for identifying

individuals at high risk of developing AD (Espinosa et al., 2013;

Alegret et al., 2013). Most studies have focused on evaluating

memory and executive functions (Small et al., 1999; Buckner,

2004) as those are the cognitive deficits most affected during the

disease continuum (Albert et al., 2011). Nevertheless, language

alterations have also been shown as a sensitive hallmark of

early cognitive impairment in AD (Taler and Phillips, 2008).

For example, (Eyigoz et al., 2020) identified several linguistic

parameters obtained in naturalistic probes as good prognostic

markers for MCI. In Wang et al. (2022), the authors observed that

the percentage of silenced pauses in the speech differed significantly

across the different AD stages. Similarly, Mazzeo et al. (2022)

showed that a single-word comprehension impairment could be an

indicator for identifying patients whomay need assistance with self-

care in the upcoming years. Moreover, employing neuroimaging

techniques, numerous studies have revealed alterations in brain

connectivity (Montembeault et al., 2019; Rafiq et al., 2022;

Wang et al., 2022) and atrophy (Smits et al., 2014; Wei et al., 2018)

directly associated with language functions.

These findings, coupled with the digitalization experienced over

the last few years, have increased the popularity of spontaneous

speech (SS) protocols administered using digital tools (Beltrami

et al., 2018; de la Fuente Garcia et al., 2019; Thomas et al.,

2020). Classical cognitive assessments, based on traditional settings

(i.e., neuropsychological batteries) usually demand the physical

presence of clinicians in specialized health centers and are not

always optimal for decentralized remote clinical trials (Tröger

et al., 2022). In contrast, digital cognitive assessments are better-

suited protocols when automated procedures are recommended or

needed (Lindsay et al., 2021).

Among the numerous parameters that can be obtained

computationally when applying a SS protocol, acoustic parameters

(e.g., those derived from the speech waveform) are some of

the most interesting in cognitive research. Patients with AD

dementia (ADD) exhibit longer and more frequent hesitations,

lower speech, and articulation rates, and longer pauses in SS tasks

than non-demented individuals (Mueller et al., 2018). To integrate

all the information extracted from SS, several approaches based

on machine learning (ML) techniques have been applied. Tóth

et al. (2018) adjusted models using SS in a recall task and found

significant differences in speech tempo, articulation rate, silent

pause, and length of utterance between early-stage ADD patients

and healthy control individuals. Fraser et al. (2016) identified

several voice abnormalities in speech related to ADD. Vocal and

temporal features also demonstrated good discriminant properties

when differencing among MCI, mild ADD, and moderate ADD

(accuracy > 80%) (König et al., 2015). In a study using data

from over 8700 participants, acoustic parameters generated from a

simple reading task were found to differ among cognitively healthy

individuals, MCI patients, and participants with global cognitive

impairment, especially those with the lowest and higher degree of

impairment (Nagumo et al., 2020).

Until now, most studies involving SS have prioritized the

development of diagnostic tools, with a primary focus on

identifying individuals with ADD (Asgari et al., 2017; Xue et al.,

2021; Mahajan and Baths, 2021; He et al., 2023). Only a limited

number of investigations have examined the application of SS

in subjects with MCI, and even fewer studies have explored

its association with biomarkers of interest, such as amyloid

accumulation in the brain or CSF (Verfaillie et al., 2019; Mueller

et al., 2021; Hajjar et al., 2023). In this context, Verfaillie et al.

(2019) identified an association between high amyloid burden and

fewer specific words during SS in 63 individuals with subjective

cognitive decline (SCD) from amemory clinic. Mueller et al. (2021)

showed that a positive amyloid status was longitudinally associated

with poor achievement in several SS parameters (i.e., unique/total

word production) using the Cookie Theft picture in a cohort of

cognitively unimpaired individuals. Recently, Hajjar et al. (2023)

explored the association between variables extracted from SS and

amyloid status assessed by CSF in a population of cognitively

healthy individuals and MCI using ML techniques. For the first

time, the authors demonstrated that the SS can predict the amyloid

status outperforming neuropsychological tests typically used to

evaluate language obtaining an AUC of 0.77.
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The present study aims to provide further evidence to address

the existing gap between SS and the amyloid status quantified

by CSF in an applied setting, using a sample of patients with

MCI evaluated in a memory clinic. In particular, the Cookie

Theft picture from the Boston Diagnostic Aphasia Examination

was used as a speech task, ensuring easier standardization and

maintaining great simplicity by analyzing only acoustic parameters

(i.e., excluding lexico-syntatic parameters that are slower to

analyze, more expensive, and frequently conditioned by more prior

validation processes).

2. Materials and methods

The study had a cross-sectional design and included 52

patients with MCI who underwent clinical and neuropsychological

evaluations, a lumbar puncture (LP) for the assessment of AD-core

biomarkers in CSF, and lastly, a SS test using the acceXible platform.

2.1. Study participants

This study included 52 patients with a diagnosis of

MCI (Petersen, 2004) who were evaluated at the memory

clinic from Ace Alzheimer Center Barcelona (single site) between

April 2022 and January 2023. Participants were either referred

to the memory clinic by their general health practitioner due to

cognitive problems (or subjective complaints) or they attended

the open house initiative without the need for a physician’s

referral (Boada et al., 2014). All clinical and biomarker measures

were obtained within a 6-month window from the SS protocol

administration. This project is part of a study focused on the

identification of risk factors of dementia through speech analysis

(Tartaglia: MIA.2021.M02.0005).

2.2. Clinical assessment

Study participants completed neurological,

neuropsychological, and social evaluations at the Ace Alzheimer

Center Barcelona Memory Clinic and were followed up annually.

A consensus diagnosis was assigned to each patient by a

multidisciplinary team of professionals (Boada et al., 2014).

Demographic information collected included age, sex, and years of

formal education. The cognitive assessment included the Spanish

version of the Mini-Mental State Examination (MMSE) (Folstein,

1992), the memory part of the Spanish version of the Seven

Minute test (Del Ser et al., 2006), the Spanish version of the

Neuropsychiatric Inventory Questionnaire (NPI-Q) (Boada et al.,

2005), the Hachinski’s ischemic score scale (Hachinski et al.,

1974), the Blessed Dementia Scale (Blessed et al., 1968), and the

Clinical Dementia Rating (CDR) scale (Morris, 1993), as well

as the comprehensive Neuropsychological Battery of Fundació

ACE (NBACE) (Alegret et al., 2012). MMSE (Folstein, 1992), and

NBACE (Alegret et al., 2012) were assessed on all visits. At the

baseline, all participants had a CDR of 0.5.

2.3. Neuropsychological assessment

Cognitive data were collected at the baseline using the NBACE.

NBACE is a 45-min battery designed to assess cognitive domains

especially affected in the elderly when cognitive impairment

is suspected (Alegret et al., 2012). The NBACE was proposed

as a brief, easy-to-administer and goal-directed compilation of

globally-used neuropsychological tests in our target population.

In this study, the following cognitive domains were explored:

attention, information processing speed, verbal learning and

memory, language, visuoperception, visuospatial ability, praxis,

and executive functions. Normative data and cut-off scores of the

NBACE subtests for individuals over 44 years old can be found

elsewhere (Alegret et al., 2012, 2013).

2.4. Lumbar puncture and quantification of
CSF core biomarkers for AD

Lumbar punctures (LPs) were performed at Ace Alzheimer

Center Barcelona by an experienced neurologist under fasting

conditions. The collection protocol follows the recommendations

of the Alzheimers Biomarkers Standardization (Vanderstichele

et al., 2012). The CSF was collected passively in 10 mL

polypropylene tubes (Sarstedt Ref 62.610.018) and centrifuged

(2000×g 10 min at 4 ◦C) within 2 h of acquisition. After

centrifugation, the fluid was aliquoted into polypropylene tubes

(Sarstedt Ref 72.694.007) and stored at -80 ◦C until analysis. The

day of the analysis, one aliquot of 0.5 mL was thawed and used for

the determination of Aβ1-42. Aβ1-42 protein was quantified by the

commercially available chemiluminescense enzyme immunoassay

(CLEIA) using the Lumipulse G 600 II automatic platform

(Fujirebio Europe, Göteborg, Sweden) (Leit ao et al., 2019). Cutoffs

from the Ace Alzheimer Center Barcelona CSF program were used

to dichotomize Aβ1-42. A patient was considered amyloid positive

when Aβ1-42 levels were <796 pg/mL (Orellana et al., 2022).

2.5. Recording protocol and preparation of
voice data

Each participant performed the speaking task with the

supervision of a neuropsychologist and using the acceXible

platform app on a tablet. This app identifies vocal biomarkers

for disease detection and monitoring. The image of the Cookie

Theft picture was presented on the screen, and participants were

asked to describe the image in detail. The voice was automatically

recorded as part of an ongoing research protocol. The evaluations

were conducted in Spanish and in a quiet environment. Participants

audios were standardized to a frequency of 16KHz. Subsequently,

the initial and final silences were automatically removed, and

the deep learning model presented in Defossez et al. (2020) was

applied to remove environmental noise. Acoustic features from the

extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

(v02) were extracted from every record using the open-source

toolkit OpenSmile (v2.4.2) (Eyben et al., 2015). The set of features

from the eGeMAPS are oriented to provide a simplified and
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standardized selection of relevant acoustic parameters for detecting

physiological changes in voice production guided by findings of

previous related studies (Scherer, 1986; Banse and Scherer, 1996).

Appendix 1 includes the list of these 88 features.

2.6. Ethical considerations

This study and its informed consent were approved by

the ethics committees of the Hospital Universitari de Bellvitge

(Barcelona) (ref. PR007/22) under Spanish biomedical laws (Law

14/2007, 3 July, regarding biomedical research; Royal Decree

1716/2011, 18 November) and followed the recommendations of

the Declaration of Helsinki. All participants signed an informed

consent for the spontaneous speech protocol and for the lumbar

puncture procedure.

The informed consent for the LP provides patients with

information about the procedure, the most frequent side effects,

and the primary objective of obtaining the AD-core biomarkers in

CSF (which extends beyond clinical purposes and includes research

interests). Twenty four h later after the LP, a member of the ACEs

nursing team contacted the patients via phone to monitor any

potential side effects and offer medical advice if needed. To ensure

transparency, patients are also informed about the utilization of

audio files collected during the speech test, including the primary

research objectives and the security measures implemented for

processing and storage on our servers or by our collaborators.

2.7. Data modeling

Statistical analyses were performed on STATA 15 (Stata

Corporation, College Station, TX, USA) and ML modeling using

Python (version 3.9.16).

Demographic, clinical, neuropsychological, and acoustic

variables were contrasted between participants with positive

and negative amyloid status using t-test or χ2 analyses. Logistic

regression analyses were performed to evaluate the association

of neuropsychological tests and acoustic variables with positive

amyloid status. As all these bivariate and multivariate analyses

were performed only for a descriptive purpose, no corrections for

multiple testing were applied.

ML techniques were used for the prediction of amyloid-positive

status using acoustic, neuropsychological, and demographic

variables. The demographic variables considered were sex,

age, and years of formal education. On the other hand,

the neuropsychological variables included were total scores on

similarities, digit forward, and digit backwards from the Wechsler

Adult Intelligence Scale, third edition (WAIS-III) (Wechsler, 2002);

long-term and recognition memory on the word list subtest from

the Wechsler Memory Scale, third version (WMS-III) (Wechsler,

1997); the 15-Objects Test (Pillon et al., 1989); Poppelreuter-

type overlap figures (Sala et al., 1995); the Automatic Inhibition

Subtest of the Syndrom Kurtz Test (SKT) (time in s) (Erzigkeit,

1989); phonetic and semantic verbal fluencies (Artiola et al., 1999;

Goodglass and Kaplan, 1972); an abbreviated 15-item naming

test from the Boston Naming Test (BNT) (Kaplan et al., 2001);

TABLE 1 Demographic and clinical characteristics of the study

participants.

Variable Mean (SD) or %

Age 73.8 (8.5)

Sex (% females) 65.4

Years of formal education 8.8 (4.6)

MMSE score 27.0 ( 2.6)

(+) Amyloid status (%) 57.7

APOE ǫ4 carriers (%) 50.0

Amnestic MCI (%) 78.9

WAIS-III digit total forward 6.7 (1.5)

WAIS-III digit total backward 4.0 (1.4)

WMS-III delayed recall 2.1 (2.2)

WMS-III recognition task (total score) 19.5 (3.4)

The 15-objects test (correct answers) 10.3 (3.0)

Two Poppelreuter-type overlap figures (correct answers) 9.3 (1.1)

SKT (time in seconds) 37.0 (15.2)

Phonetic verbal fluency 10.5 (4.7)

Semantic verbal fluency 12.8 (5.0)

WAIS-III similarities 9.1 (3.3)

15-BNT free-evoked correct answers 13.1 (2.3)

Verbal comprehension 5.8 (0.5)

Luria’s clock test (correct answers) 3.1 (1.1)

MMSE, Mini-Mental State Examination; WAIS-III, Wechsler Adult Intelligence Scale, Third

Edition; WMS-III, Wechsler Memory Scale, third version; SKT, Syndrom Kurztest Test; BNT,

Boston Naming Test.

Verbal Comprehension (Alegret et al., 2012); and the Luria’s Clock

test (Golden, 1980) (variables were listed in Table 1). As input data

for the models, three different sets of features were considered. The

first dataset was based on the neuropsychological and demographic

variables, the second included the eGeMAPS acoustic parameters

(88 variables), and the third combined demographic and acoustic

variables (92 variables). The aim of the first feature set, based on

neuropsychological and demographic variables, was to establish

a baseline model for comparing the capacity of the acoustic

parameters for predicting the amyloid status.

For the datasets including acoustic variables, the following

models were considered: (1) models with no previous feature

engineering: Elastic Net (EN) and Random Forest (RF), (2) models

combined with a prior dimensionality reduction using principal

component analysis (PCA): EN, logistic regression (LR), support

vector machines (SVM), and K-nearest neighbors (KNN), and (3)

wrapper-based feature selection combining variable-length particle

swarm optimization (VLPSO) (Tran et al., 2018) and KNN. Given

the small number of input features in the dataset based on

neuropsychological and demographic variables, the VLPSO feature

selection strategy was not applied.

Briefly, the VLPSO is a wrapped-based feature selection

algorithm (Xue et al., 2015). This population-based metaheuristic

is used to remove irrelevant and redundant features in order to
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maximize the performance on a given task. In this study, the

VLPSO algorithm was used to select variables maximizing the

classification performance. A more detailed explanation of the

VLPSO implementation used in this research can be found in

Appendix 3. Moreover, Appendix 4 contains the hyperparameters

of the algorithms used in this study.

To obtain a more reliable estimate of the goodness of fit of

the models, they were evaluated by applying bootstrapping (5,000

iterations) to the training set with the leave-one-out cross validation

(LOOCV) as shown in Figure 1. The Scikit-Learn (Buitinck et al.,

2013) implementation was used for all the models described, except

the VLPSO algorithm. The VLPSO code is available on GitHub.

3. Results

3.1. Statistical analysis

Demographic and clinical data of the 52 participants are

described in Table 1. The cohort had a mean age of 73 years, 65%

were female, and they completed a mean of 8.8 years of formal

education. Thirty cases (57.7%) showed a positive amyloid status.

Within those with a negative amyloid status, fifteen cases (68.2%)

had a normal CSF profile and seven (31.8%) showed elevated t-

tau and/or p-tau levels (suspected non-Alzheimer changes). Fifty

percent of the sample were APOE ǫ4 carriers. Among subjects with

a positive amyloid status, 56.6% carried an APOE ǫ4 allele, while for

those with a negative status, the percentage decreased to 18.1%. The

audio recording of the picture presentation had an average duration

of 46 s (SD=15.6).

The bivariate contrasts for demographic and

neuropsychological variables between participants with positive

and negative amyloid status are shown in Table 2. Those

participants with a positive amyloid status were significantly

older, had fewer years of formal education, and when contrasting

neuropsychological tests, they showed lower scores in the WMS-

III, the 15-Objects Test, semantic verbal fluency, WAIS-III, BNT,

and higher execution time of the SKT (all significant comparisons

p < 0.043). To assess whether neuropsychological tests showed

significant differences according to amyloid status controlling for

the demographic characteristics of the sample, multivariate logistic

models were applied adjusting the effect of neuropsychological

tests by age, sex, and years of formal education. Amyloid status

(positive/negative) was considered as the dependent variable. None

of the neuropsychological variables maintained a significant effect

in discriminating the amyloid status (Supplementary Table A2).

The same bivariate contrasts for acoustic features between

participants with positive and negative amyloid status are

depicted in Supplementary Table A1. Five of the 88 acoustic

features analyzed showed a significant difference between the

two groups. These variables included the F3-bandwidth (voiced

- coefficient of variation), the Hammarberg index (unvoiced

- mean), the Alpharatio (unvoiced - mean), and the Voiced-

Segment-Length/second (mean and std) (Eyben et al., 2015). When

adjusting these variables for age, sex, and years of education,

only F3-bandwidth (voiced - coefficient of variation) became non-

significant (p > 0.05) (Supplementary Table A3).

3.2. Machine learning analysis

The fit indices of the two best models obtained for

differentiating the amyloid status across the three different datasets

(neuropsychological and demographic / acoustic / acoustic and

demographic) by applying the evaluation strategy depicted in

Figure 1 are reported in Table 3. The area under the curve (AUC)

was used as the reference metric. The best AUC value was observed

for the model that included only acoustic variables, followed by

the model based on acoustic and demographic parameters. The

models with the best performance were those incorporating the

wrapper-based feature selection strategy (VLPSO+KNN) reaching

AUCs of 0.79 (95CI: [0.71-0.86]) (acoustic) and 0.74 (95CI: [0.66-

0.82]) (acoustic and demographic). These two models evaluated

by simply performing a LOOCV without bootstrapping achieved

AUCs of 0.83 and 0.79, respectively. In contrast, models based on

demographic and neuropsychological variables performed poorly,

with AUCs below 0.7 and accuracies close to 60%.

The dimensionality reduction achieved by the VLPSO-based

models went from 88 features to 7 and 10 for the datasets based

on acoustic features and combining acoustic and demographic

information, respectively. Figure 2 shows the receiver operating

characteristic (ROC) curves of the best models obtained for

each dataset (see Table 3). The two-dimensional projection of the

features associated with the bestmodel fromTable 3 (VLPSO+KNN

using acoustic variables) and their decision boundary is illustrated

in Figure 3.

The most discriminant features for differentiating the amyloid

status were further analyzed using SHapley Additive exPlanations

(SHAP) (Lundberg and Lee, 2017). Figure 4 shows the impact of

each variable on the amyloid status probability. Variables were

ordered based on the average absolute SHAP value in a descending

order. Positive SHAP values are associated with a higher probability

of a positive amyloid status, while negative values with a lower

probability. The most relevant features for predicting a positive

status were the frequency based: F3-bandwidth (voiced–coefficient

of variation) and F2 bandwidth (voiced–mean); the spectral-

based: Hammarberg index (unvoiced–mean), harmonic difference

H1-A3 (voiced–mean), and spectral flux (voiced–coefficient of

variation); and the temporal-based: voiced-segment-length/second

(mean and std).

4. Discussion

This study investigated the association between the amyloid

status assessed by CSF and voice features derived from the use

of the Cookie Theft picture description in a cohort of 52 MCI

patients evaluated in a memory clinic. We found noticeable

differences in physicoacoustic characteristics between patients with

positive and negative amyloid status using a widely extended

SS test. The analysis unveiled statistical variations in multiple

acoustic parameters, and the applied ML models showed a good

discriminatory capacity for predicting amyloid positivity (Table 3).

Furthermore, by incorporating XAI techniques, we gained valuable

insights into how different input variables influenced the decisions

made by the models (Figure 4).
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FIGURE 1

Pipeline used to evaluate the goodness-of-fit of all the models used to predict amyloid status. Performance metrics and confidence intervals were

calculated from the metric distribution obtained after 5,000 iterations of a nested leave-one-out cross validation (LOOCV) where the training set

used for adjusting the models was generated by bootstrapping.

As shown in the UMAP projection (Figure 3), the features

identified by our ML-based feature selection algorithm provided a

clear distinction of amyloid status, leading to a good classification

performance using a simple distance-based algorithm such as

KNN. Interestingly, including sociodemographic variables did not

improve the discriminatory capacity of the models, supporting

that SS-derived information alone can act as a good predictor

of amyloid status (AUC of 0.74 [0.66–0.82] vs. AUC 0.79 [0.71–

0.86]). Moreover, we showed that SS features outperformed the

conventional neuropsychological tests typically used to evaluate

cognitive functions (Figure 2). These results provide evidence

that the differences between positive and negative amyloid

status in MCI subjects can be captured by aspects related to

voice production.

Our results align with recent studies conducted by Hajjar

et al. (2023) in a longitudinal cohort of cognitive unimpaired

and MCI subjects, Mueller et al. (2018) in a longitudinal study

involving healthy and early-stage MCI patients, and Verfaillie

et al. (2019) in a cross-sectional study of individuals with cognitive

decline. These studies demonstrated that amyloid burden is

associated with several speech parameters. We also extended the

relationship between the presence of brain amyloidosis, one

of the main neuropathological hallmarks of AD, and speech

parameters in MCI patients, providing a new landmark for the use

of spontaneous speech in neurodegenerative disorders. Notably,

the studies of Mueller et al. (2018) and Verfaillie et al. (2019)

were based on the lexico-syntactic content of the speech, while

our study focuses on the properties of the sound generated when

describing a picture. The main idea here is that the analysis of

speech and language could provide relevant information about

the underlying pathophysiological process of AD (Voleti et al.,

2019).
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TABLE 2 Mean comparison of clinical and sociodemographic variables stratified by amyloid status.

Variable (+) Amyloid status
Mean (SD) or %

(−) Amyloid status
Mean (SD) or %

Statistic p-value

Age 76.8 (4.5) 69.4 (10.6) 3.41 <.001*
Sex (% females)a 63.3 68.2 0.00 0.945

APOE ǫ4 carriers (%)a 56.6 18.1 6.29 0.012*
Years of formal education 7.4 (4.3) 10.6 (4.5) 2.56 0.013*
MMSE score 26.5 (2.3) 27.7 (2.8) 1.74 0.087

WAIS-III digit total forward 6.4 (0.9) 7.0 (1.9) 1.40 0.167

WAIS-III digit total backward 3.7 (1.1) 4.4 (1.6) 1.80 0.076

WMS-III delayed recall 1.2 (1.7) 3.2 (2.2) 3.64 <0.001*
WMS-III recognition task (total

score)

18.4 (3.6) 21.0 (2.4) 2.96 0.004*

The 15-objects test (correct

answers)

9.4 (3.1) 11.3 (2.4) 2.34 0.023*

Two Poppelreuter-type overlap

figures

(correct answers)

9.1 (1.1) 9.5 (0.8) 1.52 0.132

SKT (seconds) 40.7 (16.2) 32.0 (12.2) 2.09 0.040*
Phonetic verbal fluency 9.4 (5.0) 11.9 (3.8) 1.95 0.055

Semantic verbal fluency 11.6 (4.8) 14.4 (4.8) 2.07 0.042*
WAIS-III similarities 7.8 (2.8) 10.8 (3.0) 3.70 <0.001*
15-BNT free-evoked correct

answers

12.3 (2.5) 14.1 (1.2) 3.08 0.003*

Verbal comprehension 5.7 (0.5) 5.8 (0.3) 0.87 0.385

Luria’s clock test (correct answers) 3.0 (1.1) 3.2 (1.1) 0.70 0.483

Mean comparisons of quantitative variables were performed using a two-sample t-test, categorical variables were compared by a χ2 testa . MMSE, Mini-Mental State Examination; WAIS-III,

Wechsler Adult Intelligence Scale, Third Edition; WMS-III, Wechsler Memory Scale, third version; SKT, Syndrom Kurztest Test; BNT, Boston Naming Test. *Statistically significant (p-value

< 0.05).

TABLE 3 Fit indices of the two best models obtained for each of the explored feature sets.

Feature set Model Accuracy Precision Recall F1a AUC

Neuropsychological

and demographic

PCA(9) + EN 0.63 [0.54–0.72] 0.67 [0.60–0.75] 0.71 [0.59–0.83] 0.69 [0.60–0.77] 0.66 [0.58–0.74]

PCA(9) + KNN 0.63 [0.52–0.73] 0.66 [0.58–0.74] 0.72 [0.58–0.87] 0.69 [0.59–0.79] 0.62 [0.51-0.72]

Acoustic VLPSO + KNN 0.75 [0.67–0.83] 0.76 [0.69–0.83] 0.82 [0.71–0.93] 0.79 [0.72–0.86] 0.79 [0.71–0.86]

RF 0.64 [0.55–0.74] 0.68 [0.59–0.76] 0.73 [0.61–0.85] 0.70 [0.62–0.79] 0.64 [0.55–0.74]

Acoustic and

demographic

VLPSO + KNN 0.72 [0.63–0.81] 0.74 [0.66–0.81] 0.81 [0.70–0.92] 0.77 [0.69–0.85] 0.74 [0.66–0.82]

RF 0.65 [0.55–0.75] 0.68 [0.60–0.77] 0.74 [0.62–0.86] 0.71 [0.62–0.80] 0.65 [0.56–0.75]

Metrics and confidence intervals were calculated using 5,000 bootstrap iterations with a nested LOOCV. AUC, area under the curve; EN, ElasticNet; PCA(C), principal component analysis

using the first C components; VLPSO, variable-length particle swarm optimization; KNN, K-nearest neighbors; RF, random forest. Model hyperparameters are provided in Appendix 4.
aF1-score = 2 · Precision·Recall

Precision+Recall
.

During the preclinical stage of AD, before symptom onset, the

pathophysiological course of the disease is characterized by first the

formation of amyloid plaques and later p-tau protein aggregates,

which accumulate in the brain and disrupt normal neuronal

function (Sperling et al., 2011). Subsequently, at the MCI stage,

the accumulation of these proteins in the brain reaches a critical

threshold, leading to neuronal injury and pathological changes

in the volumes of different brain regions (Sperling et al., 2011).

The most prominent cognitive deficits in MCI are typically in

the domains of memory and executive function, which include

abilities such as planning, decision-making, and problem-solving.

However, it is reasonable to assume that more diverse and silent

changes are taking place (Wilson and Petkov, 2011). In Mazzeo

et al. (2022), researchers observed associations between disease

progression, language lesions, and brain hypometabolism. In

addition, evidence shows that MCI patients show longer speech
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FIGURE 2

Receiver operating characteristic (ROC) curve for predicting amyloid

status based on demographic and neuropsychological, acoustic,

and a combination of demographic and acoustic variables. The

results correspond to the best models presented in Table 3. For

each model, the mean AUC calculated by 5,000 bootstrap iterations

as described in Figure 1 is shown. AUC: area under the curve.

and phonation time (Tóth et al., 2018; Gosztolya et al., 2019),

an incremented length of silent pauses (voiceless) (Wang et al.,

2022), lower speech rate (Tóth et al., 2018), presence of stammers

and articulatory disfluencies that interrupt speech with longer

hesitations (López-de Ipiña et al., 2013; Tóth et al., 2018),

and impairments in formant features in phonological planning

formants (Themistocleous et al., 2018). For a more detailed

description of these alterations, (see Martínez-Nicolás et al., 2021).

In our study, several voice parameters were identified as the most

discriminatory using ML approaches for differentiating MCI with

positive and negative amyloid status. Among the most important

voice parameters identified (Figure 4), there were spectral features

(relative energy in different frequency bands), associated with

vocal emotional expre ssions Sauter et al. (2010), voiced segments

(the portion of speech with relatively constant phonetic features)

useful to differentiate AD from healthy individuals (López-de

Ipiña et al., 2013; Wang et al., 2022), and measures of the

Hammarberg index, a spectral measure of voice quality, which has

been identified as a discriminant feature for MCI (Themistocleous

et al., 2020).

The present study was unable to detect an association between

amyloid status and conventional language tests included in the

NBACE, such as BNT-15 or semantic verbal fluency. This result

is concordant with those observed in MCI (Hajjar et al., 2023),

cognitively healthy individuals (Baker et al., 2017) and those

with subjective cognitive decline (Verfaillie et al., 2019). In fact,

in our study, no neuropsychological test from NBACE showed

a multivariate association with the amyloid status in MCI, and

predictive models based on neuropsychological tests exhibited

a lower discriminative capacity. These findings suggest that SS

assessments may offer a more ecological and closely connected

real-world representation of cognitive status for predicting Aβ42

status than traditional language evaluations, being of particular

interest in the preclinical stages of AD. It is worth noting that our

study exclusively focused on parameters that capture the structure

and dynamics of the speech, without relying on syntactic and

lexical information derived from voice recordings. This aspect

is particularly significant as it enables the automated evaluation

of information obtained from SS assessments, eliminating the

requirement for manual language analysis.

As exposed before, the assessment of SS can be approached

in different ways from narrower and more specific questions (i.e.,

“describe the presented image") to more open-ended elicitations

(i.e., “describe the happiest moment of your life”). However, these

open-ended approaches are subjected to more individual and

contextual factors, resulting in more variability and limiting their

generalizability when contrasting results between studies (Mueller

et al., 2018). More efforts should be devoted to providing

standards and protocols to improve the accuracy of procedures

and algorithms and to stimulate the integration of innovative

solutions in SS processing to clinical practice or trials (Haider et al.,

2019; Tröger et al., 2022). In this sense, it should be noted that

one of the strengths of the present study was to provide precise

discriminant results by distinguishing the amyloid status (positive

vs negative) in a relevant clinical population (patients with MCI) in

an applied setting (a memory unit), using a simple speech strategy

(description of a picture), through a very well-known and accessible

tool (the Cookie Theft picture), administered during less than 1

min, and focusing attention only on acoustic features, obtained

using a set of standardized variables (eGeMAPS) (Eyben et al.,

2015).

We acknowledge that our study has certain limitations. First,

the small sample size restricts the generalization of these results

and should be treated with caution. Although the models were

evaluated following an exhaustive bootstrap and cross-validation

approach to obtain a more realistic approximation of their

performance, larger sample sizes are required to confirm our

results. Additionally, our findings were based on cross-sectional

data, while the relationship between CSF biomarkers and SS is

probably complex and multifactorial. Further research is required

to understand the longitudinal association between amyloid

burden and voice (and other speech) features, investigating the

evolution of language parameters using follow-up information.

Moreover, our study solely focused on predicting amyloid status

in CSF, the primary pathological hallmark of AD and a key target

for drug development (Alzheimer’s & Dementia, 2023). However,

extending the presented analytical framework to include other

CSF (e.g., p-tau 181 or total tau) or neuroimaging biomarkers

(e.g., hypometabolism, tau accumulation, or atrophy) is of great

interest for future investigations (Scheltens et al., 2021). For

example, it has been demonstrated that tau levels exhibit a stronger

correlation with cognitive alterations compared to amyloid

levels (Aschenbrenner et al., 2018). In addition, prior studies have

shown that reductions in brain metabolism (Vanhoutte et al., 2017)

or changes in activation patterns measured by fMRI (Vanhoutte

et al., 2017) occur in the early stages of the disease and are

associated with language production. Therefore, while the

primary aim of this study was to provide an initial approximation

of the predictive capacity of amyloid status from SS in MCI

patients, the development of future predictive models should

consider a broader panel of disease biomarkers. Finally, using the
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FIGURE 3

Uniform manifold approximation and projection (UMAP) (Sainburg et al., 2020) dimensionality reduction of the most discriminative feature set

obtained by the VLPSO feature selection algorithm. (A) Projection highlighting positive and negative amyloid status. (B) Projection of the K-nearest

neighbor decision boundary. On the left is the density plot representing the higher presence (red) or absence (blue) of amyloid-positive cases in the

data. On the right are shown the KNN predictions of amyloid-positivity, where red indicates that the model assigns a higher probability of

amyloid-positivity and blue a lower probability. UMAP hyperparameters: number of neighbors = 8 and minimum distance = 0.1; the rest of the

hyperparameters were left as default.

FIGURE 4

SHapley Additive exPlanations (SHAP) values Lundberg and Lee (2017) of the best model for predicting amyloid status. The SHAP values were

calculated on the test set using LOOCV. The best model corresponds to the combination of VLPSO with KNN using acoustic variables (see Table 3).

The feature color indicates how it relates to the probability of being amyloid positive or negative. The red color is associated with higher feature

values, while blue is associated with lower values. Thus, lower values in the F3-bandwidth (voiced) CoV (blue area) are associated with an increased

likelihood of being amyloid positive; and having a lower mean of the spectral Hammarberg index (voiced) (red area) is associated with a lower

probability of being amyloid positive. CoV: coe�cient of variation; AMean: arithmetic mean; Std: standard deviation.

Cookie Theft picture description facilitated standardized results.

Nevertheless, relying on a unique test imposes limitations when

characterizing language impairment. Consequently, incorporating

additional SS tests within the models should improve their

predictive performance.

Despite these limitations and in the context of accumulated

data, such as that provided in the present study, it is possible

to foresee promising horizons for the application of voice

processing technology. Based on SS and IA techniques, the

identification of individuals at high risk of developing AD

dementia could be accessible to clinicians by the longitudinal

analysis of conversations. For example, specific speech tasks

could be periodically administered remotely when other

cognitive assessments are not feasible or when biomarker-

based evaluations are either too expensive, non-accessible, or

unsuitable for a particular patient. These advancements have the

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1221401
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


García-Gutiérrez et al. 10.3389/fnins.2023.1221401

potential to make the identification of high-risk individuals

more accessible to clinicians and significantly contribute

to public health.

5. Conclusion

In conclusion, acoustic features derived from the Cookie

Theft picture description are consistently associated with amyloid

status assessed by CSF in MCI patients in the setting of a

memory clinic. These results offer a new window of opportunities,

focused on identifying, in a widely accessible, rapid, and

non-invasive manner, the underlying biochemical status in

patients with MCI providing information about their future

cognitive progression and risk of conversion to dementia.

Such advancements in early detection and monitoring of

MCI can significantly impact clinical practice, enabling timely

interventions and personalized treatment strategies. Further

research is needed to validate and refine the SS protocols and

explore their utility in larger and more diverse populations.

Ultimately, this technology has the potential to bring us closer

to improved diagnostic and prognostic tools for individuals

with MCI.
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