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For adaptive real-time behavior in real-world contexts, the brain needs to allow 
past information over multiple timescales to influence current processing for 
making choices that create the best outcome as a person goes about making 
choices in their everyday life. The neuroeconomics literature on value-based 
decision-making has formalized such choice through reinforcement learning 
models for two extreme strategies. These strategies are model-free (MF), 
which is an automatic, stimulus–response type of action, and model-based 
(MB), which bases choice on cognitive representations of the world and causal 
inference on environment-behavior structure. The emphasis of examining the 
neural substrates of value-based decision making has been on the striatum and 
prefrontal regions, especially with regards to the “here and now” decision-making. 
Yet, such a dichotomy does not embrace all the dynamic complexity involved. In 
addition, despite robust research on the role of the hippocampus in memory and 
spatial learning, its contribution to value-based decision making is just starting to 
be explored. This paper aims to better appreciate the role of the hippocampus in 
decision-making and advance the successor representation (SR) as a candidate 
mechanism for encoding state representations in the hippocampus, separate from 
reward representations. To this end, we review research that relates hippocampal 
sequences to SR models showing that the implementation of such sequences 
in reinforcement learning agents improves their performance. This also enables 
the agents to perform multiscale temporal processing in a biologically plausible 
manner. Altogether, we  articulate a framework to advance current striatal and 
prefrontal-focused decision making to better account for multiscale mechanisms 
underlying various real-world time-related concepts such as the self that 
cumulates over a person’s life course.
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1. Introduction

After a long day at work, it is time to go home. If one has worked in the same building for 
several years, one does not actively think about how to get out of the building as a key milestone 
on the way to the goal of getting home. This action simply involves coming out of the elevator 
and turning left or right to exit onto the street. This simple decision can be a bit different, though, 
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if construction in the building blocks the exit. Instead of getting out 
of the elevator as usual, one may remember a nearby fire exit and get 
out from the building.

This extremely simplistic example of a real-world behavior 
sequence in reaching a goal has been used in previous psychological 
research in human decision-making (Kruglanski and Szumowska, 
2020; Wood et  al., 2021). Clearly, making a choice with the best 
outcome is more complex than this simplistic example most of the 
time. It is also a lifelong challenge that requires considering outcomes 
on different timescales and calling for adaptation to stable, diverse, 
and changing contexts that one encounters every day and over one’s 
life course (Decker et al., 2016).

Examining adaptive behavior from such a lifespan behavioral and 
decision neuroscience perspective calls upon the interface of value-
based decision-making with literature on learning, memory, and 
spatial navigation (Johnson et al., 2007). The literature on value-based 
decision making has formalized two types of reinforcement learning 
strategies used in decision-making: model-free (MF), which is an 
automatic, stimulus–response type of action. The other type of 
strategy is called model-based (MB), wherein we use the knowledge of 
the cognitive representation of the world around us and causal 
environment-behavior inference to plan our next action with more 
flexibility but also less efficiency. MB action is an important 
component of planning and deliberative decision-making, where one 
needs to mentally imagine future scenarios and make a choice, 
something which we routinely do in our lives. MB ability has shown 
a developmental pattern, progressively emerging with age from 
childhood to adulthood (Decker et al., 2016).

Broadly speaking, the MF and MB strategies have been attributed 
to distinct brain regions; the striatum is involved in automatic 
responses which are the hallmark of MF strategies, while the 
hippocampus is thought to be key not only for episodic and spatial 
memories but also for building a model of the world.

The striatum is associated with the dopaminergic system and 
reward, as well as neural representations that track value. These 
properties have resulted in the striatum becoming a hotbed of focus for 
researchers studying neuroeconomics, decision-making and behavioral 
neuroscience. Fundamental studies in psychology (Pavlov, 1960; Kamin, 
1969) have lent themselves well to quantitative approaches, facilitating 
the growth and emergence of several computational models of 
reinforcement learning (See Samson et  al., 2010 for review). 
Computational models of deliberation and planning in the brain are 
relatively more recent (Mattar and Lengyel, 2022; De Martino and 
Cortese, 2023), and consequently the interactions between the 
hippocampal and striatal system have only recently garnered attention.

For example, Ferbinteanu (2020) showed that the hippocampus 
supports both spatial and habitual memories when these events have 
temporal proximity, while the striatum supports both types of 
memories for events sharing a common spatial context. Models 
unifying the two systems have also been presented in relation to 
decision-making. Geerts et al. (2020) introduced a model in which the 
hippocampal-striatal system was viewed as a general system for 
decision making via an adaptive combination of the MF and MB 
frameworks. However, more research is needed to better understand 
the dynamics of interaction between the two systems, especially in 
real-world contexts, which are ever-changing (Goodroe et al., 2018).

Taken together, there is a need to move beyond the present false 
dichotomy implying that value-based decision making is either MF or 
MB and better appreciate the role of the hippocampus in 

decision-making, beyond its role in the encoding of episodic memories 
(Scoville and Milner, 1957). This is exemplified by RL models using 
replay as a strategy to improve task performance (Russek et al., 2017; 
van de Ven et al., 2020). The hippocampus too exhibits replay, suggesting 
that it could be  contributing to reward learning in the brain. 
Understanding this crucial link opens avenues to understanding 
hippocampal contributions to decisions in real-world timescales as well 
as long-term decisions as episodes accumulate over a person’s life 
course, impacting an individual’s health and overall wellness.

In the subsequent sections, we will review RL models and how 
they inform our thinking about neural processes. In relation to these 
models, we will introduce the hippocampus as a sequence generator 
(Buzsáki and Tingley, 2018). We  will review specific examples of 
hippocampal sequences to demonstrate that these sequences can 
be used for MB actions. While most of this work has been done in the 
rodent spatial navigation system, the prevailing notion is that these 
sequences are attributed with meaningful content as the animal 
experiences its environment (Buzsáki and Tingley, 2018). Thus, 
hippocampal sequences can be generalized to any form of multimodal 
information that is sequential in nature. Studying spatial navigation 
simply provides a convenient, tractable foray into understanding 
hippocampal function. Specifically, we will argue that the hippocampal 
provides key neural substrates for the continuous sense of the self over 
time along a person’s life course. Finally, we will suggest potential ideas 
for interdisciplinary convergence bridging animal systems to human 
neuroscience studies as well as to the fields of neuroeconomics.

2. RL models of decision-making

The main aim of RL models is for an agent to maximize its reward 
given a state and learn the optimal action policy for it to do so. For 
example, these states could be  locations, stimuli, or reward 
contingencies. RL agents broadly fall into two categories: MF and 
MB. MF agents learn via prediction errors between the expected value 
of the state and the observed value, a process known as temporal 
difference (TD) learning. These agents try to minimize the prediction 
error between observed and expected reward value over the long term. 
This approach is typically computationally faster and cheaper, but such 
agents have no memory of past states or the relationship between 
them. For example, if the value of the reward changes, a MF agent will 
only be able to update itself by revisiting different states several times 
and experiencing the consequences of its actions repeatedly.

On the other hand, MB agents learn a representation of the 
various states and transitions between them and use this to maximize 
long-term expected reward value. Representing the entire set of 
transitions and states is what makes these models flexible to novel task 
demands. Unlike a MF agent, a MB agent would not need to 
experience states repeatedly to learn changes in reward values; the 
process is much faster since the agent is able to exploit the task 
structure to learn such changes. However, MB algorithms are 
significantly more computationally intensive.

RL approaches lend themselves well to biology and provide a 
framework to generate testable predictions about the working of the 
striatal system in the context of reward learning and decision-making. 
In the brain, the striatum is thought to signal value, which is updated 
by a dopaminergic prediction error signal (Schultz et al., 1997), and 
these dopamine responses are in line with predictions of TD learning 
models (Waelti et al., 2001).
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How the brain learns the model of the environment is a relatively 
more complex question to tackle. Unlike MF approaches which 
emphasize stimulus–reward associations, animals do not even need 
reward to learn the structure of the environment. The retention of 
information in the absence of external reinforcers is referred to as 
latent learning (Tolman, 1948). Latent learning enables the animal to 
quickly predict future rewards, or even generalize learnt knowledge to 
other state spaces. Such mental representations of the environment 
came to be known as cognitive maps. How cognitive maps contribute 
to MB agents remains a gap in the field. In the 1970s, the discovery of 
place cells (O’Keefe, 1976) brought the hippocampus into focus as the 
seat of the cognitive map. More recent studies in humans have begun 
to show the direct contributions of the hippocampus to MB planning 
(Miller et al., 2017; Vikbladh et al., 2019). Therefore, understanding 
hippocampal function is an essential avenue to further our knowledge 
of MB decision-making.

3. The successor representation

Current experimental setups sometimes fail to accurately assess 
how and to what extent an agent uses MF and MB strategies in 
decision-making problems, and a re-evaluation of the assumptions 
underlying these strategies is much needed (Feher da Silva et  al., 
2023). This would then allow for further investigation into the role of 
the hippocampus within MF and MB actions more clearly.

Therefore, more recent methodologies in RL emphasize a 
combination of MF and MB agents to improve the generalization of 
TD learning approaches. One such approach that has gained 
popularity in neuroscience is the successor representation (SR) 
(Dayan, 1993; Gershman, 2018).

RL provides a formal means of investigating decision-making, in 
which states of the world are rewarded and decisions must be made 
on the selection of actions that can be taken to maximize reward. In 
this framework, each state has a value (V), defined as the cumulative 
expected reward over future states, multiplied by a discount factor 
(γ ∈( )01, ) that reduces the weight of distal rewards.

It is useful to make decisions based on the estimated value of 
different states. As shown by Dayan (1993), the value function can 
be mathematically represented as the inner product of the reward 
function (R) and a representation of the estimated value of states (M), 
as shown below:
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The matrix M is the SR matrix. The SR possesses a state 
representation which conveys the discounted number of expected 
visits of a given future state (s’) from a given starting state (s). The SR 
matrix is given by:
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Where T is the transition matrix, and t denotes all future time 
steps in the planning horizon. Instead of computing the transition 
matrix for each step, the SR is computed as a discounted sum going 

from state s to state s’ in a given number of steps, determined by the 
planning horizon (Figure  1A). This representation therefore has 
predictive structure, akin to a MB agent, but can be learned by a MF 
agent via TD learning, by learning the difference between observed 
and expected state occupancy. The SR approach thereby integrates the 
advantages of a MB agent into a MF framework (Figure 1B).

From Equation (1), we observe that the SR is a representation of 
possible future states that can be separable from the value function. In 
a reward revaluation task (i.e., change in reward value), this allows the 
agent to retain the same predictive map and quickly compute the 
value, whereas an MB agent would have to recompute the mapping 
between states, and an MF agent would have to re-learn the 
environment altogether. The SR thus offers an optimal solution to this 
kind of task and permits the learning of the state transitions (or 
“map”) independently of reward.

Additionally, Equation (1) also provides a direct relationship 
between the value function and SR, suggesting that updates to SR can 
update the value function. The SR, therefore, forms an important link 
between predictive representations and the value-based decision-
making framework.

The SR, however, has its own set of caveats. It requires direct 
experience to learn, akin to an MF agent. If the transition structure 
between states were to change through the course of the task (known 
as transition revaluation), the SR would only be able to update the 
one-step transition but not the steps preceding this state (Figure 1C). 
This is because the SR is probabilistic and has no temporal 
representation built into it. As a result, SR agents are unable to solve 
transition revaluation or policy revaluation (i.e., change in strategy) 
tasks, which animals can easily adapt to Tolman (1948) and Simon and 
Daw (2011).

Despite the caveats, SR models have been of increasing interest in 
neuroscience due to their biological plausibility, accompanied with 
observations of their behavioral and neural correlates during decision-
making. Using a sequential learning task (Momennejad et al., 2017), 
human participants learnt a relationship between stimulus and 
reward, which was manipulated in the re-learning phase, and 
subsequently probed in the final phase of the task. In the re-learning 
phase, the investigators performed either a reward revaluation, or a 
transition revaluation. As detailed above, an SR agent would be able 
to solve reward revaluation but not transition revaluation. This was 
recapitulated with the participants; they were able to adjust better to 
reward revaluation compared to transition revaluation, suggesting the 
utilization of cached representations (analogous to SR) to solve 
the task.

In addition, the SR has neural correlates in the hippocampus: If a 
SR agent is allowed to forage in an open arena with uniformly 
distributed rewards and there exists a population of neurons encoding 
each spatial state, the neural population activity (i.e., the columns of 
the SR matrix) resembles hippocampal place fields (spatial locations 
where cells fire most, in an arena) (Stachenfeld et al., 2017). In the 
same study, the authors showed that the eigenvectors of the SR matrix 
resemble grid cells (cells that fire in a hexagonal grid-like pattern 
within a given environment). Predictions from such models also 
recapitulated experimental observations such as the clustering of place 
fields around rewarded locations (Hollup et  al., 2001) and the 
distortion of place fields around barriers and other environmental 
distortions (Muller and Kubie, 1987; Skaggs and McNaughton, 1998; 
Alvernhe et al., 2011). Furthermore, the emergence of place cell and 
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grid cell activity itself has been shown to emerge via learning of a SR 
agent that uses boundary vector cells (cells that respond to a boundary 
in the arena, at a particular distance and direction from an animal) as 
the fundamental unit of spatial representation (de Cothi and 
Barry, 2020).

Recent work on the SR has tried to address and resolve the lack of 
temporal resolution in the SR. Momennejad and Howard (2018) 
showed that an ensemble of SR matrices with different discount 
factors (denoting different timescales) can be used to incorporate 
sequential order by encoding the Laplace transform of the future. A 
Laplace transform decomposes a signal into exponential decay 
functions of different rates. The inverse of this is equivalent to 
computing a derivative of the relation between two given states across 
SR matrices, i.e., across timescales. This consequently enables recovery 
of the temporal order between states. The mathematical formulation 
of this approach resembles that used in the temporal context model, 
detailed in a later section (See section: A broader view of 
hippocampal sequences).

A prediction that arises from multi-scale SR is the presence of cells 
that are sequentially activated as a function of the distance to the goal 
(Momennejad and Howard, 2018). Such cells have been experimentally 
observed in the hippocampus of bats and mice (Sarel et  al., 2017; 
Gauthier and Tank, 2018), as well as in the human entorhinal cortex, 
which is the principal input and output structure of the hippocampus 
(Qasim et  al., 2018). Interestingly, these goal-vector cells are also 
compatible with path-integration models of the hippocampus, in which 
they permit rapid generalization of policy (Whittington et al., 2022).

Additional support for multi-scale SR in the brain, comes from a 
study by Brunec and Momennejad (2022), where they analyzed 
functional magnetic resonance imaging (fMRI) data collected from 
human participants completing a virtual navigation task and analyzed 
predictive horizons in the hippocampus and prefrontal cortex (PFC). 

Briefly, a predictive horizon is a measure of how far ahead into the 
future is predicted by the activity in these brain regions. Long 
predictive horizons correspond to longer-range planning. The authors 
found that predictive horizons in the hippocampus followed an 
anatomical gradient. This anatomical gradient is consistent with a 
gradient of increasing place field sizes in the hippocampus (Jung et al., 
1994; Kjelstrup et  al., 2008), suggesting a temporal role for the 
anatomical gradient. This result emerges independently in the multi-
scale SR model of George et al. (2023), where the authors show multi-
scale SR being stored by differently sized place fields, but only when 
these place fields are segregated along an anatomical gradient. These 
findings are in line with the forgetting of recent experiences during 
hippocampal lesions, as in the case of H.M. (Scoville and Milner, 1957).

Interestingly, predictive horizons analyzed in Brunec and 
Momennejad (2022) were always larger in the PFC compared to the 
hippocampus. Indeed, the orbitofrontal cortex may be involved in the 
representation of task and state spaces (Wilson et  al., 2014; 
Wikenheiser and Schoenbaum, 2016). These findings suggest that 
neural correlates of the SR may also be found in regions other than 
the hippocampus, but especially those which are in close association 
with the hippocampus. The gradient of predictive horizons in the 
hippocampus and PFC is also in line with intact past experiences 
during hippocampal lesions (Scoville and Milner, 1957), 
corroborating the hypothesis that the hippocampus is a temporary 
storage for memories until they become consolidated in the cortex, 
known as systems consolidation.

Taken together, these observations provide evidence for the utility 
of SR in using RL-based approaches to understand the neural 
representations of space in the brain and more directly exhibit the 
predictive nature of hippocampal representations (Stachenfeld et al., 
2017), suggesting that a multi-scale SR might be implemented across 
brain regions, spanning the hippocampus to the PFC, warranting 

FIGURE 1

(A) (Top) Illustrative example of an agent traversing between 4 states s1 to s4, the relationship between which is depicted by the arrows corresponding 
to allowed state transitions. (Bottom) The successor matrix for this state diagram, where γ depicts the discount factor. Under a random walk policy, 
each column of this matrix has a value of 1 on its diagonal and gradually decreasing in either direction. In terms of occupancy relative to other states, 
these columns resemble hippocampal place fields. (B) Comparison between different RL agents for the efficiency-flexibility trade-off. The efficiency 
axis represents the degree to which the model requires costly versus cheap computation. The flexibility axis represents the degree to which the agent 
can adapt flexibly to changes in the environment, i.e., how much new data needs to be gathered for value estimates to converge to the correct value. 
Figure adapted from Gershman (2018). (C) The same SR matrix as shown in panel (A), but for a task where now there is no more state transition from s3 
to s4. This is an example of a transition revaluation. In this case, the SR can correctly update the changed transition from s3 to s4 but is unable to update 
the entries preceding this transition, i.e., the transitions from s1 to s4 and s2 to s4 should also go to 0.
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further investigation into the mechanisms behind how these regions 
communicate during real-world decisions.

In summary, the SR is an RL-based framework of predictive 
representations that combines some of the speed of MF and the 
flexibility of MB agents. Such a predictive system is reminiscent of the 
hippocampal memory system, as evidenced from various neural 
correlates of the SR in the hippocampus. Most models of hippocampal 
function focus on learning (Uria et al., 2020; Whittington et al., 2020; 
George et al., 2021) and memory (Marr, 1971; Teyler and DiScenna, 
1986; Spalla et  al., 2021). While there are some models of the 
hippocampus that also learn via prediction (Uria et  al., 2020; 
Whittington et al., 2020), they do not directly provide insights into 
how these predictions inform value-based decisions. The SR is unique 
in that it directly links prediction to value, thereby providing a 
platform to better understand hippocampal contributions to the 
extensively studied field of value-based decision-making.

4. Linking SR models to hippocampal 
sequences

The SR being a state-based model relies on the delineation of 
explicit states that the agent can be  in at any given time. In a 
computational agent, these states are explicitly encoded. However, if 
animals were to implement the SR, these states are likely learned and 
updated from experience. The learning of the SR, therefore, is an 
interesting research direction that warrants future work that can 
potentially inform real-world decision-making.

Traditionally, SR models were learnt using TD learning, which 
is not known to be implemented in the hippocampal circuitry (but 
see Foster et al., 2000; Johnson and Venditto, 2015). Recently, a 
series of reports have demonstrated biologically plausible learning 
of the SR (Bono et al., 2023; Fang et al., 2023; George et al., 2023). 
These studies use different mechanisms to demonstrate SR learning, 
such as: (1) spike-timing dependent plasticity on temporally 
compressed trajectories called theta sequences (George et al., 2023) 
(See section: Theta Sequences and Prospective Coding in the 
hippocampus), (2) a plasticity rule on a spiking feed-forward 
network mimicking anatomical input to the hippocampus (Bono 
et  al., 2023), and (3) a recurrent neural network with weights 
trained via an anti-Hebbian learning rule (Fang et al., 2023). These 
mechanisms are not mutually exclusive from each other, suggesting 
a degeneracy of candidate mechanisms for SR learning in the 
hippocampus. The SR could also be learnt from sequential models 
of the hippocampus (George et al., 2021), which can distinguish 
between aliased sensory observations.

Work on how the SR is learnt and updated has also given rise to 
models that perform better than classical SR models and provide not 
only a better understanding of hippocampal function, but also lend 
valuable insights into real-time decision-making in real-world 
contexts. Russek et al. (2017) introduced an SR agent that can solve 
transition and policy revaluation tasks, called SR-Dyna. This agent 
learns representations through online experience, and in addition 
prioritizes recent experience using “offline replay,” referring to the 
simulation of experiences by playing back past episodes (Lin, 1992). 
In addition, SR-Dyna operates over state-action pairs, in contrast to 
other SR agents which operate on states alone. In the absence of replay, 
SR-Dyna performs as well as a classical SR agent, thereby making it 

better than a MF agent. But with replay, SR-Dyna can perform 
exceedingly well, solving tasks that typical SR agents fail to solve.

Offline replay has been shown to be a key process in contributing 
to generalization and memory consolidation in several human and 
animal studies (Girardeau et  al., 2009; Maingret et  al., 2016; 
Momennejad et al., 2018; Schapiro et al., 2018; Liu et al., 2019). Replay 
can be  thought to update the model of the environment via 
consolidation, and this updated model can be used for subsequent 
planning. An implementation of replay, therefore, was probably 
inspired by some of these studies. SR-Dyna replays experienced 
transitions to update the successor matrix, and the quantity of this 
replay is directly related to the performance of the agent, thereby 
providing quantitative insights into the influence of hippocampal 
replay on updating reward representations in the striatum, which in 
turn would optimize reward-guided behavior.

The existence of anatomical substrates for the integration of 
replay into the reward learning system (thought to be implemented 
by the striatum) makes SR-Dyna well-poised to further understand 
the role of hippocampus in decision-making. In particular, the 
hippocampus and the dopamine system form an anatomical loop; 
the hippocampus receives dopaminergic inputs from the ventral 
tegmental area (VTA) and in turn projects to the ventral striatum 
(nucleus accumbens) and globus pallidus, which projects back to 
the VTA (Lisman and Grace, 2005). This anatomical organization 
of the two systems suggests that not only can the hippocampus 
directly influence striatal function (Sjulson et al., 2018), but the 
dopamine system can also signal the relative valence of experiences 
to the hippocampus.

In summary, RL approaches to decision-making have provided a 
mathematical framework to understand how the brain can possibly 
implement reward learning, and thereby pursue the strategy that leads to 
maximal expected reward (Samson et al., 2010). However, we still lack a 
comprehensive understanding of how the brain learns the structure of the 
environment and implements MB algorithms for efficient decision-
making. We  propose that this gap in the field can be  bridged by 
appreciating the role of the hippocampus in decision-making.

In subsequent sections, we will review further evidence for the 
role of the hippocampus in prospective coding, i.e., future planning 
of actions. To do so, we  will further build upon hippocampal 
replay, which is a form of offline consolidation. We  will then 
introduce a substrate for prospective coding known as theta 
sequences (Foster and Wilson, 2007), which is a form of online 
planning. Finally, we will extend concepts of spatial coding to the 
temporal domain, and touch upon large-scale brain networks 
involving the hippocampus.

5. Linking the successor 
representation to the memory system

In the 1940s, Tolman (1948) performed behavioral experiments 
with rats navigating a maze. Once the rats learnt the reward location, 
the shape of the maze was drastically altered. Yet, the rats were able to 
efficiently navigate to the same reward location, regardless of the shape 
of the maze. This observation suggested that the animals were able to 
form a representation of spatial location, without any direct stimulus–
reward association, known as latent learning. This also begged the 
question of the neural correlates of the cognitive map that the animals 

https://doi.org/10.3389/fnins.2023.1200842
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mehrotra and Dubé 10.3389/fnins.2023.1200842

Frontiers in Neuroscience 06 frontiersin.org

used to reach the reward, long before the arrival of computational 
models of RL.

Fast-forward to the 1970s. With advances in electrophysiology, it 
became possible to record neurons in freely moving animals. This led 
to John O’Keefe’s discovery of place cells in the hippocampus (O’Keefe, 
1976). This discovery generated interest in the hippocampus as the 
seat of the cognitive map. Subsequently, it was found that the 
hippocampus represents several other neural representations based on 
what is salient information for the task at hand, such as time 
(Pastalkova et al., 2008), a conspecific (Danjo et al., 2018), sound 
frequency (Aronov et al., 2017), value (Knudsen and Wallis, 2021), 
sensory evidence (Nieh et  al., 2021), or past and present spatial 
trajectories (Frank et al., 2000; Wood et al., 2000), all of which can 
be encoded as potential states in an SR-based representation, with a 
discount factor that is dependent on how these variables change with 
time; a stable environment would have a larger discount factor. Taken 
together, this evidence suggests that the hippocampus is a key region 
for the representation of task-relevant information critical for 
SR models.

In summary, the prevailing theory of hippocampal function is 
thought to be  the binding of spatial, temporal, and other sensory 
features into an episode, thereby being important for episodic 
memories (Buzsáki and Tingley, 2018; Whittington et al., 2022). SR 
models can provide a computational framework for episodic learning 
(Gershman et al., 2012), and have demonstrated that the representation 
of space and perhaps other variables of interest is not merely a static 
representation, but a predictive one, encoding the statistics of future 
expectations (Lisman and Redish, 2009; Stachenfeld et al., 2017).

6. Hippocampal replay

Once it became possible to simultaneously record several neurons 
in the hippocampus, researchers could now investigate the population 
activity of the hippocampus. Recording several place cells as a rat ran 
around in a freely moving arena, Wilson and McNaughton (1994) 
observed that neurons that tended to fire together when the animal 
was exploring an arena also tend to fire together during post-task 
sleep. Such reactivations usually occur during non-Rapid Eye 
Movement (NREM) sleep or during quiet wakefulness when the 
animal is disengaged from its environment, such as during grooming 
or consummatory behaviors (Carr et al., 2011). These reactivations are 
nestled within periods of elevated hippocampal population firing 
known as sharp-wave ripples (SWRs).

Reactivation events that have a temporal sequence (for example, 
a sequence that corresponds to a trajectory of place fields) are said 
to be replayed (Figure 2A). Hippocampal replay and offline replay 
as implemented in SR-Dyna have direct parallels, since both involve 
the recapitulation of previously experienced events and states, 
respectively. Importantly, hippocampal replay is thought to serve as 
a substrate for memory consolidation. Impairing SWRs or 
prolonging them can worsen or improve task performance, 
respectively (Girardeau et al., 2009; Fernández-Ruiz et al., 2019). 
Improved performance is thought to occur by enabling the animal 
to visualize paths never visited before (Ólafsdóttir et al., 2015; Igata 
et al., 2021) and using an internal model of the environment to plan 
shortcuts (Gupta et al., 2010), or to recapitulate salient place field 
trajectories, such as the path towards a goal (Pfeiffer and Foster, 

2013), which is very reminiscent of MB and SR agents. Therefore, 
hippocampal replay-like sequences can improve the performance 
of RL agents, which can in turn provide testable predictions for 
systems neuroscience research to better understand the neural 
correlates of such sequences and how they aid decision-making.

7. Theta sequences and prospective 
coding in the hippocampus

In addition to SWRs, which are a form of offline consolidation, 
the hippocampus also exhibits sequences during online planning. 
These sequences are known as theta sequences, named after the theta 
oscillation, a characteristic oscillation of population activity between 
8–12 Hz which is observed during locomotion or during Rapid Eye 
Movement (REM) sleep. Theta sequences can provide important 
insights into understanding the here-and-now type of deliberative 
decision-making in real-world scenarios.

O’Keefe and Recce (1993) discovered that as animals traversed 
across a linear track, the spiking activity of place cells shifted to 
earlier phases of the ongoing theta oscillation. This phenomenon 
is known as theta phase precession and is a crucial component for 
the encoding of place cell sequences (Skaggs et al., 1996; O’Keefe 
and Burgess, 2005) (Figure 2B, left). More recently, theta sequences 
were shown to be  directly implicated in prospective coding. 
Johnson and Redish (2007) recorded hippocampal CA3 activity as 
the animal performed a decision task on a maze and found that the 
decoded population activity sequentially “looked ahead” in time to 
the left arm of the maze, followed by the right arm (Figure 2B, 
right). In another study, Wikenheiser and Redish (2015) showed 
that theta sequences avoid paths that the animal does not take in 
future, and only projects forward in time to current goals. These 
studies laid the foundation for a role of the hippocampus in 
planning and decision-making.

Additional evidence of the involvement of the hippocampus in 
prospective coding comes from a study done by Ito et al. (2015). They 
examined the activity of hippocampal neurons that fire differently 
based on the animal’s past or future behavior, known as splitter cells 
(Frank et al., 2000; Wood et al., 2000). These splitter cells lost their 
selectivity upon inhibition of the thalamic nucleus reuniens, 
suggesting an upstream source for this type of neural representation. 
The nucleus reuniens is heavily innervated by the medial prefrontal 
cortex (mPFC) (Vertes et al., 2007), a structure known to be involved 
in decision-making and which shows strong coupling to hippocampal 
theta oscillations during decision-making tasks (Benchenane et al., 
2010; Backus et al., 2016; Tamura et al., 2017; Stout et al., 2022). Yet, 
so far, no functional role for the indirect projection of the mPFC to 
the hippocampus was shown. This study demonstrated that the 
feedback from mPFC is crucial for the neural representations of 
prospective coding in the hippocampus.

In line with the role of theta sequences in prospective coding, Kay 
et al. (2020) found that cells in hippocampus encode future spatial 
trajectories on a theta cycle-by-cycle basis, suggesting important 
implications of theta-cycle skipping cells that are found in the nucleus 
reuniens (Jankowski et al., 2014), and generally towards the role of 
hippocampus in planning. However, the relationship between SWRs 
and theta sequences, and their specific roles for planning is 
less understood.
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8. A broader view of hippocampal 
sequences

Hippocampal sequences are thought to be essential features for 
encoding episodic memory. This is because episodic memory is also 
sequential in nature. However, along with spatial details, these 
episodes also typically involve temporal details. In particular, 
understanding the neural basis of timing is important to understand 
memory-guided decision-making, because when we make decisions, 
we typically recall events that may go back to several years ago. Below, 
we will touch upon temporal sequences in the hippocampus and how 
an understanding of these sequences can inform decision-
making research.

Studies by Dragoi and Tonegawa (2011, 2013), Farooq and Dragoi 
(2019), and Farooq et  al. (2019) demonstrated that hippocampal 
population activity decoded sequences corresponding to locations in 
the environment that the animal had not visited yet, known as preplay, 
and went on to further characterize this phenomenon. The authors 
interpreted preplay as an organization of hippocampal cell assemblies 

into temporal sequences that were attributed with the content of a 
future novel experience, thereby laying the foundation for the 
sequence generation function of the hippocampus.

The discovery of time cells in the hippocampus (Pastalkova 
et al., 2008) showed that the hippocampus can use sequences to 
encode time intervals leading up to the end of a delay period. 
Along with this, other findings showing the evolution of 
hippocampal activity over hour-long intervals (Manns et al., 2007) 
suggest that the hippocampus utilizes sequences to represent 
different time scales as well.

One prevailing theory for the representation of time is known as 
the temporal context model (TCM) (Howard and Kahana, 2002). At 
the core of TCM is the idea that experience consists of current sensory 
input as well as recent past sensory experience weighted with 
exponential decay. TCM has been thought to be a candidate theory 
explaining the hippocampal splitter cell phenomenon (see Duvelle 
et al., 2023 for review). Interestingly, the mathematical framework of 
SR is equivalent to a generalized form of TCM for human free recall 
experiments (Gershman et al., 2012).

FIGURE 2

Overview of spatial sequences in the hippocampus. (A) Hippocampal replay: (Left) Firing of hippocampal place cells as a rat runs on a maze. The cells 
are successively activated as the animal traverses through their place fields (color-coded on the maze), forming a sequence. (Center) Place cells 
indicate spatial location by firing maximally at their preferred location (known as a place field). (Right) Sharp-wave ripples (SWRs) occur during NREM 
sleep or quiet wakefulness and is associated with increased hippocampal population activity. During a SWR, place cell trajectories that were 
experienced during wakefulness are “replayed.” Adapted with permission from Zielinski et al. (2017). (B) Encoding of spatial location within theta 
sequences. (Left) The location of the animal is encoded via a phase code of the theta oscillation, with past locations being represented on the negative 
phase and future locations on the positive phase of the theta oscillation. The current location is represented at the trough of the oscillation. Reprinted 
from Petersen and Buzsáki (2020), with permission from Elsevier. (Right) During a deliberative decision task, hippocampal population activity nested 
within theta sequences sweeps forward in time, representing future spatial options. Reproduced from Redish (2016) with permission from SNCSC.
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Howard et al. (2014) used a parsimonious mathematical model to 
implement TCM. They encoded events in time via a set of leaky 
integrators. Specifically, these model neurons encoded the Laplace 
transform of the input, which is equivalent to decomposing a signal 
using exponential decay functions of different rates. With this setup, 
they were able to show that an approximation of the inverse Laplace 
transform can recover the input sequence, and this property could 
be applied to encode different events in time or the trajectory to a 
given location, for example. Further analysis of time cell activity 
revealed a correspondence between the model neurons and 
experimentally observed properties of time cells, suggesting a 
mechanism for how the hippocampus encodes spatiotemporal 
information using sequences. This model was used in conjunction 
with the SR to implement multi-scale SR in Momennejad and 
Howard (2018).

In summary, spatiotemporal sequences are thought to be  the 
neural substrates for human episodic memory that is vivid and rich 
with spatiotemporal and other multimodal information such as 
olfaction; the smell of our mother’s cooking can take us back to our 
childhood in a flash. The hippocampus is thus thought to bind all 
these features together into a coherent representation of memory. 
Understanding how the reward learning system utilizes the 
information encoded in hippocampal sequences representing such a 
vast diversity of information to guide decisions is an exciting direction 
of research for the decision-making field.

9. Beyond the rodent hippocampus

Extending the findings from rodent studies to humans is 
important to understand the mechanisms of decision-making. 
However, the techniques used to study the precise timing of 
hippocampal sequences are difficult to directly be applied to human 
research for various reasons. First, electrophysiological recordings are 
invasive, and are therefore only performed on patients who are being 
monitored for surgical removal of epileptic tissue. These patients often 
have altered brain activity and impaired decision-making, making it 
difficult to study what happens in a healthy individual. Having access 
to a good sample size of patients is an additional challenge. Second, 
non-invasive techniques such as fMRI are useful to study healthy 
individuals, but have poorer temporal resolution, making it a challenge 
to study hippocampal sequences such as SWRs and theta sequences 
which occur on the scale of milliseconds.

Despite these challenges, research in humans is catching up with 
the advances made in rodent spatial navigation with the 
demonstrations of place, grid, and time cells, using single unit 
recordings and fMRI (Ekstrom et al., 2003; Doeller et al., 2010; Jacobs 
et  al., 2013; Umbach et  al., 2020). In addition, hippocampal 
reactivation of both spatial and non-spatial representations as well as 
SWRs have been demonstrated in humans and are positively 
associated with memory performance, as known from rodent studies 
(Axmacher et al., 2008; Schapiro et al., 2018; Liu et al., 2019; Norman 
et al., 2019; Schuck and Niv, 2019; Jacobacci et al., 2020). A recent 
report has also shown evidence supporting hippocampal sequence 
generation in the human medial temporal lobe (Vaz et al., 2023).

Recent research with human subjects offers promising avenues for 
the role of the hippocampus in learning and decision-related activity. 
Using fMRI in infants, Ellis et al. (2021) showed that the hippocampus 

supports statistical learning from an early age. In addition, the 
hippocampus has been implicated in approach-avoidance decision-
making (O’Neil et  al., 2015; Ito and Lee, 2016) as well as in MB 
planning (Miller et  al., 2017; Vikbladh et  al., 2019), thereby 
demonstrating the relevance of considering hippocampal 
contributions to different types of decision-making, especially 
memory-guided decision-making, which is a rather novel area of 
interest (Weilbächer and Gluth, 2017; Mızrak et al., 2021).

Despite being limited by measuring vascular responses and poor 
spatiotemporal resolution, fMRI offers whole-brain access, which is 
not as easy in rodents with current techniques. This has led to deeper 
insights on how the hippocampus, in conjunction with the prefrontal 
cortex and striatum, represents abstract information during decision-
making tasks, such as representations of task structure from 
experience in conjunction with the orbitofrontal cortex (Mızrak et al., 
2021), the combination of spatial and non-spatial variables during 
goal-directed decision-making (Viard et al., 2011), and deliberation 
during value-based decision making (Bakkour et al., 2019). Ross et al. 
(2011) demonstrated increased functional connectivity between the 
hippocampus, striatum, and prefrontal regions during distinct phases 
of a context-dependent decision-making task, suggesting that there is 
extensive crosstalk between these regions, but the full spectrum of 
interactions and how they give rise to behavior have not been 
delineated yet.

Such whole-brain studies have also led to the characterization of 
other distinct brain network modules, such as the dorsal and ventral 
attention networks, the default mode network, and the visual network 
to name a few (Power et al., 2010).

These brain networks have confirmed that regions that were 
thought to work in synchrony are indeed co-modulated during tasks 
such as attention, memory, and decision-making. Notably, the 
hippocampus along with the prefrontal cortex is part of the default 
mode network (DMN), a network thought to be active when we are 
not engaged in any task but are introspecting, deliberating, or recalling 
past experiences (Buckner and Carroll, 2007). In addition, 
hippocampal SWRs are accompanied by increased cortical activation 
in nodes of the DMN (Kaplan et al., 2016), suggesting that SWRs and 
associated replay events are processes having potential brain-wide 
consequences. Using wide-field voltage imaging in mice, the 
retrosplenial cortex was shown to exhibit the highest degree and the 
shortest latency activation post-SWR (Abadchi et al., 2020). Linking 
the various nodes of the DMN with specific hypotheses about their 
function in decision-making would offer a wealth of knowledge about 
the component processes of decision-making. A better understanding 
of these network-level dynamics will emerge via the integration of 
structures hitherto ignored in the field, such as the hippocampus.

10. Hippocampal contributions to 
understanding the self and lifelong 
real-world decision making

The field of neuroeconomics is predominantly inundated with 
research in value-based decision-making, focusing on the striatum 
and prefrontal cortex. As the self embodies a person’s lifelong decision-
making and experience, can a deeper and more comprehensive 
mapping of the interaction of hippocampus with the striatum and 
prefrontal regions open new horizons for scaling up the impact of 
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neuroscience research on real-world applications for better mental 
health and wellbeing?

The self is at the core of our mental life, creating a continuous 
thread guiding decision-making over the course of a person’s lifespan 
and as a function of real-time and cumulative experience and context 
(Koban et al., 2021). From an evolutionary perspective, self-in-context 
representations are internal models of situations and underlying 
causal structures that bear on future survival and wellbeing. The self 
has been studied across disciplines spanning philosophy, psychology, 
and more recently, neuroscience (see Koban et al., 2021 for review). 
Autobiographical memory is at the core of the self. Other central 
features of the self may include feelings of agency, feelings of 
ownership towards the body, experiencing the self as a unit, and self-
referential labeling of stimuli. A continuous sense of self can guide our 
real-time decision-making and behavior while providing a sense of 
continuous agency and identity across the lifespan.

Gallagher (2000) posited the self as an interaction between an 
episodic, executive minimal self and a temporally extended narrative 
self, which includes past memories and future intentions as well as a 
sense of continuity between these temporal states. This account 
therefore suggests that episodic memory, specifically, having a sense 
of time and context, is essential for the construction of the narrative 
self. This begs the question of linking hippocampal function to an 
understanding of the emergence of the self.

Koban et  al. (2021) further suggest that self-in-context 
representations are simultaneously generative (i.e., allows one to 
simulate the consequence of potential actions), interpretive (i.e., 
enables the understanding of incoming sensory signals), attributive 
(i.e., assigns latent causes to sensory events), instructive (causal 
attributions shape what is learned from experience), predictive (in that 
they predict what one will experience in a given condition and 
context), and finally motivational, as they can mobilize cognitive, 
affective, and physiological systems for physical and mental well-being.

The multi-functional view of the self featured above provides 
important insights on how the double integration of the self and 
hippocampus in current neuroeconomics approaches to value-based 
choice can advance a real-world decision-making framework that is 
biological, culturally and psychologically plausible. As mentioned at 
the onset, the prevailing assumption in decision neuroscience and 
neuroeconomics is that the brain reward system encodes 
representations of the online expected value of stimuli and/or actions 
through the ventromedial prefrontal cortex (vmPFC), supplementary 
motor area, and the striatum (Balleine et al., 2007; Fellows and Farah, 
2007; Kennerley and Walton, 2011; Lee et al., 2021; Aquino et al., 
2023). The brain then is thought to make a real-time choice based on 
the MF and/or MB strategies to maximize future expected rewards. 
Inter-temporal choice is often investigated using delay-discounting 
functions which account for the reduction in the net present value of 
future outcomes.

The field of neuroscience has started to explore the neural 
mechanisms underlying our sense of self (see Herbert et al., 2016; 
Schaefer and Northoff, 2017 for review), with the self being seen as a 
multimodal and multiscale neural-psycho-social structure 
(Kotchoubey et al., 2016) only partly overlapping with brain reward 
systems (Northoff and Hayes, 2011; Lipsman et al., 2014), tied to 
contextual dynamics of temporal and spatial organization of 
spontaneous brain activity (Zhang et al., 2018), providing life course 
psychological continuity to an individual, and guiding immediate as 

well as long term real-world decisions (Herbert et al., 2016). Finally, it 
can also be linked to the environment (or social spheres) through the 
properties of embodiment and embeddedness (Schaefer and 
Northoff, 2017).

We now know that accounts of value-based decision-making, 
(and potentially also of the self), are incomplete without the 
incorporation of the hippocampus and would therefore like to usher 
a change in the framework of current decision-making research by 
advocating that the hippocampus is a crucially essential component 
underlying decision-making and the self.

As discussed in this review, the hippocampus can potentially 
implement a predictive framework of the environment, exemplified 
by the neural correlates of SR models. As shown by multi-scale SR 
models, this predictive representation can span multiple timescales. 
Understanding how memory and time are integrated in the brain 
offers an attractive avenue for understanding the relationship between 
the episodic memory system, the self, and decision-making, mediated 
by the hippocampus and the DMN, in conjunction with the striatal 
reward learning system. In addition to the hippocampus, interval 
timing is also represented in the prefrontal and parietal cortical areas 
and is thought to be integrated via the striatum (Leon and Shadlen, 
2003; Lustig et al., 2005; Kim et al., 2013; Howard et al., 2015).

Finally, recent neuroimaging evidence sheds light on non-value 
signals from the hippocampus and the rest of the DMN (Bakkour et al., 
2019). Together, these signals contribute to decision-making through the 
integration of different timescales into a person’s real-time experience 
and choice, which, over time, accumulates in a temporally extended 
representation of the self (Biderman et al., 2020). Thus, the self becomes 
a key thread that connects episodic decision-making with longer-term, 
non-value factors that are left out of classical decision models.

11. Discussion

Due to the multi-disciplinary nature of the decision-making field, 
several attractive directions of research present themselves in the 
concluding section of this article, having far-reaching implications not 
only in the fields of computational modeling, but also spatial 
navigation, neuroeconomics, marketing, and health. Advances in 
these disciplines will, in turn, provide an integrative account of the 
mechanisms underlying real-world decision-making along a person’s 
life course.

We now have powerful computational tools capable of solving a 
variety of “here-and-now” decision-making tasks and are beginning 
to understand the mechanisms behind credit assignment of future 
states, which evidence is important during credit assignment how 
belief updating is integrated into the memory system, and how this 
leads to changes in policy. The hippocampus is poised to serve crucial 
roles in these processes, making it relevant to decision-
making researchers.

One exciting avenue in accounting for the role of hippocampal 
replay in decision-making over time lies in the domain of continual 
learning (CL). In CL, a model must continually learn new tasks, while 
maintaining its performance on previously learnt tasks. A major 
challenge in CL is catastrophic forgetting, in which performance on 
previously acquired tasks drops due to interference with learning of a 
new task. However, we know that animals can learn many different 
concepts throughout their lifetime without forgetting previously learnt 
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ideas. Interestingly, using replay to counteract catastrophic forgetting is 
emerging as a popular approach in the field (van de Ven et al., 2020; 
Kowadlo et al., 2022; Stoianov et al., 2022). Specifically, models have 
begun to utilize generative replay (van de Ven et al., 2020; Stoianov et al., 
2022), in which fictive experiences sampled from a generative model are 
replayed. This approach is computationally advantageous since it does 
not require extensive storage capacity to keep a record of all previous 
experience but is also biologically plausible since not all replay events are 
an exact recapitulation of past events. Stoianov et al. (2022) went one step 
further to show that an agent using generative replay that prioritizes 
“surprising” experiences can outperform CL agents using exact replay.

However, the role of theta sequences in a CL agent is less clear. 
SWRs and theta sequences co-exist in the hippocampus with an 
inverse relationship; ripples occur during so-called offline states, while 
theta sequences occur during real-time decision-making. Novel 
computational approaches can provide answers to which process is 
important when and for what kind of tasks. Specifically, 
disambiguating the exact roles that these oscillations play in the 
context of learning, consolidation and planning will directly be of 
benefit for biologically plausible modeling of neural representations 
and behavior. In addition, understanding the content and valence 
associated with hippocampal sequences and how these factors are 
integrated with the striatal and prefrontal systems will bring more 
clarity in our understanding of the meaning behind the activation of 
brain networks such as the DMN post-ripple.

CL models using generative replay approaches may also contribute 
to an understanding of autobiographical memories. By continuously 
encoding and replaying episodes, such agents may provide an account of 
events that persists through time. By combining the past with the present 
and prospecting about the future, this can advance the understanding of 
the neural correlates of the sense of self and its roles in episode-specific 
and lifelong learning and reward (Addis et al., 2011; Stoianov et al., 
2022). In fact, a recent animal-model based study (Miller et al., 2022) 
provides strong support in favor of adopting a holistic approach towards 
decision-making research that incorporates learning, multi-scale 
approaches and continuity, while moving away from simplistic value-
based decision-making. This will lead to better mechanistic insights into 
how the human self utilizes reward learning in real-world choice 
behaviors, which is a very promising research direction.

12. Conclusion

The overarching message of this article is to portray the 
hippocampus as a key but understudied aspect of human decision-
making. By using past information in the form of memory to guide 
our future actions, the hippocampus could well be  a core neural 
substrate of decision-making per se, and its interaction with the 
striatum and prefrontal regions – continuously updating and 
modulating the MF-MB balance, thereby impacting real-world 
decision-making in the “here and now” as well as on the long term, 
with the accumulation of experiences and contexts as the self, 
unfolding over time and across scales and dimensions (Northoff and 
Hayes, 2011; Koban et al., 2021; Dubé et al., 2022).

Our species has reached its current state through the evolution of 
a highly sophisticated brain engaging in decision-making that ranges 
from canonical MF and MB to something in between, with the self 
being one of the most distinguishing facets of human evolution. This 
enables real-world behavior to be adaptive to an ever more complex 

and dynamic immediate environment as well as to social institutions 
and globe-spanning digital communities. Creating a world that 
supports multiscale computational efficiency and resilience in human 
and machine is a pressing necessity (Dubé et  al., 2022). While 
conceptual, methodological and computational challenges in 
integrating space, time, and memory are abundant for humans 
(Gershman et al., 2015) and machines (Rahwan et al., 2019), recent 
developments in animal and human brain research (Howard et al., 
2014; Eichenbaum, 2017) are opening pathways to next-generation 
precision convergence science (Dubé et al., 2022) that not only builds 
upon but goes beyond the convergence of -omics, engineering and 
clinical sciences that have been found life-saving, for instance in the 
context of cancer and the COVID-19 pandemic (Sharp and Langer, 
2011). The time is ripe for a world-saving convergence between 
neuroscience, neuroeconomics, management, and related disciplinary 
research that examines multiscale mechanisms in and between 
humans, machines, and human-made systems to converge in novel 
ways to accelerate real world solutions at scale.
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