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Experience is known to facilitate our ability to interpret sequences of events

and make predictions about the future by extracting temporal regularities in

our environments. Here, we ask whether uncertainty in dynamic environments

affects our ability to learn predictive structures. We exposed participants to

sequences of symbols determined by first-order Markov models and asked

them to indicate which symbol they expected to follow each sequence. We

introduced uncertainty in this prediction task by manipulating the: (a) probability

of symbol co-occurrence, (b) stimulus presentation rate. Further, we manipulated

feedback, as it is known to play a key role in resolving uncertainty. Our results

demonstrate that increasing the similarity in the probabilities of symbol co-

occurrence impaired performance on the prediction task. In contrast, increasing

uncertainty in stimulus presentation rate by introducing temporal jitter resulted in

participants adopting a strategy closer to probability maximization than matching

and improving in the prediction tasks. Next, we show that feedback plays a

key role in learning predictive statistics. Trial-by-trial feedback yielded stronger

improvement than block feedback or no feedback; that is, participants adopted

a strategy closer to probability maximization and showed stronger improvement

when trained with trial-by-trial feedback. Further, correlating individual strategy

with learning performance showed better performance in structure learning for

observers who adopted a strategy closer to maximization. Our results indicate

that executive cognitive functions (i.e., selective attention) may account for this

individual variability in strategy and structure learning ability. Taken together,

our results provide evidence for flexible structure learning; individuals adapt

their decision strategy closer to probability maximization, reducing uncertainty

in temporal sequences and improving their ability to learn predictive statistics in

variable environments.
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Introduction

Successful everyday interactions entail that we identify
spatiotemporal regularities (i.e., patterns that repeat frequently)
in our cluttered and dynamic environments and exploit them
to predict future events. Learning and experience are known
to facilitate our ability to extract the environment’s statistics
(Perruchet and Pacton, 2006; Aslin and Newport, 2012). For
example, humans become sensitive to stimuli (shapes, tones or
syllables) that co-occur following a spatial or temporal pattern
through repetitive exposure (Saffran et al., 1996a, 1999; Chun, 2000;
Fiser and Aslin, 2002; Turk-Browne et al., 2005).

Our recent work demonstrates that individuals extract the
statistics that govern the temporal structure of events and exploit
them to make predictions about future events (Wang et al., 2017a).
Further, we show that this learning of predictive structures relates
to the decision strategy of individuals. In particular, previous work
has highlighted the role of strategies in probabilistic learning and
decision making (Shanks et al., 2002; Erev and Barron, 2005; Acerbi
et al., 2014; Murray et al., 2015; Schulze et al., 2015). Humans
and animals are known to engage in probability matching (match
their choices probabilistically according to the underlying input
statistics) or probability maximization (maximize their success
by selecting the most probable outcomes) when making choices.
Previous work on decision making and learning has suggested that
experience shapes the selection of decision strategies (Rieskamp
and Otto, 2006; Fulvio et al., 2014). For example, humans adopt
different decision strategies to maximize performance and reduce
uncertainty given the demands of the training task. Yet, the
factors that determine individual decision strategies and influence
structure learning ability remain largely unknown.

Previous work provides evidence for the role of uncertainty in
perceptual decision making (Bach and Dolan, 2012). Uncertainty
may arise from sensory input and/or outcome. In particular,
noisy sensory signals (Dosher and Lu, 1998; Dayan and Daw,
2008; Hasson, 2017; Daikoku, 2018) or increased stochasticity
in temporal sequences (Rolke and Hofmann, 2007; Nobre and
van Ede, 2018) impact the difficulty of perceptual tasks. Further,
informative feedback is known to play a key role in resolving
uncertainty and facilitating perceptual decisions (Kluger and
DeNisi, 1996; Dayan and Abbott, 2001; Petrov et al., 2005).

Here, we test whether sensory uncertainty and feedback affect
decision strategy and structure learning in the context of a sequence
prediction task. In particular, we trained participants with temporal
sequences comprising unfamiliar symbols and determined by first-
order Markov models. Participants were exposed to these context-
based statistics (i.e., symbol probability is contingent on previous
symbols) and they were asked to judge whether a test symbol
that followed the sequence presentation matched the expected
symbol based on the preceding sequence. This sequence prediction
task allows us to track participant responses over time and
interrogate the decision strategy that individuals adopted during
learning. We introduced uncertainty in the task by manipulating:
(a) the probability of symbol co-occurrence, (b) the stimulus
presentation rate (i.e., introducing jitter in stimulus presentation
time). Further, we tested the effect of feedback on decision
strategy and structure learning. We reasoned that during training
individuals will adapt their decision strategies and performance

in the sequence prediction task. Our results demonstrate that: (1)
increasing the similarity in the probabilities with which symbol
contingencies appear in the sequence impaired performance on the
prediction task; (2) increasing uncertainty in stimulus presentation
rate by temporal jittering facilitated probability maximization and
performance; (3) trial-by-trial feedback enhanced performance
compared to block feedback or no feedback and facilitated
probability maximization, while uncorrelated feedback resulted in
limited improvement. Correlating individual strategies with post-
training performance showed that observers that adopted a strategy
closer to maximization showed better learning performance.
Finally, we show that attentional skill may account for individual
differences in decision strategy and structure learning ability.

Materials and methods

Observers

A total of 105 observers (40 males and 65 females, mean
age = 22.1 ± 0.3 years) participated in this study and they
were randomly allocated into different experimental groups. All
observers were naive to the aim of the study, had normal or
corrected-to-normal vision and gave written informed consent.
This study was approved by the University of Cambridge Ethics
Committee and the institutional review board of the Institute of
Psychology, Chinese Academy of Sciences.

Stimuli

Stimuli comprised 4 symbols chosen from Sabaean alphabet
and Ndjuká syllabary (Figure 1A). These symbols were highly
discriminable from each other and were unfamiliar to the
observers. Each symbol was presented at 6.5o of visual angle
in black on mid-gray background. Experiments were controlled
using Matlab and the Psychophysics toolbox 3 (Brainard, 1997;
Pelli, 1997). Stimuli were presented on a 21-inch CRT monitor
(1,024× 768 pixel, 100 Hz frame rate) at a distance of 60 cm.

Sequence design

We employed first-order Markov model (i.e., level-1) to
generate probabilistic sequences (Wang et al., 2017a). The level-
1 Markov model produces a sequence of symbols, where the
symbol at time i is determined probabilistically by the immediately
preceding symbol. We refer to the symbol presented at time i, s(i),
as the target and to the previous symbol s(i-1) as the context:

P(s(i)|s(i− 1), s(i− 2), . . . , s(1)) = P(s(i)|s(i− 1)).

At each time point in the sequence, the symbol that follows
a given context is determined probabilistically. The underlying
Markov model can be represented through the associated context-
conditional target probabilities. We used 4 symbols that we refer
to as stimuli A, B, C, and D. The correspondence between stimuli
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FIGURE 1

Trial and experimental design. (A) A total of 9 to 13 symbols were
presented one at a time in a continuous stream followed by a cue
and the test display. (B) Sequence design. For the first-order Markov
model (Level1), a diagram indicates states (circles) and transitional
probabilities (black arrow: high probability, e.g., 80%; gray arrow:
low probability, e.g., 20%). Transitional probabilities are shown in a
four-by-four conditional probability matrix, with rows indicating
temporal contexts and columns indicating the corresponding
targets. (C) Experimental design. In Experiment 1 (Group 1), a
sequence of symbols with context-conditional probability of 80%
vs. 20% were presented one after another with a fixed ISI. Block
feedback (i.e., score in the form of performance index) was
provided during training. In Experiment 2 (Group 2), the symbol
transitional probability was modified to 60% vs. 40%. In Experiment
3 (Group 3), visual stimuli appeared in a stream separated by jittered
ISI. In Experiment 4, we manipulated feedback: Group 4 was trained
with trial-by-trial feedback based on the symbol expected by the
pre-defined sequences, Group 5 was not provided with any
feedback, and Group 6 was trained with random feedback which
was uncorrelated to the participants’ responses.

and symbols was counterbalanced across participants. Specifically,
for level-1, the target depended on the item that immediately
preceded it. Given a context (the last seen symbol), only one of
two targets could follow (Figure 1B): one had a high probability
of being presented (e.g., 80% of occurrence) and the other a low
probability (e.g., 20% of occurrence). For example, when Symbol A
was presented, only symbols B or C were allowed to follow, and B
had a higher probability of occurrence than C.

Experimental design

We tested six groups of participants (Figure 1C). Experiment
1 (Group 1: N = 18) aimed to (a) replicate our previous findings
showing that exposure to temporal sequences facilitates observers’
ability to extract temporal structure for making predictions (Wang
et al., 2017a), and (b) test whether learning is maintained over time.
Specifically, for each trial, symbols (with probabilities of context-
target contingencies at 80% vs. 20%) were presented successively
with a fixed interstimulus interval (ISI). Feedback was given at the
end of each training block. In Experiments 2–4, we manipulated: (1)
context-conditional probability of symbol occurrence in sequences;

(2) stimulus presentation rate; (3) feedback (for more details see
“Training sessions”). Stimuli and procedures in Experiment 2–
4 were identical to Experiment 1 (a baseline experiment) apart
from the above design manipulations. In Experiment 2 (Group
2: N = 18), we modified the symbol transitional probability from
80% vs. 20% to 60% vs. 40%. In Experiment 3 (Group 3: N = 18),
visual stimuli appeared in a stream separated by jittered ISI.
In Experiment 4, we examined the role of feedback in learning
predictive structures: In contrast to participants in Group 1 who
were trained with block feedback, participants in Group 4 (N = 18)
were trained with trial-by-trial feedback, participants in Group 5
(N = 15) were trained without any feedback, and participant in
Group 6 (N = 18) were trained with uncorrelated feedback.

All participants underwent six sessions: one session involved
testing on cognitive tasks (i.e., working memory and selective
attention), the remaining five sessions involved testing and
training on the sequence prediction task using first-order Markov
sequences. Before and after training (pre- and post-training
sessions), participants were tested with structured sequences and
random sequences (i.e., all four symbols were presented with equal
probability 25% in a random order). To investigate whether the
learning effect was maintained over time, ten observers in Group
1 were re-tested 4 weeks after training.

Training sessions: Training comprised 23 blocks of structured
sequences (60 trials per block) that were conducted on four
consecutive days. For each trial (Figure 1A), a sequence of 9–13
stimuli appeared in the center of the screen, one at a time in a
continuous stream, for 100 ms each followed by a central white
fixation dot (i.e., ISI) for 400 ms on average. The ISI was fixed
at 400 ms, except for Group 3 in which the ISI was jittered; that
is the ISI in a given trial was chosen randomly from a uniform
distribution of values ranging between 100 and 700 ms and binned
in temporal windows of 20 ms (i.e., 100, 120, 140 ms etc.). The
end of each trial was indicated by a red-dot cue that was presented
for 400 ms. Following this, all four symbols appeared in the center
(2 × 2 grid) of the screen. Observers were asked to indicate
which symbol they expected to appear following the preceding
sequence by pressing a key corresponding to the location of the
predicted symbol. If no response was made within 2 s, a null
response was recorded and equal probabilities for each symbol
(0.25) were registered for this trial for further behavioral analyses.
The proportion of trials without responses was 0.9%. Following the
observer’s response, a circle appeared on the selected stimulus for
300 ms to highlight the observer’s choice. For Group 4 and Group
6, trial-by-trial feedback was provided by coloring this circle (green
vs. red signified “correct” vs. “incorrect” responses, respectively).
For Group 4 feedback was based on the symbol determined by
the pre-defined sequences using Markov models (Group 4: trial
feedback). For example, given a certain context A, symbol B follows
with 80% probability. If the participants select B consistently, they
will be “correct” 80% of the time and “incorrect” 20% of the time.
For Group 6 feedback was uncorrelated to observers’ responses
(Group 6: uncorrelated feedback). For other groups (Group 1–3,
5), the color of the circle was always white, simply indicating the
observer’s choice rather than providing feedback. Observers were
given feedback (i.e., score in the form of performance index (PI), see
“Behavioral analysis”) at the end of each block for Group 1–3 (block
feedback). Neither block feedback nor informative trial feedback
was provided for Group 5 (no feedback).
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Test sessions: To compare performance before and after
training, the pre- and post-training sessions included three blocks,
that is, two blocks of structured sequences interleaved with one
block of random sequences (i.e., all four symbols were presented
with equal probability 25% in a random order). Participants were
trained with structured sequences and tested with both structured
and random sequences to ensure that training was specific to the
trained sequences. Each block comprised 40 trials, during which
participants performed the same sequence prediction task as in the
training sessions. The stimuli and procedure were identical to the
training sessions but no feedback was given during test sessions.

Cognitive testing

Memory: visual short-term memory
The working memory task was designed based on the sequential

working memory task by Luck and Vogel (1997). Colored dots were
displayed on a gray background for 500 ms, followed by an inter-
stimulus interval of 1,000 ms. Then the dot display re-appeared
with one of the dots highlighted by a white square. Participants
reported whether the highlighted dot had remained the same color
on the second presentation. An initial display of two dots was used.
We manipulated the number of dots in the display using a two-
down one-up staircase, resulting in 70.7% performance. Working
memory thresholds (i.e., number of dots in the display) were
calculated by averaging the last two-third reversals in each staircase.
For each trial, each dot was randomly assigned a color, and one
dot was randomly chosen as the target. Each dot had a radius of
0.44o in visual angle and dots were displayed in random locations
within a 10 × 10 grid (jittered ± 0.36o). Each run consisted of 10
staircase reversals, and participants completed 3 runs, after which
we computed the average threshold as their working memory score.
In this task, a higher score (greater number of items in display)
denotes better performance.

Attention: useful field of view
We used the Useful Field of View task to assess selective

attention (Edwards et al., 2005, 2006). This task was performed
using the UFOV R© testing software (Visual Awareness Inc.) and the
refresh rate of the monitor was set to 60 Hz as required. Each trial
started with a fixation bounding box (1-s duration), followed by the
test stimuli (variable duration between 16.7 and 500 ms), a white
noise visual mask to control for after images (1-s duration) and
the response screen (displayed until a response was made). The
central stimulus (a silhouette of 1.9o

× 1.4o of a car or a truck)
was presented on a black background inside a white bounding box,
with a simultaneously presented peripheral stimulus (1.9o

× 1.4o

silhouette of a vehicle) which was fixed at 10o retinal eccentricity
from the central stimulus at one of the eight radial locations. The
target stimuli were embedded in the context of distractors (47
triangles of the same size and luminance as the targets). Participants
were asked to ignore the triangles and point out whether the central
stimulus comprised a car or a truck, as well as the location of the
peripheral target. Using a double-staircase method, the duration
of the display within each task varied between 16.7 and 500 ms.
This allowed us to establish the minimal display duration at which
the participant could correctly perform the tests 75% of the time.
Participants completed three runs, after which we computed the

average threshold as their selective attention score. Thus, a lower
score (shorter display duration) indicates better performance in this
task.

Behavioral analysis

Performance index (PI)
We assessed participant responses in a probabilistic manner,

following our previous work (Wang et al., 2017a). We computed
a performance index per context that quantifies the minimum
overlap (min: minimum) between the distribution of participant
responses (Presp) and the distribution of presented targets (Ppres)
estimated across 60 trials per block by:

PI(context) =
∑

target
min (Presp(target|context),

Ppres(target|context))

The overall performance index is then computed as the average
of the performance indices across contexts, PI(context), weighted
by the corresponding context probabilities P(context):

PI =
∑

context
PI(context) · P(context)

To compare across different conditions, we defined a
normalized PI measure that quantifies participant performance
relative to random guessing. We computed a random guess
baseline; i.e., performance index PIrand that reflects participant
responses to targets with equal probability for each target for a
given context for level-1 (PIrand = 0.45 for probability of 80% vs.
20%, PIrand = 0.50 for probability of 60% vs. 40%). To correct for
differences in random-guess baselines, we subtracted the random
guess baseline from the performance index (PInormalized = PI–
PIrand). PI improvement was the difference in normalized PI
between pre- and post-training sessions. We used 10% above
chance after training (i.e., PInormalized ≥ 10% at the post-training
session) as criterion for learning. Participants who did not meet this
criterion were identified as weak learners.

Strategy choice and strategy index
Following our previous work (Wang et al., 2017a), we

quantified each participant’s strategy, by comparing individual
participant response distributions (response-based model) to two
baseline models: (i) probability matching, where probabilistic
distributions are derived from the Markov models that generated
the presented sequences (Model-matching) and (ii) a probability
maximization model, where only the single most likely outcome
is allowed for each context (Model-maximization). We used
Kullback–Leiber (KL) divergence to compare the response
distribution to each of these two models. KL is defined as follows:

KL =
∑

context
M (context)

∑
target

M
(
target|context

)
log (

M(target|context)
R
(
target

)
|context

)

for level-1 model where R() and M() denote the conditional
probability distribution derived from the human responses and the
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models (i.e., probability matching or maximization), respectively,
across all the conditions.

We quantified the difference between the KL divergence
from the response-based model to Model-matching and the
KL divergence from the response-based model to Model-
maximization. We refer to this quantity as strategy choice indicated
by 1KL(Model-maximization, Model-matching). We computed
strategy choice per training block, resulting in a strategy curve
across training for each individual participant. We then derived
an individual strategy index by calculating the integral of each
participant’s strategy curve and subtracting it from the integral
of the exact matching curve, as defined by Model-matching
across training. We defined the integral curve difference (ICD)
between individual strategy and exact matching as the individual
strategy index. Therefore, strategy index is a continuous measure
that captures the strategy that individuals adopt over time on
a continuous scale between matching and maximization. Zero
strategy index indicates that the participant response distribution
matches the probability distribution of the presented sequence.
Participant performance deviating from the matching model may
result in a positive or negative strategy index. Overestimating the
probability of the most probable context-target contingency in the
sequence results in a positive strategy index, indicating that the
participant’s strategy ranges between matching and maximization.
In contrast, underestimating the probability of the most probable
context-target contingency in the sequence results in a negative
strategy index, indicating that the participant’s strategy ranges
between matching and a random model of response (that is,
participants choose all context-target contingencies with equal
probability). Thus, we interpret strategy index values close to zero
as strategy closer to matching, and higher positive values as strategy
deviating from matching toward maximization.

Although both performance index and strategy index provide
a quantitative evaluation of the difference between the probability
distributions of context-target contingencies corresponding to the
generative sequence models and the participant responses, they
serve different purposes. In particular, PI employs the minimum
overlap between the two distributions, as an indication of how close
model and response distributions match. Strategy index indicates
the difference between participant responses and a reference
model (i.e., matching or maximization model), using a stricter
information-theoretic evaluation of the distributional difference,
as higher nuance is needed for evaluating whether the participant
responses follow either the generative model, the maximization
approach, or uniformly random guessing.

Statistical analysis

We conducted repeated measures ANOVA and t-tests in IBM
SPSS. All statistical tests were two tailed. We also conducted
Bayesian statistics in JASP (JASP Team, 2023, Version 0.17.2) with
default Cauchy prior (r scale = 0.707). The Bayes factor (BF10)
quantifies the strength of evidence in favor of the data supporting
the alternative rather than null hypothesis: BF10 < 1 provides
evidence favoring the null hypothesis with BF10 between 1/10 and
1/3 providing substantial evidence for the null hypothesis (Kass and
Raftery, 1995; Wagenmakers et al., 2011); while BF10 > 1 provides
evidence favoring the alternative hypothesis.

Results

Experiment 1: learning temporal statistics
with block feedback

To test whether individuals adapt to the environment’s
statistics, we trained eighteen participants (Group 1) on multiple
training blocks over four sessions, during which they were
presented with structured sequences of symbols that were
determined by the first-order Markov model (i.e., context length of
1, the occurrence of a particular symbol is conditionally dependent
on the immediately preceding symbol) and were asked to perform
a prediction task; that is, participants indicated the symbol they
expected to appear following the preceding sequence. During the
training phase, the visual stimuli were presented one after another
at a fixed rate of 2 Hz. Participants were given block feedback;
that is, the Performance Index (PI) score (indicating how closely
the probability distribution of participant responses matches the
probability distribution of the presented symbols) was shown to
the participants at the end of each block (i.e., 60 trials). For
example, random guess with equal probability for each target at
a given context (80% vs. 20% of 1st order Markov model) results
in PI of approximate 0.45; PI of 1 indicates perfect matching
between probability distributions for participant’s responses and
presented sequences. Higher PI indicates better performance. To
quantify the learning effect, we compared the normalized PI
(i.e., after subtracting performance based on random guessing)
before and after training. A repeated measures ANOVA showed
a significant session effect [F(1,17) = 36.72, p < 0.001], indicating
that repeated exposure facilitates learning of structured sequences
(Figure 2). Specifically, most observers (13/18) improved in the
prediction task; only five participants showed performance less
than 10% above random guessing (i.e., weak learners) after training.
The mean PI improvement of Group 1 was 23.5 ± 3.9%. The
learning curves in Figure 2A indicate that performance improves
throughout training. These results corroborated our previous
findings (Wang et al., 2017a) showing that participants succeed
in extracting regularities and making predictions about upcoming
events.

To examine whether the learning effect we observed was
maintained over time, ten participants were called back for
an additional test session 4 weeks after training (spaced by
27.2 ± 4.8 days). Performance in this test session was significantly
higher than the pre-training test [F(1,9) = 38.54, p < 0.001]
(Figure 2B). Mean PI improvement immediately after and 4 weeks
after training was 29.2 ± 3.4% and 25.9 ± 4.2%, respectively and
did not differ significantly between these post-tests [t(9) = 1.06,
p = 0.319, BF10 = 0.486], suggesting that the training-dependent
improvement we observed was sustained for a prolonged time.

Experiment 2: manipulating
context-conditional probability of
symbol occurrence

In this experiment we asked whether increasing uncertainty
during the training by manipulating the context-conditional
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FIGURE 2

Experiment 1. (A) Behavioral performance. Performance index is shown across training (solid circles) blocks, pre-training test and post-training test
(open circles). Data are fitted separately for participants who improved during training (learners, black symbols, N = 13) and those who did not
improve (weaker learners, gray symbols, N = 5). Random guess baseline is indicated by dotted lines. (B) Normalized PI for test sessions. Data are
shown for all participants in Group 1 (N = 18, left panel) and those who completed re-test session (N = 10, right panel). Performance is shown before
(gray bars), immediately after (black bars) and 4 weeks after training (dotted bars). Error bars indicate standard error of the mean.

probability of symbol occurrence affects learning in the context
of the prediction task. In particular we changed the symbol
transitional probability from 80% vs. 20% (Experiment 1) to 60%
vs. 40%, while keeping the context and targets identical to the
model used in Experiment 1. We hypothesized that decreasing
the discriminability of contingency probabilities would impair
learning. We trained a new group of eighteen observers (Group
2) on the prediction task using the less discriminable contingency
probabilities (60% vs. 40%).

Figures 3A, C show that this manipulation resulted in
low PI improvement (4.6 ± 2.2%). A two-way mixed ANOVA
comparing performance before and after training between Group 1
(Experiment 1) and Group 2 (Experiment 2) showed a significant
interaction of session and group [F(1,34) = 18.12, p < 0.001].
There was no significant difference between groups for the pre-
training performance [F(1,34) = 0.11, p = 0.738]. In contrast,
performance after training for Group 1 was significantly higher
than Group 2 [F(1,34) = 16.58, p < 0.001]. These results suggest
that probability of context-target contingencies affects learning
of temporal statistics; that is, making the probabilities of symbol
co-occurrence less discriminable compromises performance and
learning in the prediction task. Figure 4 demonstrates participants’
ability to extract context-target contingencies over time across
groups. Tracking response probability distributions over training
shows that participants did not simply underestimate (e.g., 50%
vs. 50%) or overestimate (e.g., 70% vs. 30%) the probabilities of
the contingencies. In contrast, they responded close to random-
guess (i.e., nearly equal probability for each symbol in a given
context), suggesting that less discriminable probabilities of symbol
co-occurrence (i.e., Experiment 2) make it difficult to extract the
behaviorally relevant statistics.

Experiment 3: manipulating uncertainty
in stimulus presentation rate by temporal
jitter

Previous studies have shown that rhythmic stimulation that
induces strong temporal expectation facilitates processing of events

(Jones et al., 2002; Schroeder and Lakatos, 2009; Rohenkohl et al.,
2012). Here, we tested whether disrupting rhythmic stimulation by
introducing temporal jitter disrupts learning in the prediction task.
In particular, we varied the ISI between successive stimuli in a trial.
That is, in Group 1, the stimuli were presented at a fixed rate of
2 Hz and the ISI was fixed at 400 ms. In contrast, in Experiment
3 (N = 18, Group 3) the ISI was jittered, ranging from 100 to
700 ms. We reasoned that jittering the ISI would prevent temporal
expectation and may impair learning of temporal statistics.

In contrast to this prediction, our results show that learning
was maintained when participants exposed to sequences of symbols
at an arrhythmic presentation rate (i.e., there was no significant
difference between Group 1 and Group 3). Specifically, training
resulted in a significant improvement for most participants in
Group 3 (13/18) except five participants who showed little
improvement (i.e., performance after training less than 10% above
random guessing) (Figure 3B). The mean PI improvement of
Group 3 was 21.0 ± 3.5%. A two-way mixed ANOVA comparing
across Experiment 1 and Experiment 3 with Session (Pre vs. Post)
and Group (Group 1 vs. Group 3) showed a significant main effect
of session [F(1,34) = 72.81, p < 0.001], consistent with enhanced
performance after training. There was no significant main effect
of group [F(1,34) = 1.79, p = 0.190] nor interaction between
session and group [F(1,34) = 0.22, p = 0.639], indicating similar
improvement across groups despite temporal jitter in Group 3
[t(34) = 0.47, p = 0.639, BF10 = 0.351].

Decision strategies for learning temporal
statistics

We next asked whether increasing temporal uncertainty by
manipulating the stimulus presentation rate affects participant
decision strategies when making predictions. Previous work on
probabilistic learning and decision making has proposed that
individuals adopt decision strategies ranging from matching to
maximization when making probabilistic choices (Shanks et al.,
2002; Erev and Barron, 2005; Acerbi et al., 2014; Murray et al.,
2015; Schulze et al., 2015). We have previously shown that in
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FIGURE 3

Experiment 2 and Experiment 3. (A) Mean Performance index across test and training blocks for Group 2 (Experiment 2). Data are fitted separately for
participants who improved during training (learners, black symbols, N = 5) and those who did not improve (weak learners, gray symbols, N = 13).
(B) Mean Performance index across test and training blocks for Group 3 (Experiment 3). Data are fitted separately for participants who improved
during training (black symbols, N = 13) and those who did not improve (gray symbols, N = 5). (C) Normalized PI pre- and post-training for Group 2
and Group 3. Data are shown for all participants. Error bars indicate standard error of the mean. (D) Box plots of strategy index show individual
variability for learners in Group 3 and Group 1 (Experiment 1). The upper and lower error bars display the minimum and maximum data values, and
the central boxes represent the interquartile range (25th–75th percentiles). The thick line in the central boxes represents the median. Crosses
denote outliers.

the context of our prediction task, participants are exposed to
stochastic sequences and use these strategies when learning the
probabilities of different outcomes (Wang et al., 2017a). Modeling
the participants’ responses allows us to quantify their decision
strategy. Specifically, participants may adopt (1) probability
matching (that is, match their choices to the relative probabilities
of the context-target contingencies presented in the sequences); or
(2) deviate from matching toward maximization (that is, choose
the most likely outcome in a given context). To quantify these
strategies, we computed a strategy index that indicates participant’s
preference (on a continuous scale) for responding using probability
matching versus maximization. Figure 3D illustrates variability
of strategy index for learners from Group 1 and Group 3. The
strategy index for Group 1 was not significantly different from
matching [that is, zero strategy index; t(12) = 1.32; p = 0.213,
BF10 = 0.567], while the strategy index for Group 3 was significantly
higher than zero [t(12) = 8.93; p < 0.001]. Comparing individual
strategy across groups showed significantly higher strategy index
for Group 3 than Group 1 [t(24) = 3.14, p = 0.004], suggesting

that disrupting rhythmic stimulation by temporal jitter results to
a decision strategy closer to maximization.

Correlating learning performance (i.e., Normalized PI after
training) with strategy index showed a significant positive
relationship (r = 0.754, p < 0.001 for Group 1 and Group 3,
N = 36), suggesting that maximization strategy relates to improved
performance in the prediction task. This relationship may explain
the surprising result we observed for Group 3; that is, learning
was maintained when temporal jitter was introduced. Adopting
a strategy closer to maximization may facilitate learning when
uncertainty in stimulus presentation rate is increased due to
temporal jitter.

Experiment 4: manipulating feedback

Theoretical work has suggested that supervised, error-
correcting learning mechanisms rely on external feedback (Dayan
and Abbott, 2001). To understand the role of feedback in
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FIGURE 4

Participant response distributions for conditional probabilities of context–target contingencies across test and training blocks in Experiment 1–4.
Red and blue lines indicate the conditional probabilities derived from participant responses of the frequent (e.g., 80%) and infrequent (e.g., 20%)
symbols, respectively, for the given contexts. Green lines indicate the averaged probability of responding to one of the two symbols that were not
allowed as next symbols for the given contexts. Solid lines indicate mean across participants and shading indicates 95% CI.

learning temporal statistics, we trained three additional groups of
participants with (a) trial-by-trial feedback based on the symbol
expected by the pre-defined sequences (Group 4, Figure 5A); (b)
no feedback (Group 5, Figure 5B); (c) uncorrelated feedback, that
is, random trial-by-trial feedback that was uncorrelated to the
observers’ responses (Group 6, Figure 5C).

Figure 5D shows mean performances before and after training
per group. A two-way mixed ANOVA showed a significant
interaction of session and group [F(2,48) = 12.69, p < 0.001],
suggesting that performance improvement differed across groups.
PI improvement for Group 4, Group 5, and Group 6 was
33.2± 3.6%, 19.0± 3.9%, and 8.6± 3.3%, respectively. Specifically,
trial-by-trial feedback (Group 4) resulted in most participants
(17/18 learners) showing improvement in the task that was on
average higher than the improvement observed for the other groups
[Group 4 vs. Group 5: t(31) = 2.70, p = 0.011; Group 4 vs.
Group 6: t(34) = 5.04, p < 0.001]. Most participants improved
in the task even without feedback (12/15 learners) and there was
no significant difference in performance between block feedback
and no feedback [Group 1 vs. Group 5: t(31) = 0.81, p = 0.427,
BF10 = 0.428]. However, providing uncorrelated feedback resulted
in limited improvement [i.e., two thirds participants showed < 10%
improvement; Group 5 vs. Group 6: t(31) = 2.06, p = 0.047], and
nearly half participants (8/18) showed performance less than 10%
above random guessing in the prediction task after training.

We then compared participant decision strategies across
groups to test whether feedback modulates decision strategy

(Figures 4, 5E). A one-way ANOVA on strategy index showed
a significant effect of group [F(2,48) = 15.70, p < 0.001]. For
participants who trained with trial-by-trial feedback (Group 4),
the strategy index was significantly higher than zero [t(17) = 5.23,
p < 0.001] and higher than the strategy index for groups that
trained with no feedback or uncorrelated feedback [Group 4
vs. Group 5: t(31) = 2.94, p = 0.006; Group 4 vs. Group 6:
t(34) = 5.91, p < 0.001], suggesting that participants adopted
a strategy closer to maximization. In contrast, participants who
trained without feedback (Group 5) showed strategy index that
did not differ significantly from matching [that is, zero strategy
index, t(14) = 0.80, p = 0.436, BF10 = 0.347], suggesting that
participants learned by matching the probability distribution of the
presented context-target contingencies. Due to the lower number
of participants who improved when trained with uncorrelated
feedback (Group 6), the strategy index in this group was lower
than zero [t(17) = −2.78, p = 0.013] and significantly lower than
Group 5[t(31) = −2.13, p = 0.041]. These results suggest that trial-
by-trial informative feedback facilitates maximization and learning
of temporal statistics.

Correlating strategies to learning
performance

We further tested whether individual strategies relate
to learning performance (Figure 6). Combining data across
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FIGURE 5

Experiment 4. (A) Mean Performance index across blocks for Group 4 (trial-by-trial feedback). Data are fitted separately for participants who
improved during training (learners, black symbols, N = 17) and one participant who did not improve (weak learners, gray symbols). (B) Mean
Performance index across blocks for Group 5 (no feedback). Data are fitted separately for participants who improved during training (N = 12) and
those who did not improve (N = 3). (C) Mean Performance index across blocks for Group 6 (uncorrelated feedback). Data are fitted separately for
participants who improved during training (N = 10) and those who did not improve (N = 8). (D) Normalized PI for test sessions in Groups 4, 5, and 6.
Data are shown for all participants. Error bars indicate standard error of the mean. (E) Box plots of strategy index show individual variability per group.

experiments (N = 105), there was a significant correlation between
participants’ strategy index and post-training performance (i.e.,
normalized PI after training) (r = 0.717, p < 0.001), indicating
that participants who adopt a strategy closer to maximization
show better learning performance. Despite the fact that learning
performance varied across groups due to the experimental
manipulation (a linear regression model showed group as a
significant predictor on post-training performance, R2 = 0.299,
F = 8.43, p < 0.001), including strategy index as an additional
regressor significantly explained 34.7% more variance in post-
training performance (p < 0.001, 1R2 = 0.347). At first glance,
this result may appear surprising, as exact matching is expected
to result to 100% performance. Interrogating the response
distribution across participants showed that most learners with
high PI adopted a strategy toward maximization (i.e., responding
more than 80% to high probability contingencies) over training.
This result is in line with previous findings suggesting that
probability maximization is favored when learning complex
probabilistic tasks (Lagnado et al., 2006; Wang et al., 2017a).

Correlating cognitive abilities to learning
temporal statistics

Finally, we asked whether cognitive control abilities (i.e.,
attention, working memory) relate to learning performance.
Selective attention and working memory were assessed before

training on the prediction task using the Useful Field of View task
and visual short-term memory tasks, respectively. We observed
individual variability in cognitive tasks across participants.
Performance in selective attention–as measured by SOA duration
needed for separating targets from cluttered distractors–ranged
from 16 to 165 ms, and performance in working memory–as
measured by number of items which were correctly memorized–
ranged from 3.4 to 9.5 number of items. There was a significant
correlation between selective attention and working memory scores
(r = −0.286, p = 0.003) across participants in all groups. Multiple
regression analyses showed that selective attention and working
memory: (a) explained significantly [F(2,102) = 7.04, p = 0.001]
12.1% of the variance in strategy index (R = 0.348) in the prediction
task across all participants (N = 105), (b) explained significantly
[F(2,102) = 6.46, p = 0.002] 11.2% of the variance in post-training
performance (R = 0.335).

Given that strategy varied across groups due to experimental
manipulation, a further multiple regression analysis accounting for
group effect showed that group and cognitive abilities (selective
attention, working memory) explained significantly [F(7,97) = 5.30,
p < 0.001] 27.7 % of the variance in strategy index (R = 0.526), and
group had the strongest impact on decision strategy (p < 0.001,
R2 = 0.234). Interestingly, we found that selective attention rather
than working memory was better at predicting the strategy adopted
during training (Supplementary Table 1); that is, excluding the
variation accounted for by group (i.e., experimental manipulation),
a model with selective attention as an additional regressor
significantly explained 3.3% more of the variance in strategy index
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FIGURE 6

Relating individual decision strategy to learning performance across participants in all groups (N = 105). (A) Significant correlations of individual
decision strategy and post-training performance, that is normalized performance index after training [r = 0.717, CI = (0.62, 0.80)]. A skipped Pearson
correlation analysis using the Robust correlation toolbox (Pernet et al., 2012) replicated this significant positive correlation following exclusion of five
bivariate outliers [r = 0.790, CI = (0.72, 0.85)]. Strategy-index values close to zero indicate a strategy closer to matching, while higher positive values
indicate a strategy closer to maximization. The color of the dots indicates participant group. (B) Residual plot of multiple regression analysis with
group membership adjusted. Residuals were plotted against the post-training performance predicted from the multiple regression model, validating
the assumptions of linearity and homoscedasticity.

(p = 0.038). However, we did not observe a significant impact
of working memory in the model (p = 0.104, BF10 = 1.102).
Similar results were found when conducting correlations with
combined data from Group 1 and Group 5 (no group difference in
strategy index, t(31) = −0.44, p = 0.660, BF10 = 0.360). There was
a significant correlation between selective attention and strategy
index (r = −0.394, p = 0.023), but no significant correlation
between working memory and strategy index (r = 0.246, p = 0.168,
BF10 = 0.538) (Figure 7). These results suggest that selective
attention is a key predictor of decision strategy; that is, it is
likely that selecting the most probable outcomes when maximizing
facilitates learning of temporal statistics.

Discussion

Extracting the statistics governing event streams is critical
for adaptive behavior in rapidly changing environments. Here
we employed a novel behavioral paradigm to test participants’
predictions following multiple days of exposure to probabilistic
structures. In contrast to most previous studies which focus
on implicit measures of sequence learning such as familiarity
judgments or reaction times, our approach allows us to track
individuals’ responses over time and interrogate the decision
strategy adopted during training. This approach allows us to
develop a direct and reliable measure to assess group-level
performance and individual differences in structure learning
(Siegelman et al., 2017). Our findings demonstrate that exposure to
temporal sequences facilitates our ability to extract their structure
and predict upcoming events; an improvement that lasts for a
prolonged period following training (up to 4 weeks). We show
that this learning of predictive structures is maintained under
uncertainty that relates to the characteristics of the temporal
sequences and task feedback. In particular, learners adapt their

behavior to changes in the sequence design, rate of stimulus
presentation and feedback. Further, attentional skills account for
variability in decision strategy that significantly relates to individual
structure learning ability. Our findings advance our understanding
of structure learning in four main respects.

First, we show that less discriminable contingency probabilities
compromised learning performance. This is consistent with
previous work (Thiessen et al., 2013; Hasson, 2017; Okano et al.,
2021), showing that probability of stimulus occurrence is key
for extracting spatiotemporal structures. For example, previous
studies have shown that sequences of syllables with high conditional
probabilities are perceived to correspond to words, while syllable
transitions with low predictability are more likely to be perceived
as word-boundaries (Saffran et al., 1996b). Our results showed that
participants failed to extract the underlying first order Markov
structure (i.e., identify the correct context-target contingencies) in
sequences with highly similar contingency probabilities. To further
quantify performance, we applied a response-tracking approach
(Wang et al., 2017a) that monitors participant predictions across
trials and extracts dynamic changes in relation to the rule used
to generate the sequences–that is, context length (e.g., for level-
1 Markov model, context length = 1, that refers to immediately
preceding item for identifying the sequence structure), and the
context-target contingencies between stimuli. This analysis showed
that decreasing the difference in occurrence probability resulted in
impaired performance, which is not only due to poor estimation
on the conditional probabilities, but indicates impaired ability to
extract the correct context length (behaviorally relevant rules) used
to generate the sequences (Supplementary Figure 1). These results
reveal that probability of context-target contingencies plays a key
role in learning temporal structure.

Second, we asked whether temporal uncertainty influences
learning of predictive structure. Previous studies have shown that
temporal variability and uncertainty disrupts temporal expectation
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FIGURE 7

Correlating cognitive skills with decision strategy across participants in Group 1 and Group 5 (N = 33). Left, correlation of selective attention scores
with strategy index. A lower score (SOA: stimulus onset asynchrony; i.e., shorter display duration) indicates better performance in the selective
attention task that relates to decision strategy closer to maximization [r = –0.394, CI = (–0.59, –0.20)]. Right, correlation of working memory (WM)
scores with strategy index. A higher score (larger number of items in the display) indicates better performance in the working memory task.
However, no significant correlation was found between working memory capacity and decision strategy [r = 0.246, CI = (0.01, 0.49)].

and impairs performance (Nobre et al., 2007). Presenting stimuli at
a regular rhythm or at the expected time has been shown to facilitate
action preparation and execution (e.g., reduced reaction times
and saccade latencies) (Niemi and Näätänen, 1981) and enhance
perceptual judgments (Lasley and Cohn, 1981; Westheimer and
Ley, 1996; Rolke and Hofmann, 2007; Rohenkohl et al., 2012).
In contrast to this previous work, we found that learning
of predictive structures was maintained when disrupting the
rhythmic presentation of the sequence by introducing temporal
jitter. Interestingly, learners presented with temporally jittered
sequences adopted a strategy closer to maximization, suggesting
that maximizing may facilitate learning of temporal structure under
temporal uncertainty. It is likely that our participants focused
on the probabilistic associations between symbols rather than the
sequence rhythm, as our prediction task requires the participants
to make an explicit judgment about the expected stimulus.
This is consistent with previous work suggesting that humans
are rational probabilistic learners and able to extract organized
structures from ambiguous information [e.g., feature correlations
in multidimensional sequences (Turk-Browne et al., 2008)] in a
flexible manner (Aslin and Newport, 2012). Further, temporal jitter
may result in increased cognitive load. Our results suggest that
adopting a strategy closer to maximization facilitates structure
learning under conditions of higher task demands, consistent with
previous work showing that participants adopt a strategy closer to
maximization when learning more complex probabilistic sequences
and tasks after training (Lagnado et al., 2006; Wang et al., 2017a).

Previous behavioral and neurophysiological studies have
suggested that temporal uncertainty induced by varying the
regularity of rhythmic stimulus streams influences stimulus
processing at a perceptual level (Rolke and Hofmann, 2007;
Schroeder et al., 2010; Rohenkohl et al., 2012). Entraining the
brain to rhythmic events has been shown to facilitate sensory
processing (Lakatos et al., 2008; Schroeder and Lakatos, 2009;

Nobre and van Ede, 2018). Following exposure to structured
sequences increased neural entrainment to embedded patterns
was observed over a range of brain regions from sensory to
frontal areas. This in turn may trigger a top-down modulation,
reflecting the successful perceptual grouping of individual
stimuli into cohesive units (e.g., syllables into words) (Batterink
and Paller, 2017; Park et al., 2020; Moser et al., 2021). Our
results suggest that despite temporal interference at stimulus
level, entrainment to larger embedded patterns may still
be retained in brain circuits beyond sensory processing.
In particular, we have previously shown that distinct brain
circuits relate to individual strategies for learning temporal
statistics (Wang et al., 2017b; Karlaftis et al., 2019): probability
matching engages occipitotemporal and ventral caudate regions,
whereas maximization engages fronto-striatal circuits (i.e.,
dorsolateral prefrontal cortex, cingulate, sensory–motor regions,
and putamen). Irregular stimulus presentation may disrupt
perceptual processing in visual cortico-striatal circuits that have
been shown to relate to probability matching for structure learning.
Therefore, it is possible that structure learning under temporal
uncertainty recruits fronto-striatal circuits that support learning
by maximization rather than matching facilitating learners to
flexibly adapt their decision strategy and learn the environments
statistics.

Third, we test whether feedback modulates decision strategy
and learning of predictive statistics. Feedback is known to play a
key role in learning new skills from simple feature processing to
complex social interactions (Kluger and DeNisi, 1996). Theoretical
work has proposed that supervised, error-correcting learning
mechanisms rely on external feedback (Dayan and Abbott, 2001;
Petrov et al., 2005; Liu et al., 2014). Yet, previous work on
statistical learning has shown that learning of spatiotemporal
regularities may occur implicitly (i.e., by mere exposure rather
than external feedback) (Perruchet and Pacton, 2006). Our results
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demonstrate that participants were able to extract the underlying
sequence structure without any feedback; that is, participant who
received no feedback or sparse performance feedback (i.e., mean
performance feedback quantitatively across a block of sixty trials)
performed similarly in the prediction task. However, trial-by-
trial correct feedback enhanced task performance and resulted
in learners adopting a strategy closer to maximization than
matching. In contrast, random feedback that was uncorrelated
to the participants responses compromised learning substantially.
Our results are consistent with previous work showing that
informative feedback shifts decision strategy toward maximization
in probabilistic choice tasks (Shanks et al., 2002; Lagnado et al.,
2006). That is, trial-by-trial feedback supports error correction,
reducing uncertainty and facilitating a decision strategy that
delivers best outcomes and increased reward. In particular, trial-
by-trial feedback may encourage a maximization strategy, resulting
in higher probability of selecting the correct response (e.g., 80%,
in contrast to matching strategy, of 68% hit rate), consistent
with reinforcement learning and rational choice theory (Vulkan,
2000; Shanks et al., 2002; Erev and Barron, 2005; Newell et al.,
2013).

Finally, we show that individual strategies and performance
in learning predictive statistics correlate with cognitive capacity
as indicated by attentional and working memory skills. The
role of attention and working memory in statistical learning
remains debated (Conway, 2020). It is possible that working
memory is involved in the encoding of multiple sequence
items, facilitating learning of temporal statistics; yet the role
of working memory in sequence learning remains controversial
(Janacsek and Nemeth, 2013). Further, some studies propose
that selective attention may gate learning of statistics; that is,
regularities are only learned when the stimuli are attended (Turk-
Browne et al., 2005; Richter and de Lange, 2019), while others
argue that extracting regularities is a consequence of attentional
processing (Pacton and Perruchet, 2008). Statistical learning has
been proposed to involve a multicomponent learning system
that relates to stimulus encoding, retention and abstraction,
with each component of this system depending on attention or
working memory to a different degree (Arciuli, 2017). Although
attention and working memory have traditionally been considered
to be distinct cognitive processes, recent studies propose an
overlap between the brain systems (e.g., frontal circuits) that
support these processes (Awh et al., 2006). Previous work has
demonstrated a competitive interaction between higher cognitive
functions and implicit statistical learning (Thompson-Schill et al.,
2009; Ambrus et al., 2020). For example, depleting cognitive
control system enhances adults’ implicit but not explicit word
segmentation abilities (Smalle et al., 2022). However, in our
experimental paradigm prolonged exposure to visual statistics in
combination with prediction judgments may enable participants
to evoke explicit attention-based processes and search for efficient
learning strategies. Here we provide evidence that participants
with better attentional and working memory skills adopt a
strategy closer to maximization and show improved structure
learning. Our results are consistent with previous work showing
a positive correlation of attentional and working memory abilities
with learning performance in a prediction task in both mild
cognitive impairment patients and healthy controls (Baker et al.,
2015). These cognitive skills are thought to: (a) implicate a

frontoparietal network (Corbetta and Shulman, 2002; Corbetta
et al., 2008) involving strategy updating for future predictions
(Danckert et al., 2012), (b) be coded by a multiple-demand system
for intelligent behavior such as sequential mental programming
with changing context (Duncan, 2010). A recent study showed
that contextual associations were learned only when participants
were explicitly instructed to attend to the regularities and
provided with corrective feedback. This task-relevant contextual
sensory prediction was accompanied by progressively higher
expectation suppression across the cortical hierarchy, from
executive control regions downstream to task-relevant sensory
areas (Ferrari et al., 2022). Interestingly, our results demonstrate
that selective attention is a stronger predictor of maximization
strategy than working memory. This is likely due to the fact
that extracting probabilistic conjunctions is more relevant in
the context of our prediction task than memorizing sequences.
Consistent with previous computational work proposing a key role
of attentional selection in learning (Dayan et al., 2000; Yu and
Dayan, 2005), our findings suggest that selective attention may
facilitate the selection of the most probable outcomes (i.e., adopting
a maximization strategy), reducing uncertainty and supporting
learning of temporal statistics.

In sum, our findings provide evidence for flexible learning
of predictive statistics; that is, individuals adapt their decision
strategy to learn the underlying structure of events in the face
of sensory uncertainty and predict upcoming events. Adopting
a maximization strategy facilitates learning by reducing sensory
uncertainty. Further corrective feedback enhances maximization,
reducing uncertainty and supporting our ability to learn the
structure of the environment and make successful predictions.

Note that quantifying the decision strategies is key for
understanding how participants learn the underlying sequence
structure. A possible limitation of our approach is that, when
probability estimations are very close to each other (e.g., 60%
vs. 40%), then discerning strategies (e.g., poor maximizing
vs. matching performance) becomes challenging. To this end,
using a design with more context–target contingencies of
different probabilities and examining how participants respond
to low-probability contingencies could be helpful. For example,
considering a design with ground truth of 70%, 20%, 10%, exact
matching would result in response probabilities: 70%, 20%, 10%
while poor maximization would result in response probabilities:
70%, 15%, 15%. In addition, future work may investigate the brain
plasticity mechanisms that mediate our ability for this flexible
structure learning under uncertainty.
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