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Machine learning is becoming an increasingly common component of routine 
data analyses in clinical research. The past decade in pain research has witnessed 
great advances in human neuroimaging and machine learning. With each 
finding, the pain research community takes one step closer to uncovering 
fundamental mechanisms underlying chronic pain and at the same time 
proposing neurophysiological biomarkers. However, it remains challenging to 
fully understand chronic pain due to its multidimensional representations within 
the brain. By utilizing cost-effective and non-invasive imaging techniques such 
as electroencephalography (EEG) and analyzing the resulting data with advanced 
analytic methods, we  have the opportunity to better understand and identify 
specific neural mechanisms associated with the processing and perception of 
chronic pain. This narrative literature review summarizes studies from the last 
decade describing the utility of EEG as a potential biomarker for chronic pain by 
synergizing clinical and computational perspectives.
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1. Introduction

Pain is a complex and multi-dimensional process resulting from dynamic interactions of 
neural processes. It includes sensory-discriminative, affective-emotional, and cognitive-
evaluative components (Rainville et al., 1997; Price, 2000; Perl, 2007; Sun et al., 2021). All pain 
initiates as acute pain but can become maladaptive and persist into a chronic phase (Gan et al., 
2014; Chapman and Vierck, 2017; Gan, 2017). Numerous studies have demonstrated clear 
evidence that chronic pain continues to be a global public health issue, with an estimated 
prevalence of around 30% in adults (Johannes et al., 2010; Gardner and Sachdeva, 2019; Yong 
et al., 2022; Zimmer et al., 2022). The condition is not only known to significantly reduce quality 
of life (Yong et al., 2022) but is also associated with long-term disability; this typically requires 
multimodal treatment approaches, commonly results in reliance on opioid analgesics, and 
contributes to the opioid epidemic (Kehlet et al., 2006; Ataoğlu et al., 2013; Ladha et al., 2016; 

OPEN ACCESS

EDITED BY

Amelie Haugg,  
Psychiatric University Hospital Zurich,  
Switzerland

REVIEWED BY

Paul Theo Zebhauser,  
Technical University of Munich, Germany
Luz Maria Alonso-Valerdi,  
Monterrey Institute of Technology and Higher 
Education (ITESM), Mexico

*CORRESPONDENCE

Jing Wang  
 Jing.Wang2@nyulangone.org

RECEIVED 14 March 2023
ACCEPTED 12 May 2023
PUBLISHED 14 June 2023

CITATION

Rockholt MM, Kenefati G, Doan LV, 
Chen ZS and Wang J (2023) In search of a 
composite biomarker for chronic pain by way 
of EEG and machine learning: where do 
we currently stand?
Front. Neurosci. 17:1186418.
doi: 10.3389/fnins.2023.1186418

COPYRIGHT

© 2023 Rockholt, Kenefati, Doan, Chen and 
Wang. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 14 June 2023
DOI 10.3389/fnins.2023.1186418

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1186418%EF%BB%BF&domain=pdf&date_stamp=2023-06-14
https://www.frontiersin.org/articles/10.3389/fnins.2023.1186418/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1186418/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1186418/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1186418/full
mailto:Jing.Wang2@nyulangone.org
https://doi.org/10.3389/fnins.2023.1186418
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1186418


Rockholt et al. 10.3389/fnins.2023.1186418

Frontiers in Neuroscience 02 frontiersin.org

Gan, 2017; Schuchat et  al., 2017; Hollmann et  al., 2019). Hence, 
advances in pain research are urgently needed to address these 
healthcare issues.

By observing the brain activity that occurs during pain and trying 
to decode its underlying mechanism, it is believed that these pathways 
could be targeted earlier and more precisely, preventing pain from 
chronification, and thus reducing the consumption of addictive 
analgesics (Mouraux and Iannetti, 2018).

Over the last 20 years, advancing research has contributed to an 
increased understanding of the spinal, peripheral, and cortical 
mechanisms of pain (Apkarian et al., 2005; Rosa and Seymour, 2014; 
Tu et al., 2016; Ploner et al., 2017; Mouraux and Iannetti, 2018). In 
contrast to other sensory perceptions that are associated with a 
specific sensory cortex, a specific “pain cortex” associated with pain 
perception does not exist (Kucyi and Davis, 2015). Instead, it is the 
result of an activation of a distributed network of cortical and 
subcortical areas (Besson, 1999; Sawamoto et al., 2000; Mouraux and 
Iannetti, 2018; Liberati et al., 2020; Chen et al., 2022). Because of its 
complex nature, further research is required to better understand the 
mechanisms behind pain and to propose an adequate biomarker for 
chronic pain in particular (Tracey et al., 2019; Chen, 2021).

Studies using modern neuroimaging techniques such as functional 
magnetic resonance imaging (fMRI) and positron emission 
tomography have identified brain regions involved in sensory 
processing of acute pain. These brain regions include the primary 
somatosensory cortex (S1), anterior cingulate cortex (ACC), and 
insular cortex (Isnard et al., 2011; Duerden and Albanese, 2013; Vierck 
et al., 2013; Boccard et al., 2014; Mouraux and Iannetti, 2018; Van Der 
Miesen et al., 2019; Lamichhane et al., 2021; Sun et al., 2021). These 
techniques have limited temporal resolution, making it difficult to 
capture the dynamic nature of pain perception and experience (Wager 
et  al., 2013). Therefore, some study groups have shifted focus to 
explore less invasive and more cost-effective alternatives with a higher 
temporal resolution, such as electroencephalography (EEG) (Pinheiro 
et al., 2016; Ploner et al., 2017; Levitt and Saab, 2019; Van Der Miesen 
et al., 2019; Xu and Huang, 2020; Millard et al., 2022; Chowdhury 
et al., 2023).

With an increasing number of human neuroimaging studies 
investigating the mechanism of pain, the field is steadily moving 
toward the development of a viable biomarker for pain (Furman et al., 
2018; Seminowicz et al., 2018; Furman et al., 2019; Seminowicz et al., 
2019; Furman et al., 2020). For instance, modern source localization 
techniques have substantially improved anatomical precision for EEG 
studies to enable circuit-level analysis, further facilitating the potential 
of biomarker development (Ferracuti et al., 1994; Le Pera et al., 2000; 
Chang et al., 2001; Seminowicz et al., 2019; Furman et al., 2020; Sun 
et al., 2021; Chowdhury et al., 2023). Recent reports have indicated 
that enhanced nociceptive response in EEG is manifested as 
abnormally elevated power in theta and gamma oscillations, 
suggesting that EEG could potentially predict the presence of pain and 
analgesic response (Babiloni et al., 2002; Wang et al., 2011; Schulz 
et al., 2012a, b; Rouleau et al., 2015; Peng and Tang, 2016; Taesler and 
Rose, 2016; Martel et al., 2017; Fallon et al., 2018; Tan et al., 2021). This 
provides further support for the feasibility of an EEG-based biomarker 
(Zhang et al., 2017; Dinh et al., 2019; May et al., 2019; Zis et al., 2022).

By applying machine learning (ML) to analyze functional brain 
imaging data such as EEG, we now have the capability to better identify 
response features to a given experiment—or stimulus, as well as to 

predict subjective perception and response to the same experiment (Hu 
and Iannetti, 2016; Lötsch et al., 2017; Fernandez Rojas et al., 2019). 
Hence, ML is a promising tool for the future development of biomarkers 
for chronic pain (Lamichhane et al., 2021; Harland et al., 2022). Recently, 
numerous studies have presented findings with considerable accuracy, 
working toward developing algorithms with improved generalizability 
and interpretability (Harland et al., 2022; Mari et al., 2022). The number 
of studies coupling ML algorithms with subjective reports on pain 
perception is increasing, and there is an impetus for data-sharing and 
collaboration within the pain research community to improve the 
sensitivity and efficacy of biomarker developmental methods (Van Der 
Miesen et al., 2019). While obstacles remain, it is clear that “decisions 
based on neural data will only be as good as the science behind them” 
(Hu and Iannetti, 2016). Hence, for the science to get better, it is 
imperative that we validate the results of past studies, identify the state-
of-the-art methods, and provide updates on ongoing studies.

Today, the probability of presenting a non-composite, single 
biomarker capturing “pain” in its entirety is increasingly appearing 
unlikely (Tracey et al., 2019). It remains difficult to identify a standard 
way to qualify brain responses as specifically pain responses, especially 
without a dedicated pain cortex. However, by further exploring 
advanced analytical tools like neural networks, artificial intelligence, 
and machine-learning algorithms, it may be  possible to combine 
multiple objective biomarkers into one composite pain biomarker 
(Tracey, 2021). Such approach could expedite success in understanding 
the mechanisms for pain as well as providing clinically relevant 
biomarkers (Baskin et al., 2016; Su et al., 2019; Eldabe et al., 2022).

To support the field in future research, we  have conducted a 
narrative literature review by combining the following search terms: 
“electroencephalography” and “chronic pain” and “machine learning” 
using PubMed (including MEDLINE), Ovid (including EMBASE), 
Web of Science and the Cochrane Library. While several review 
articles have appeared in the literature (Reckziegel et al., 2019; Van 
Der Miesen et al., 2019; Mari et al., 2022; Zebhauser et al., 2023), our 
review focuses on studies published in the last decade (from 2012 to 
2023), describing the practical utility of combining physiological data, 
EEG, and ML to study the mechanisms of chronic pain. Specifically, 
our review aims to appraise the role and potential utility of EEG as a 
biomarker for chronic pain. Hence, this review discusses a limited 
cohort and does not cover the entire breadth of publications in the 
pain research field. Nonetheless, we show how different computational 
methods and ML algorithms can help in the discovery of EEG 
biomarkers for chronic pain. We  also discuss the future utility of 
today’s cutting-edge methods and how we can incorporate further 
analyses and neurophysiological data into an integrated biomarker 
model. Lastly, we discuss challenges in the chronic pain research field 
and offer insight on potential future directions.

2. The benefits of EEG for biomarker 
studies on chronic pain

2.1. Measurement of pain-related brain 
activity

Behavior arising from the experience of pain is seldom obscure, 
often manifested physically in the form of facial expressions, changes 
in body language, or changes in mood (Dansie and Turk, 2013). Thus, 
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the presence of pain can be observed and measured – to a certain 
extent. Pain perception is a highly subjective experience (Kinnealey 
and Fuiek, 1999). Pain does not only vary between subjects but can 
vary in the same subject across time. For this reason, a number of pain 
assessments are available for the quantification of pain.

2.1.1. Bottom-up measurements based on 
pain-induced behavior

The current standard for self-reported pain intensity is assessed 
using the visual analog scale (VAS, typical range: 0–100 mm) 
(Boonstra et al., 2008) or the numeric rating scale (NRS, range: 0–10) 
(Haefeli and Elfering, 2006). Although these behavioral scales offer a 
degree of standardization across the population, individuals can still 
exhibit considerable and unpredictable variability in painful percepts 
in response to the same nociceptive stimulus (Quiton and Greenspan, 
2008). Furthermore, self-reported pain intensity has been shown to at 
times correlate poorly with the stimulus intensity in experimental 
studies (Nickel et al., 2017). The mechanisms underlying such within-
subject and between-subject variability in experimental pain remain 
insufficiently understood. The objective of top-down measurements 
of pain experience is to identify neural indicators that explain such 
perceptual variability in all types of pain (Hu and Iannetti, 2016).

2.1.2. Top-down measurements based on brain 
activity

A wide variety of neuroimaging techniques are used to record 
brain signals, at varying levels of invasiveness and across a range of 
spatial and temporal resolutions. For instance, microelectrode 
implants can record neural spikes from a single neuron or local field 
potentials from a small population of neurons, though at the cost of 
invasiveness and highly rapid time courses (Einevoll et al., 2013; Nurse 
et al., 2016; Merk et al., 2022). At the other end of the spectrum, whole 
brain imaging technologies such as fMRI can noninvasively image 
blood-oxygen dynamics as a proxy to region-specific activity, yet with 
relatively low temporal resolution and mid-range spatial resolution 
(Logothetis, 2008; Power et al., 2017; Woo et al., 2017; Siddiqi et al., 
2022). In this review, we  focus solely on EEG which measures 
extracellular current but at a larger spatial scale, reflecting the activity 
of hundreds of millions of neurons (Jackson and Bolger, 2014). EEG 
is noninvasive: the signal is recorded from an array of surface 
electrodes placed on a subject’s scalp, at a microvolt (μV) scale (Rosa 
and Seymour, 2014). Despite anatomical impedances, such as the 
presence of hair and variations in skull conductivity, EEG electrodes 
are capable of detecting the electrical activity of similarly oriented 
groups of cerebral cortical neurons near the scalp. The majority of the 
electrical activity sensed by scalp electrodes represents the summation 
of the inhibitory or excitatory postsynaptic potentials from thousands 
of pyramidal cells near each electrode (Britton et al., 2016). This trait 
enables researchers and clinicians a view into the cortical activity of 
the brain with low cost and effort.

EEG can be recorded using one of two methods: resting-state EEG 
(rs-EEG) or stimulus-evoked EEG. rs-EEG is recorded while a 
participant is awake but not engaged in any specific task. Though 
rs-EEG studies do not typically include stimuli, they may be used to 
evaluate the functional activity of the brain before and after a 
treatment or intervention, as well as to study chronic behavioral or 
pathological conditions such as chronic pain. Stimulus-evoked EEG, 
in contrast, is recorded in response to a specific stimulus. Typically, 

participants are subject to a set of repeated stimuli to study the 
dynamics of one or more regions involved in responding to said 
stimulus. Thus, stimulus-evoked EEG provides temporally specific 
information in a dynamic behavioral context, and it also offers insights 
into how an underlying disease condition such as chronic pain can 
alter temporal sensory processing. Both techniques are equally 
important, even as they enable fundamentally different approaches to 
studying chronic pain which are discussed in the next section.

2.2. Advantages and disadvantages of EEG 
for chronic pain studies

Despite the advances in pain research using other neuroimaging 
techniques, such as fMRI and PET, numerous studies have described 
the advantages of leveraging the non-invasiveness of EEG as a 
potential path to a biomarker for pain (Ploner et al., 2017; Liberati 
et al., 2018; Mouraux and Iannetti, 2018; May et al., 2019; Sun et al., 
2021; Tracey, 2021; Vuckovic et al., 2022).

First, because of its high temporal resolution, it allows us to assess 
the oscillatory activity of neural pain processing. High temporal 
resolution is critical for understanding pain since it is a highly 
dynamic process (Schulz et al., 2012a,b). At the same time, correlating 
oscillatory activities across different brain areas enables us to detect 
specific brain areas associated with chronic pain. As such, in chronic 
pain studies, scalp EEG recordings present spontaneous synchronized 
postsynaptic neuronal activity of the brain cortex (Huber et al., 2006; 
Stern et al., 2006; Jobert et al., 2012; Mouraux and Iannetti, 2018).

A second advantage of EEG in the study of pain is that it is 
portable, easy to perform, well tolerated by patients, and more cost-
effective than other neuroimaging modalities (Katsigiannis and 
Ramzan, 2017; Krigolson et al., 2017; Mussigmann et al., 2022). The 
ease of placement and mobility of EEG systems allows for continuous 
recordings of primary cortical activities in clinical settings, enabling 
the potential to develop a variety of biomarkers for chronic pain from 
a single modality (Byrom et al., 2018; Xu and Huang, 2020).

Meanwhile, a number of potential obstacles in using EEG to assess 
chronic pain should also be considered (Tracey, 2021). First, there are 
some limitations seen in past studies, where most have analyzed 
potentials from rs-EEG (as presented in Table 1). These potentials 
provide a basis for further analyses, allowing us to explore the dynamic 
of neural circuits involved in pain processing. The use of rs-EEG alone 
in understanding pain, however, can become problematic, since 
rs-EEG potentials may be confounded by other brain processes. As 
suggested by Hansen et al. (2017) studying evoked EEG potentials 
allows for a better understanding of the mechanism underlying 
nociception, which is especially important when studying a complex 
condition such as chronic pain (Cao et al., 2020). Thus, when studying 
chronic pain, rs-EEG can provide us with insights into baseline 
differences, whereas evoked EEG potentials can contain information 
about acute changes in neural pain processing, which can be more 
informative (Plaghki and Mouraux, 2005). Regardless of the types for 
potentials studied, uncertainties around whether recorded EEG 
responses are directly related to pain still exist, prompting the need for 
further research (Mouraux and Iannetti, 2018).

Second, since evoked potentials of EEG signals are usually brief in 
duration, the ability to establish generalizable features can be difficult 
(Iannetti et al., 2008). Instead, studies have suggested longer sensory 
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TABLE 1 Summary of recent studies utilizing EEG as a potential biomarker for chronic pain (review articles are excluded from this summary).

Author Subjects Chronic pain EEG Statea Feature/Machine 
learning analysis

Findings (significance, p-value; 
accuracy, %)

Biomarker 
type

2012

Graversen et al. Npain = 31 Pancreatitis rs-EEG PSD, SVM
Pregabalin: decreased pain / increased theta power 

(p = 0.03; 85.7%)
Monitoring

Mendonça-de-Souza 

et al.
Npain = 11 Nhealthy = 7 Migraine rs-EEG eEEG FBP

Differences in cortical coherence before and after photic 

stimulation (p < 0.05)

Diagnostic, 

prognostic

Schmidt et al. Npain = 37 Nhealthy = 37 Low Back Pain rs-EEG Peak frequency, PSD No significant findings observed (p > 0.05) N/A

2013

Jensen et al. Npain = 10 Any rs-EEG eEEG PSD
Neurofeedback treatment: decreased pain/decreased theta 

(p = 0.004), increased alpha power (p = 0.002)
Monitoring

van den Broeke et al. Npain = 8 Nhealthy = 11 Post Mastectomy rs-EEG eEEG CoG
Enhanced alpha activity (7–13 Hz) in parietal and 

occipital cortices (p < 0.05)
Diagnostic

De Vries et al. Npain = 16 Nhealthy = 16 Pancreatitis rs-EEG Peak alpha frequency Decreased peak alpha frequencies (p = 0.049) Diagnostic

2014

Vuckovic et al. Npain = 10 Nhealthy = 20
Central Neuropathic 

Pain
rs-EEG eEEG PSD

Increased ERD in theta, alpha and beta bands (16–24 Hz) 

(p = 0.0085)
Diagnosticb

Sufianov et al. Npain = 30 Nhealthy = 10 FBSS rs-EEG PSD
Differences in peak alpha frequency, beta and theta power 

after epidural spinal cord stimulation (p < 0.05)

Diagnostic, 

monitoring

2015

Navarro López et al. Npain = 13 Nhealthy = 13 Fibromyalgia rs-EEG PSD
Decreased theta and absolute alpha power, increased beta 

power (p < 0.05)
Diagnostic

Schmidt et al. Npain = 21 Back Pain rs-EEG
Peak frequency, peak 

power, CoG
Mindfulness-based stress-reduction: no significance Monitoring

2016

González-Roldán et al. Npain = 20 Nhealthy = 18 Fibromyalgia rs-EEG
PSD, sLORETA, current 

source distribution

Negative correlation between delta band power and pain 

duration (p = 0.026). Increased theta power (p = 0.04), 

reduced alpha response (p = 0.017). Significant changes in 

beta bands (p < 0.05)

Diagnostic

Meneses et al. Npain = 21 Nhealthy = 21
Rheumatoid 

Arthritis
rs-EEG PSD

Increased absolute and relative alpha power densities 

(p < 0.05)
Diagnostic

2017

Gram et al. Npain = 81 Hip Pain rs-EEG eEEG
PSD, functional 

connectivity, SVM

Frontal delta power and functional connectivity features 

influence post-operative treatment response (65%)
Predictive

Camfferman et al. Npain = 103 Any rs-EEG Spectral band power
Negative association between alpha power and pain 

intensity in frontal and parietal areas (p < 0.01)
Diagnostic

Thibaut et al. Npain = 5 Nhealthy = 47 Pancreatitis rs-EEG PSD

Transcranial electrical stimulation (tPCS/tDCS): 

differences in alpha, beta (p < 0.05), and theta (p ≤ 0.002) 

band power.

Diagnostic, 

monitoring

Prinsloo et al. Npain = 62
Peripheral 

Neuropathy
rs-EEG eEEG PSD

Neurofeedback therapy: increased alpha power (p = 0.021) 

and decreased beta power (p = 0.021)
Monitoring

2018

Cao et al. Npain = 40 Nhealthy = 40
Migraine

rs-EEG Inherent fuzzy entropy; 

SVM

Changes in EEG patterns between phases of an ongoing 

migraine attack (76%)

Prognostic

Di Pietro et al. Npain = 20 Nhealthy = 20
Trigeminal 

Neuropathy
rs-EEG PSD

Differences in theta (p = 0.04), beta and low alpha ranges 

(p = 0.03)
Diagnostic

Fallon et al. Npain = 19 Nhealthy = 18 Fibromyalgia rs-EEG eEEG sLORETA
Increased theta power in prefrontal cortex, anterior 

cingulate cortex and DLPFC (p < 0.05)
Diagnostic

Vanneste et al. Npain = 78 Nhealthy = 264 Neuropathic Pain rs-EEG sLORETA; SVM
Thalamocortical dysrhythmia may serve as a mechanism 

underlying pain (92.5%)
Diagnostic

Vuckovic et al. Npain = 11 Nhealthy = 31
Central Neuropathic 

Pain
rs-EEG

Band power analysis; 

SVM

Transferable learning classifier could detect patients 

developing chronic neuropathic pain based on alpha band 

features (> 85%)

Prognosticc

Prichep et al. Npain = 77 Nhealthy = 77 Any rs-EEG sLORETA
Overactivation of the cingulate gyrus, insula, parietal 

lobule, the thalamus and the DLPFC (90%)

Diagnostic, 

monitoring

Zhou et al. Npain = 14 Nhealthy = 14
Postherpetic 

Neuralgia
rs-EEG

PSD, Phase-amplitude 

coupling

Increased gamma power (prefrontal and cerebellar areas); 

positive correlation with pain intensity (p < 0.05)

Diagnostic, 

monitoring

(Continued)
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TABLE 1 (Continued)

Author Subjects Chronic pain EEG Statea Feature/Machine 
learning analysis

Findings (significance, p-value; 
accuracy, %)

Biomarker 
type

2019

Dinh et al. Npain = 101 Nhealthy = 84 Any rs-EEG
Functional connectivity, 

SVM

Increased connectivity: theta and gamma frequencies 

frontally, global network reorganization (57%)
Diagnostic

Ahn et al. Npain = 20 Low Back Pain rs-EEG Alpha band power
Transcranial stimulation (tACS): increased alpha power 

in somatosensory regions indicating pain relief (p < 0.05)

Diagnostic, 

monitoring

Ferdek et al. Npain = 20 Nhealthy = 17 Endometriosis rs-EEG eEEG
Directed transfer function 

connectivity

Increased beta connectivity: left DLPFC, somatosensory, 

orbitofrontal and right temporal cortex (p < 0.05)
Diagnostic

Villafaina et al. Npain = 31 Nhealthy = 31 Fibromyalgia rs-EEG Spectral power
Reduced alpha-2 (11–12 Hz) power with negative VAS 

pain score correlations (p < 0.05)
Diagnostic

Yüksel et al. Npain = 42 Nhealthy = 21 Fibromyalgia rs-EEG PSD
Changes in anterior delta, theta, alpha and beta power 

with TENS and acupuncture (p < 0.05)

Diagnostic, 

Monitoring

2020

Baroni et al. Npain = 24 Nhealthy = 24 Orofacial Pain rs-EEG eEEG Z-scored PSD
Decreased alpha and increased gamma activity in central 

and frontal regions (p < 0.05)
Diagnostic

de Melo et al. Npain = 31 Fibromyalgia rs-EEG PSD
Transcranial stimulation therapy (tDCS); differences in 

frontal and parietal alpha-2 band power bands (p < 0.05)

Diagnostic, 

monitoring

Levitt et al. Npain = 37 Nhealthy = 20 Low Back Pain rs-EEG
PSD, Phase-amplitude 

coupling, SVM
Differences in low-gamma power (42–43 Hz) (82.5%) Diagnostic

González-Villar et al. Npain = 43 Nhealthy = 51 Fibromyalgia rs-EEG
Temporal-concatenation 

group connectivity, PLI

Increased beta connectivity with shorter microstate 

occurrence/functional connectivity (p < 0.05)
Diagnostic

Telkes et al. Npain = 9 Any rs-EEG eEEGd PSD

Differences in alpha-theta spectral dynamics in 

prefrontal, frontal and S1 cortices (p < 0.05), increasing 

alpha band power

Monitoring

Uygur-Kucukseymen 

et al.
Npain = 26 Fibromyalgia rs-EEG eEEG PSD, ERD

Reduced alpha power in frontal, central and parietal 

areas, reduced beta power in central areas (p < 0.05), 

smaller ERD responses in theta and delta bands (p < 0.05)

Diagnostic, 

Predictive

2021

Patel et al.
Npain = 4 Nhealthy = 4 Any rs-EEG eEEG Alpha power Transition probabilities from low to high alpha state after 

alpha-neurofeedback therapy (p < 0.05)

Monitoring

Barbosa-Torres et al. Npain = 37 Fibromyalgia rs-EEG eEEG Spectral band amplitude Neurofeedback therapy: changes in theta wave ratio 

before and after treatment (p < 0.005)

Monitoring

Bernardi et al. Npain = 15 Fibromyalgia rs-EEG Spectral power Transcranial stimulation (tACS): increased alpha power 

(p = 0.024) and reduced pain symptoms (p < 0.05)

Monitoring

Buchanan et al. Npain = 57 Nhealthy = 54 Post-Concussive 

Syndrome

rs-EEG PSD, SVM Increased delta and theta power (87.6%) Diagnostice

Feng et al. Npain = 27 Low Back Pain rs-EEG Alpha band power Negative correlation between central alpha power and 

pain intensity (p = 0.01; strongest at Cz p = 0:04)

Diagnostic

Jensen et al. Npain = 173 Any rs-EEG Spectral band power Lower pain intensity across all intervention groups no 

significance in EEG differences

Predictive, 

Monitoring

Lee et al. Npain = 11 FBSS rs-EEG sLORETA source-

localized spectral band 

power

Pain improvement with increased activity in the right 

anterior cingulate cortex after non-invasive painless 

signaling therapy (p < 0.05)

Monitoring

Lendaro et al. Npain = 16 Ncontrols = 10 Phantom Limb Pain rs-EEG CSP, C-support vector 

classification

Potential to discriminate between pain and no pain using 

broad-band (4–40 Hz) CSP features (93.7%, leave out 

cross-validation)

Diagnostic

Kimura et al. Npain = 23 Hip Pain eEEG Sub-band power 

spectrum, SVM

Differences among subjects with different levels of hip 

pain at frequencies ranging from 1 to 35 Hz (79.6%)

Monitoring

Martín-Brufau et al. Npain = 23 Nhealthy = 23 Fibromyalgia rs-EEG sLORETA, spectral band 

power, coherence

Decreased amplitudes in theta and alpha and beta 

frequencies (p < 0.01), with scarce cortical 

interconnections for delta and beta bands and greater 

functional connectivity in insular and frontal regions 

(p < 0.01; 91.3–100%)

Diagnostic

May et al. Npain = 101 Nhealthy = 88 Any rs-EEG Microstate analysis Decreased presence of microstate D, potentially related to 

dysfunctional attentional processes (p < 0.002)

Diagnostic

Parker et al. Npain = 16 Neuropathic Pain rs-EEG Spectral band power Dorsal root ganglia stimulation: increased frontal, central 

and parietal beta power (p < 0.003), reduced pain intensity

Monitoring

(Continued)
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stimuli exposure to capture the true nature of evoked pain perception, 
where the results have shown a positive correlation with gamma 
power changes in the medial prefrontal cortex (Schulz et al., 2015; 
Misra et al., 2017).

Third, scalp EEG electrodes only record compounded peripheral 
neuronal activity, meaning that the signal from deeper brain structures 
cannot be easily separated (Hallez et al., 2007). Further studies using 
depth electrodes, as in invasive intracranial EEG (iEEG) which are 
placed in the deep structures, such as the hippocampus, amygdala, 
and insula, could help us to understand better the complexities of 
chronic pain, and its affective-emotional and cognitive-evaluative 
components (Peyron et al., 2002; Mokhtari et al., 2019).

Overall, the use of EEG for chronic pain studies is appealing for 
its high temporal resolution, low cost, broad availability, and ease of 
data collection (Morton et al., 2016).

3. Extracting pain-related features 
from EEG data

With the advances in pain research, the field has made significant 
progress in improving and streamlining the analysis of EEG 
measurements. Following data acquisition, the first step in a neural 
data analysis pipeline is preprocessing. Preprocessing, including 
spectral filtering and artifact rejection, extracts the signals of interest 
while suppressing noise to maximize the signal-to-noise ratio 
(Hasenstab et  al., 2015). Next, the preprocessed data is used to 

perform feature extraction, which aims to extract only the most 
discriminative information from a given signal (Pedroni et al., 2019).

3.1. Preprocessing: artifact removal

Human EEG recordings are highly susceptible to artifacts (e.g., 
head movement, eye blinks, and heartbeat). Extraction and removal 
of these components is typically accomplished by independent 
component analysis (ICA) (Urigüen and Garcia-Zapirain, 2015). 
Once the independent components have been identified, they can 
be analyzed and classified as either endogenous (e.g., muscular/ocular 
movement, cardiac activity) or exogenous artifacts (e.g., electronic 
device interference, electromagnetic radiation), and subsequently 
removed from the EEG data (Jas et al., 2017; Jiang et al., 2019).

3.2. Resting-state versus stimulus-evoked 
processing

The signal processing pipeline differs for resting-state and 
stimulus-evoked types of EEG data. While the activity recorded in 
evoked EEG can be associated with specific emotional, motor, sensory, 
perceptive and cognitive processes, that of rs-EEG cannot be 
associated with specific events; in relation, its activity is purely 
spontaneous. Accordingly, evoked data may consist of dozens to 
hundreds of repeated, seconds-long epochs (Aunon et al. 1978; Hu et 

TABLE 1 (Continued)

Author Subjects Chronic pain EEG Statea Feature/Machine 
learning analysis

Findings (significance, p-value; 
accuracy, %)

Biomarker 
type

Santana et al. Npain = 22 Nhealthy = 18 Hip Pain rs-EEG eEEG Motif synchronization Impaired dynamic brain network with shorter full 

synchronization time in rest network and more 

pronounced diffuse connectivity (p = 0.007)

Diagnostic

Teixeira et al. Npain = 12 Nhealthy = 10 Peripheral 

Neuropathic Pain

rs-EEG Power band analysis Changes in GABAergic lower beta oscillation (global 

power spectrum decrease) (p = 0.007)

Diagnostic

Zortea et al. Npain = 47 Fibromyalgia rs-EEG Average spectral power Decreased theta and beta peak amplitudes in opioid users 

vs. non-opioid users (67–73% sensitivity, 62–72% 

specificity)

Monitoring

2022

Wei et al. Npain = 70 Postherpetic 

Neuralgia

rs-EEG Sub-band power spectral 

entropy, kNN

Central-parietal beta band spectral different in treatment-

resistant and treatment-sensitive patients (80% ± 11.7%)

Predictive

Teel et al. Npain = 121, Nhealthy = 39 Muskuloskeletal 

Pain

rs-EEG eEEG Theta band permutation 

entropy; radial basis 

functional kernel SVM

Theta permutation entropy features distinguishes between 

baseline and cold pressor task conditions in chronic pain 

(75.6%)

Diagnostic

Teixeira et al. Npain = 30 Low Back Pain rs-EEG eEEG Spectral band power Differences in EEG frequencies between pain response 

and higher pain over frontal, central and parietal cortices 

(p < 0.05)

Diagnostic

Topaz et al. Npain = 133, Nhealthy = 47 Diabetic 

Polyneuropathy

rs-EEG Spectral correlation by 

MSC; C-support vector 

classification

Painful diabetes polyneuropathy patients present 

significantly higher cortical functional connectivity in 

theta (p = 0.008) and alpha (p = 0.001) bands,

Diagnostic

Heitmann et al. Npain = 41 Any rs-EEG Peak frequencies and 

CoG, functional 

connectivity

Interdisciplinary multimodal pain treatment reduced 

pain and showed an increase in theta global network 

efficiency (p < 0.001)

Monitoring

Center of Gravity (CoG); Common Spatial Pattern (CSP); Dorsolateral Frontal Cortex (DLPFC); Event-related Desynchronization (ERD); Frequency Band Power (FBP); Failed Back Surgery 
Syndrome (FBSS); k-Nearest Neighbors Classifier (kNN); Magnitude-Squared Coherence (MSC); Phase-Lag index (PLI); Power Spectral Density (PSD); Support Vector Machine (SVM). 
aResting-state EEG (rsEEG) or evoked EEG (eEEG).
bSuggested this type of biomarker to also serves as a prognostic biomarker.
cContinuation of previous study where the same data was to propose a combined diagnostic and prognostic biomarker.
dIntraoperative continuous EEG recordings in patients undergoing surgery for implantation of spinal cord stimulator (SCS).
eFindings are suggested to have a prognostic value in the future, where they could be applied to assess treatment response and guide treatment strategies.
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al. 2019) while rs-EEG data is composed of one recording ranging 
from a few minutes to several hours in duration (Khanna et al., 2015; 
Olejarczyk et al., 2017), Therefore, evoked EEG data is accompanied 
by trial time-stamps, trial labels, and subject responses, while rs-EEG 
data may only contain sparse annotations. The differences in 
processing pipelines for the two data types are summarized below.

Common resting-state processing techniques:
 • Omit trace segments with amplitude values above a set threshold 

for each electrode.
 • Visually or programmatically omit trace segments containing 

movement artifacts.
 • Set a single baseline as amplitude reference
 • Cropped total duration.

Common evoked signal processing techniques:
 • Programmatically drop entire epochs containing 

movement artifacts.
 • Scale amplitude values across epochs, especially for cross-

subject analyses.
 • Set a single baseline as reference, or independent baseline 

preceding each epoch.

3.3. EEG feature extraction

The extraction of features from EEG data involves prior knowledge 
of the brain activity potentially related to pain processing (Hu and Zhang, 
2019). Examples of such prior knowledge may include which brain 
regions are involved in pain processing, the timing and synchronization 
of activity—both within and between regions, and the degree of 
connectivity between those regions. Features commonly used in EEG 
studies of chronic pain can be represented in the spatial, temporal, or 
spectral domains (or a combination of the three) and computed from 
either sensor space or source space data. These features are typically 
analyzed for temporal dynamics more than rs-EEG and the different 
feature representations contribute to the investigation of pain processing 
from distinct yet meaningful perspectives.

3.3.1. Spatial features
Extracting meaningful spatial patterns in EEG data by methods 

such as dimensionality reduction and pattern optimization allows for 
the identification of specific regions involved in pain processing. For 
instance, common spatial patterns is a linear algebra-based technique 
that works by finding the most discriminative EEG components 
between different classes in a given dataset, such as trials during 
painful stimulation versus trials without (Blankertz et al., 2008; Lu 
et al., 2010; Wu et al., 2014).

3.3.2. Temporal and spectral features
Pain processing is associated with complex temporal-spectral 

patterns of brain activity. Brain oscillations are patterns of 
synchronized electrical activity that arise from the coordinated activity 
of large populations of neurons; they can vary in amplitude, timing, 
and frequency. Features constructed from brain oscillations may take 
the form of power spectral density, relative power ratio, amplitude, 
phase coherence, and phase synchrony (Riaz et al., 2015). Pain-evoked 
event-related potentials (ERPs) are associated with an increase in theta 

band (4–8 Hz) power, also referred to as the theta-ERS (Pinheiro et al., 
2016). In evoked pain, EEG studies have shown increased activity in 
the high-gamma band (60–100 Hz) (Ploner et al., 2017). In chronic 
pain, decreases in the power of the alpha band have also been observed 
(see Table 1) (De Vries et al., 2013). An increase or decrease in the 
power of a certain frequency band is referred to as non-phase-locked 
event-related synchronization (ERS) or event-related 
desynchronization (ERD), respectively (Pfurtscheller 2001; 
Hadjileontiadis, 2015).  Figure 1 illustrates the differences between the 
ERP and ERD/ERS analysis techniques.

Higher-order information can also be  extracted from both 
temporal and spectral features. One such example based on spectral 
features is the center of gravity (CoG). Assuming a defined region of 
interest (ROI) composed of either a subset of channels or a current 
source density distribution, CoG is defined as the frequency at which 
the whole EEG power within the empirically defined window is split 
into two equal parts, each part possessing the same overall power 
(Schmidt et al., 2012). Another example of a higher-order feature is 
entropy, also known as complexity. Based on information theory, 
entropy is a method for quantifying the irregularity of the EEG signal. 
When applied to the EEG power spectrum, entropy can measure the 
“peakedness” or “flatness” of the power distribution, representing the 
rhythmicity of the signal based on changes in the proportions of 
power at each frequency (Inouye et al., 1991).

3.3.3. Source localization
Source localization in EEG is a method of estimating the location 

and intensity of current sources generated from cortical and even 
subcortical regions (Seeber et al., 2019). Minimum norm estimate, 
Low-resolution electromagnetic tomography (LORETA), and 
Beamforming are some examples of source localization algorithms 
(Chen et al., 2002; So, 2011; Michel and Brunet, 2019). Following EEG 
source localization with a subsequent functional connectivity analysis 
is commonly done (Schoffelen and Gross, 2009; Sohrabpour 
et al., 2016).

3.3.4. Connectivity patterns
Functional connectivity (FC) analysis in EEG typically involves 

computing the statistical dependence or relationship between different 
brain regions or networks (Sakkalis, 2011). Some common examples 
of these algorithms include coherence, correlation, partial correlation, 
wavelet coherence, dynamic causal modeling (DCM), and Granger 
causality (Guo et al., 2020). These algorithms can provide insight into 
the direction and strength of connectivity between brain regions, as 
well as the dynamic nature of these connections. For example, FC has 
been used to identify long-range nociceptive information flow within 
the brain in chronic pain conditions (Necka et al., 2019).

4. Application of machine learning to 
EEG studies of chronic pain

4.1. Overview of machine learning 
algorithms

While the preprocessing and feature selection stages extract 
information from EEG data, the subsequent decoding stage utilizes 
the extracted features to provide insights for clinical and research 
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applications. The application of ML facilitates tasks such as 
classification, detection, prediction, and risk assessment to identify 
meaningful features from EEG data (Müller et al., 2008; Hosseini 
et al., 2020). Then, after meeting certain criteria such as specificity, 
sensitivity, and generalizability, these features can be  deemed 
biomarkers. In the context of chronic pain, this would allow us to 
identify patterns in EEG that could serve as putative neural codes for 
diagnosis, prognosis, monitoring, or prediction of chronic pain 
(Brodersen et al., 2012; Wager et al., 2013; Chen, 2021; Tracey, 2021; 
Harland et al., 2022).

Supervised and unsupervised ML approaches remain the most 
common approaches used in EEG studies of chronic pain cohorts 
(Alloghani et al., 2020). However, semi-supervised learning involves 
a small portion of labeled samples and a large number of unlabeled 
samples from which a model must learn and make predictions on new 
samples (Jia et al., 2014; She et al., 2019). Currently, the majority of 
published studies apply supervised learning to analyze EEG findings 
(Hammal and Cohn, 2012; Jenssen et al., 2021; Harland et al., 2022). 
By identifying spatial, temporal, or spectral features from the EEG 
data, one can train a parametric or nonparametric classifier on the 
labeled data to accomplish a certain task (Matsangidou et al., 2021). 
Examples of such tasks are described in Figure 1.

4.2. Supervised versus unsupervised 
learning approaches

Supervised and unsupervised learning methods differ primarily 
in their approaches to training, specifically in their reliance on labels 
(Aggarwal and Chugh, 2022). In the context of pain studies using 
stimulus-evoked EEG, the availability of labeled samples is dependent 
on many factors. For one, the collection of a sufficiently large number 
of trials (>100) in human subjects is time-consuming and often 

difficult for chronic pain patients who generally experience a 
heightened level of discomfort. Additionally, the selection of pain 
stimulus device, method, and intensity is limited and requires approval 
due to considerations of safety and ethics (Gatchel et al., 2016). To 
alleviate overfitting, both regularization and dimensionality reduction 
techniques are often employed. Another common concern in 
supervised learning is sample imbalance between classes. Under-
sampling from the class with more trials is one way to alleviate the 
problem; though in pain studies, could lead to reducing an already low 
number of trials.

In a recent systematic review by Mari et al. (2022), they reviewed 
a total of 44 studies evaluating the effectiveness of ML algorithms on 
EEG data to explore the various aspects of pain. The continuous 
improvement of various performing models demonstrated high 
accuracies, ranging between 62 to 100%. These findings show that ML 
has the potential to predict pain outcomes, such as pain intensity, pain 
phenotype, and treatment response (Mari et al., 2022). The majority 
of the publications included were based on supervised ML methods, 
which are also known to present higher accuracies than their 
unsupervised counterparts (Hosseini et al., 2020).

Recently, Sun et al. developed an unsupervised learning method 
based on linear features extracted from EEG recordings to detect pain 
signals with a reported accuracy of 76% (Sun et al., 2021). By looking 
at source-localized ROIs using a state-space model, they observed that 
the unsupervised learning method requires fewer training trials and 
suggested that its performance is comparable—or perhaps better than 
the supervised method (Sun et al., 2021). However, this study assessed 
EEG signals from healthy pain-free subjects, with trials of acute 
evoked pain. To our knowledge, no studies describing the application 
of unsupervised learning methods to chronic pain data yet exist.

Unsupervised learning can alleviate the need for a large, balanced 
dataset of labeled samples. For example, in chronic pain research, 
cluster algorithms can be used when looking into pain intensities 

FIGURE 1

Comparing ERP and ERD/ERS analysis techniques. ERP analysis involves EEG data time-locked to a specific event. When averaged, ERPs reveal 
characteristic peaks and troughs (N1, P1, etc.). ERDS analysis involves quantifying changes in the power (rather than potential) of specific frequency 
bands in the EEG signal relative to a baseline period, Tref. Both techniques study changes in neural activity associated with a specific task or event, but 
only ERP is time-locked.
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(Kragel et al., 2018). Furthermore, unsupervised learning methods 
have proven useful in extracting nonlinear features, making them 
more attractive as a decoding method in EEG pain research. However, 
further development is needed to demonstrate that unsupervised 
methods can support their generalizability with sufficiently high 
performance. Examples of common supervised and unsupervised 
classifiers employed in chronic pain research are described in Figure 2.

Semi-supervised learning approaches are worth exploring as they 
may offer practicality in the face of limitations: sparsely labeled data. 
EEG data requires administering stimuli (in the case of evoked data) 
or prolonged recording periods (in the case of resting-state data). For 
some chronic pain patients, prolonged sedentary periods can become 
overly uncomfortable, thereby resulting in diminishing returns with 
longer recordings due mostly to movement artifacts. Because semi-
supervised learning requires significantly fewer labels over an entire 
dataset, individual recording sessions can be optimized and sped up, 
thereby resulting in data with higher quality and quantity. Such 
bottom-up approaches where the analysis step influences the data 
collection protocol can oftentimes lead to the best outcomes, 
facilitated by proper feedback.

4.3. Important considerations for ML in 
EEG studies of chronic pain

While choosing the right ML algorithm is indispensable, the 
importance of employing good ML practices cannot be understated. 
First-time users of ML may follow practices that lead to error-prone 
analyses, or to the illusion of successful results due to phenomena 
such as overfitting (model memorization of training data). By taking 
care in properly arranging input data, selecting an algorithm and its 

parameters deliberately, and appropriately evaluating model 
performance, one can be sure to maximize the potential in their 
dataset (Chicco, 2017).

Deep learning, a type of ML based on neural networks, can 
be highly effective at identifying nuanced pain-related features in EEG 
(Chen, 2021). However, deep learning requires a large number of 
labeled samples in training, restricting its use in the chronic pain 
cohort. While some studies have shown promising results in studying 
chronic pain with deep learning (Vuckovic et al., 2018), they are not 
as widespread because of the limited sample size.

5. Types of potential EEG biomarkers 
and their utility in chronic pain 
research

The most acknowledged definition of a biomarker is “a defined 
characteristic that is measured as an indicator of normal biological 
processes, pathogenic processes or responses to an exposure or 
intervention” (Group, 2016). In the context of chronic pain, a 
biomarker could thus serve to either confirm the presence of pain, 
identify the transition from one pain state to another, measure the risk 
of developing pain, estimate a prognosis, or predict and evaluate 
intervention responses (Van Der Miesen et al., 2019).

Clinical biomarkers can be  further classified based on their 
presumed application and purpose (Group, 2016; Califf, 2018; Tracey 
et al., 2019; Van Der Miesen et al., 2019; Eldabe et al., 2022). The 
various types of biomarkers according to the most recent literature are 
presented in Figure 3. Until recently, the main objective of biomarker 
development has focused less on quantifying pain and more on 
delivering high-accuracy diagnoses and treatment algorithms, 

FIGURE 2

Common supervised and unsupervised classifiers applied in chronic pain research.
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although based on neural mechanisms, rather than on symptoms 
(Dahlhamer et al., 2018; Gunn et al., 2020).

There are seven defined biomarker subtypes, each belonging to 
one of four categories associated with the development of biological 
biomarkers (Group, 2016; Tracey et al., 2019; Van Der Miesen et al., 
2019). To date, the most applied biomarker subtypes in chronic pain 
research are diagnostic, prognostic, predictive, and monitoring (Davis 
et  al., 2020). By identifying specific brain regions involved in the 
processing of chronic pain signals, we are indeed getting closer to 
decoding the presence of chronic pain (Graversen et  al., 2012; 
Mendonça-de-Souza et al., 2012; Schmidt et al., 2012; De Vries et al., 
2013; van den Broeke et al., 2013; Vuckovic et al., 2014; González-
Roldán et al., 2016; Zebhauser et al., 2023). However, existing studies 
in this cohort are relatively few in number and the studies published 
so far have focused on the signals detected in either healthy participants 
exposed to acute experimental pain or in patients suffering from acute 
pain (Mouraux and Iannetti, 2018; Reckziegel et  al., 2019). Thus, 
observed results mainly apply to a single type of condition at a certain 
point in time, which could easily be  confounded with signals 
responsible for a long-lasting condition, such as chronic pain.

In contrast to acute pain, chronic pain involves complex 
peripheral and supraspinal brain mechanisms, where details on the 
underlying mechanisms remain incompletely known (von Hehn et al., 
2012; Sun et al., 2021). Because of the multidimensional nature of 
chronic pain, a biomarker specific to the pathology has the potential 
to serve more than one purpose, thus being multifaceted and 
combinatorial (Ploner et al., 2017; Levitt and Saab, 2019). An overview 
of the studies included in this review, together with a summary of their 
representative features and biomarker type for each pain disease, can 
be seen in Tables 1–3.

5.1. Diagnostic biomarkers

A diagnostic biomarker indicates the presence of a condition or 
disease, like chronic pain. Most studies on chronic pain fall under this 

category (Van Der Miesen et al., 2019), primarily those associating 
chronic pain with group differences in EEG features (Reckziegel 
et al., 2019).

Studies assessing the potential of EEG as a diagnostic biomarker 
for chronic pain have emerged in the past decade and have led to the 
discovery of specific brain regions where relevant EEG changes 
associated with chronic pain are commonly observed. As presented in 
Table 1, the majority of the earlier studies recorded rs-EEG potentials 
in a few subjects. Nevertheless, they demonstrated promising findings 
indicating changes in specific frequency bands within targeted 
structures (De Vries et al., 2013; van den Broeke et al., 2013; Vuckovic 
et al., 2014; Navarro López et al., 2015; González-Roldán et al., 2016; 
Meneses et al., 2016). The described observations, mainly localized in 
the frontal, parietal, and occipital cortices, include both enhanced and 
reduced peak alpha frequency and theta responses, increased beta-
band power, and increased ERD in the same bands—suggesting their 
potential as diagnostic biomarkers for chronic pain (De Vries et al., 
2013; van den Broeke et al., 2013; Sufianov et al., 2014; Vuckovic et al., 
2014; Navarro López et  al., 2015; González-Roldán et  al., 2016; 
Camfferman et al., 2017) (please see Table 2).

In one of the largest studies to date, Dinh et al. used SVM to 
demonstrate increased connectivity at theta (4–8 Hz) and gamma 
(50–100 Hz) frequencies in frontal regions, as well as global network 
reorganization (Dinh et al., 2019). Moreover, they demonstrated a 
decreased global efficiency at gamma frequencies in chronic pain 
patients. Such patterns have previously demonstrated involvement in 
the pathophysiology of chronic pain and are now better investigated. 
However, as described in Table 2, there still seems to be a continued 
discrepancy in the reported power responses in the theta, alpha, and 
beta bands, complicating the proposal of a consistent and reliable 
biomarker for chronic pain (Freye and Levy, 2006; Navarro López 
et  al., 2015; Martín-Brufau et  al., 2021). Moreover, the decoder 
performed only at 57% accuracy—close to chance-level, leaving much 
room for improvement. In more recent years, researchers’ primary 
goal in improving decoding performance has been motivated 
primarily by the goal of optimizing model generalization, where the 

FIGURE 3

Types of Potential EEG Biomarkers for Chronic Pain. The following types of biomarkers have the potential to be clinically applicable in chronic pain 
management (Tracey et al., 2019; Van Der Miesen et al., 2019) A combination of these biomarkers is also a possible outcome for future research.
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TABLE 2 Representative features and their biomarker types for each pain disease reviewed. Pain disease columns are sorted by descending quantity of papers reviewed; rows are sorted by descending count of 
observations. Format: “Potential biomarker (count of shared observations/number of papers reviewed in that pain disease; biomarker type(s)) [Reference(s)].”

Fibromyalgia Chronic pain Pancreatitis Central neuropathic 
pain

Hip pain Failed back 
surgery 
syndrome

Peripheral 
neuropathy

Low back pain Diabetic 
polyneuropathy (DPN)

Decreased alpha band power 

(5/18; diagnostic, predictive) 

(Sufianov et al., 2014; González-

Roldán et al., 2016; Meneses 

et al., 2016; Lancaster et al., 

2017; Ferdek et al., 2019)

Decreased alpha band 

power (2/8; diagnostic) 

(Vachon-Presseau et al., 

2016; Telkes et al., 

2020)

Increased theta band power 

(2/5; monitoring) (Graversen 

et al., 2012; Jensen et al., 

2013)

Alpha band activity (1/4; 

prognostic) (Vuckovic et al., 

2018)

Frontal delta power 

(1/3; predictive) 

(Yüksel et al., 2019)

Decreased peak alpha 

frequency (2/3; diagnostic, 

monitoring) (Baliki et al., 

2012; Uygur-Kucukseymen 

et al., 2020)

Decreased alpha band power 

(1/3; monitoring) (Prinsloo 

et al., 2017)

Decreased alpha band 

power (2/3; diagnostic, 

monitoring) (Gram 

et al., 2017; Baroni 

et al., 2020)

Increased theta band connectivity 

(1/2; diagnostic) (Martín-Brufau 

et al., 2021)

Decreased theta band power 

(3/18; diagnostic) (Sufianov 

et al., 2014; Meneses et al., 2016; 

Zortea et al., 2021)

Increased theta band 

connectivity (1/8; 

diagnostic) (Schulz 

et al., 2012a,b)

Decreased peak alpha 

frequency (1/5; diagnostic) 

(De Vries et al., 2013)

Increased ERD in alpha band 

(1/4; diagnostic) (Vuckovic 

et al., 2014)

Frontal spectral power 

between 1 and 35 Hz 

(1/3; monitoring) (Liu 

et al., 2015)

Increased beta band power 

(1/3; diagnostic, 

monitoring) (Baliki et al., 

2012; Uygur-Kucukseymen 

et al., 2020)

Increased beta band power 

(1/3; monitoring) (Prinsloo 

et al., 2017)

Delta and theta bands 

correlated with self-

reported pain 

intensities (1/3; 

diagnostic) (Parker 

et al., 2021)

Increased alpha band connectivity 

(1/2; diagnostic) (Martín-Brufau 

et al., 2021)

Increased theta band power 

(3/18; diagnostic) (González-

Roldán et al., 2016; May et al., 

2021)

Increased gamma band 

connectivity (1/8; 

diagnostic) (Dinh et al., 

2019)

Increased beta band power 

(1/5; diagnostic, monitoring) 

(Jensen et al., 2013)

Increased ERD in theta band 

(1/4; diagnostic) (Vuckovic 

et al., 2014)

Increased frontal 

connectivity (1/3; 

diagnostic) (Jensen 

et al., 2021)

Decreased beta-2 band 

power (1/3; monitoring) 

(Uygur-Kucukseymen 

et al., 2020)

Low-beta band activity (1/3; 

diagnostic) (Kimura et al., 

2021)

Increased beta band power 

(3/18; diagnostic) (Sufianov 

et al., 2014; Meneses et al., 2016; 

May et al., 2021)

Over-activation in 

frontal and parietal 

areas (1/8; diagnostic, 

monitoring) (Santana 

et al., 2021)

Decreased alpha/beta power 

ratio (1/5; diagnostic, 

monitoring) (Jensen et al., 

2013)

Increased ERD in beta band 

(1/4; diagnostic) (Vuckovic 

et al., 2014)

Decreased alpha-2 band power 

(1/18; diagnostic) (Villafaina 

et al., 2019)

Increased theta band 

power (1/8; 

monitoring) (Schouppe 

et al., 2020)

Increased beta band 

connectivity (1/18; diagnostic) 

(Zhou et al., 2018)

Decreased presence of 

microstate D (1/8; 

diagnostic) (Bernardi 

et al., 2021)

Decreased beta band power 

(1/18; diagnostic, predictive) 

(Lancaster et al., 2017)

Increased theta global 

network efficiency (1/8; 

monitoring) (Teixeira 

et al., 2021)

Decreased SMR/theta power 

ratio with neuro-feedback 

therapy (1/18; monitoring) (Di 

Pietro et al., 2018)

(Continued)
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application of SVM classifiers has led to an improvement in accuracy 
with up to 93.7% (Misra et al., 2017; Kragel et al., 2018; Levitt et al., 
2020; Buchanan et al., 2021; Lendaro et al., 2021; Zolezzi et al., 2021; 
Teel et al., 2022; Topaz et al., 2022).

With gradual improvements in the ML algorithms over the years, 
there is a trend of testing their applicability in clinical practice, 
especially for diagnostic, monitoring, and prognostic purposes in the 
context of chronic pain (Mendonça-de-Souza et al., 2012; Sufianov 
et al., 2014). These applications would allow us to detect individuals 
with an increased risk of developing a certain condition, for example, 
the transition from acute to chronic pain. More importantly, it allows 
us to track the trajectory of pain development after applying certain 
therapies. This stratification of patients could serve to guide and 
inform future treatment and adds an additional quantitative objective 
measure of pain (Thibaut et al., 2017; Ahn et al., 2019; Yüksel et al., 
2019; Santana et al., 2021; Heitmann et al., 2022).

As an example, and as a continuation of previous studies, Vuckovic 
et al. (2022) developed and further trained their own classifiers to 
evaluate subjects with central neuropathic pain. They provided 
evidence for the potential of utilizing non-oscillatory, non-linear 
features of EEG not only as a diagnostic biomarker but also for 
prognostic purposes. Thus, their study suggests that ML models can 
be  trained not only to determine the presence of pain but also to 
predict the delay after which patients start showing symptoms of pain-
state transition. However, pain is a highly subjective experience and 
often presents itself heterogeneously. Studies so far have not been able 
to present a diagnostic biomarker with enough validation and 
generalizability for clinical settings.

The extraction of spatial patterns and the detection of changes in 
oscillations have moved the field one step closer to producing a 
diagnostic biomarker for the presence of chronic pain. We now know 
that a distributed network of cortical circuits regulates pain with 
knowledge of specific regions involved in pain processing—the S1, 
ACC, and insular cortex (Liberati et al., 2018; Van Der Miesen et al., 
2019; Sun et al., 2021). Furthermore, we know that noxious stimulation 
can evoke neural responses from these regions, like changes in theta 
and high gamma power (Baliki et al., 2012; Liu et al., 2015; Ploner 
et al., 2017; Zhang et al., 2017; Prichep et al., 2018; Schouppe et al., 
2020). Currently, these features are described primarily in studies of 
acute experimental pain—with relatively few on chronic pain. Hence, 
to propose a diagnostic biomarker of chronic pain, further studies are 
needed to identify and confirm discriminative features specific to 
chronic pain states.

5.2. Prognostic biomarkers

Prognostic biomarkers serve to identify the likelihood of 
developing a disease or state, to track the progression or recurrence of 
a disease, or to identify the transition from one disease state to 
another, e.g., from an acute to chronic pain state (Baliki et al., 2012; 
Tracey et al., 2019; Van Der Miesen et al., 2019).

In general, difficulties have been noted in the studies trying 
to propose the usage of EEG as a prognostic biomarker. The main 
concern arises from the complex, dynamic nature of pain which 
limits the ability to capture EEG signals of prognostic value, 
requiring EEG recordings over a longer period. Nonetheless, 
there is a possibility that features learned through ML in studies M
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using other neuroimaging modalities, such as fMRI (Baliki et al., 
2012), can be  used to monitor the transition between disease 
states from continuous EEG signals to be  used as monitoring 
biomarkers. Meanwhile, only a few studies have examined this 
possibility in a longitudinal cohort of pain patients.

In 2018, Vuckovic et al. (2022) demonstrated the potential 
utility of EEG as a prognostic biomarker after using previous 
datasets with previously recorded EEG signals in patients with 
painful and non-painful central neuropathic pain. By testing 
three classifiers (artificial neural network, SVM, and linear 
discriminant analysis) on EEG band power in resting state data 
recorded over time, they demonstrated that a transferable 
learning classifier learning classifier could detect patients at risk 
for developing painful chronic neuropathic pain with 86% 
accuracy. The study also suggested that it is possible to further 
develop and expand the purpose of a biomarker by using already 
existing data sets (Vuckovic et al., 2014).

To our knowledge, there are only a handful of published studies 
using EEG as a potential biomarker solely for prognostic purposes in 
chronic pain patients. Due to its complex nature and clinical 
importance, a prognostic biomarker for chronic pain requires rigorous 
model training and validation with large data sets to achieve high 
sensitivity and high specificity, as well as good generalizability. With 
an increasing number of studies on diagnostic and monitoring 
biomarkers, studies investigating its prognostic counterpart are likely 
to increase over the coming years, potentially relying on existing data 
from the diagnostic and monitoring arm of the field (Vachon-Presseau 
et al., 2016).

5.3. Predictive and monitoring biomarkers

Available knowledge of neural processes and pathways associated 
with the presence of pain has initiated the development of predictive 
biomarkers and monitoring biomarkers for chronic pain. A predictive 
biomarker enables the identification of individuals who are more 

likely to respond to certain therapies than individuals without the 
biomarker (Reckziegel et al., 2019; Tracey et al., 2019; Van Der Miesen 
et al., 2019; Eldabe et al., 2022). A monitoring biomarker, on the other 
hand, helps to serially measure the effect of an intervention or therapy. 
By combining both, we could predict a patient’s response to a certain 
therapy, enabling the development of a customized intervention 
program ahead of time.

For decades, scientists have explored the clinical implication 
of EEG as a monitoring biomarker for chronic pain. This has 
been done mainly by evaluating EEG signals before and after 
applying certain therapies—either individually or combined 
across subjects. Examples of such interventions include 
acupuncture, analgesics and anticonvulsants, epidural cord 
stimulation, neurofeedback treatment, surgical treatment, and 
transcranial stimulation therapies (Graversen et al., 2012; Jensen 
et al., 2013; Sufianov et al., 2014; Prinsloo et al., 2017; Thibaut 
et al., 2017; Ahn et al., 2019; Yüksel et al., 2019; de Melo et al., 
2020; Barbosa-Torres and Cubo-Delgado, 2021; Heitmann 
et al., 2022).

As presented in Table 1, only a few studies attempting to assess 
EEG changes after applying targeted therapies have used healthy 
controls for comparison, hampering the predictive potentials of the 
proposed biomarker (Gram et al., 2017; Prinsloo et al., 2017; Ahn 
et al., 2019; de Melo et al., 2020; Lee et al., 2021; Zortea et al., 2021; 
Wei et al., 2022).

Notably, the majority of studies evaluating potential therapies 
have observed noticeable, statistically significant differences in 
the powers of theta, alpha, beta, and gamma activity in regions 
associated with chronic pain states (Zhou et al., 2018; de Melo 
et al., 2020; Lee et al., 2021; Patel et al., 2021; Zortea et al., 2021). 
These findings further strengthen the potential of EEG as a 
monitoring biomarker. With data over longer periods, from both 
healthy controls and chronic pain patients, the development of a 
robust composite biomarker serving diagnostic, predictive, 
prognostic, and monitoring purposes will be more 
readily achievable.

TABLE 3 Representative features pooled across all pain disease types. Similar features are combined within the same row in column 1. 

Potential biomarker Biomarker type 
(s)

Number of 
claimsa (64 total 

features)

Decreased alpha band power; Decreased alpha-2 band power; Decreased peak alpha frequency; Increased ERD in 

alpha band; Decreased frontal and central alpha band power

Diagnostic, Predictive, 

Monitoring

16

Increased theta band power; Increased theta band connectivity; Theta band correlated with self-reported pain 

intensities

Diagnostic 11

Increased beta band power; Increased beta band connectivity; Increased beta connectivity in frontal, central, and 

temporal areas

Diagnostic, Monitoring 8

Decreased theta band power; Increased ERD in theta band Diagnostic 4

Decreased beta band power; Increased ERD in beta band; Decreased beta-2 band power Diagnostic, Predictive 3

Increased prefrontal gamma band power; Increased gamma band connectivity; Increased frontal and central gamma 

band power

Diagnostic, Monitoring 3

Increased alpha band power; Increased alpha band connectivity; Enhanced alpha band power in parietal and 

occipital areas

Diagnostic 3

Increased delta band power; Delta band correlated with self-reported pain intensities Diagnostic 2

Rows are sorted by descending number of observations. Decreased alpha power prevails among all other potential biomarkers, accounting for 25% of all those reviewed. 
aFor brevity, only showing potential biomarkers with more than one observation; fourteen (14) potential biomarkers are omitted, which can be found in Table 1.
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6. The future of EEG as a biomarker 
for chronic pain

In the last decade, the EEG pain research field has seen rapid 
progress. Though as we look into the future, we predict collaborative 
efforts will be crucial for achieving the development of any EEG 
biomarker for pain, especially one that is composite. Below we list 
some recommendations to push the EEG pain research 
community forward.

Data sharing and data pooling across study groups have proven 
to be appealing and perhaps essential methods to address the need 
for large data sets for ML analysis of EEG recordings (Van Der 
Miesen et al., 2019; Davis et al., 2020). Research groups may test 
various features and ML methods on the same large dataset, making 
for more robust comparisons between models, and facilitating faster 
discovery of potential features toward a composite biomarker for 
chronic pain. Moreover, by pooling data across various study groups, 
the validity of a potential biomarker would increase as the sample 
size gets larger, allowing for more robust cross-validation (Davis 
et  al., 2020). In addition, the transparency of a potential EEG 
biomarker would be  significantly improved by homogenized 
reporting standards. Currently, there exists a great discrepancy 
between reported results, and as part of an effort to improve future 
outcomes, new reporting guidelines have been developed and 
presented (Mari et al., 2022). However, large, multi-center datasets 
do come with a caveat: increased subject variability may hinder the 
clarity of cross-subject predictors.

Another benefit of data pooling is the diversity of chronic pain 
conditions, making a potential biomarker more generalizable. Due to 
slight variations in population samples, two research groups studying 
the same pain disease with similar experimental and analysis 
techniques could arrive at contrasting results. For example, a number 
of the studies in this review are focused on one specific pain disease 
cohort: fibromyalgia patients, a condition that is much more common 
in women than in men, creating an obstacle for a generalizable 
biomarker. Thus, data pooling has the potential to reduce the impact 
of sample population variations in small datasets by increasing the 
diversity in multi-center datasets.

Another innovative approach that has emerged recently is to 
combine rs-EEG studies with stimulus-evoked signals (Table 1). Pain 
is a dynamic process, and chronic pain involves both tonic and phasic 
components. Thus, by analyzing both resting-state and stimulus-
evoked EEG potentials, we can further reduce the risk of confounders 
and improve sensitivity and specificity (Hansen et al., 2017).

Furthermore, Ávila et al. published an open and fully automated 
pipeline (DISCOVER-EEG) enabling easy, fast, and homogenous 
preprocessing, analysis, and visualization of rs-EEG data. This is an 
important step forward and should be taken as an example for future 
studies—where a tool like this will most likely promote open and 
reproducible research on brain function (Gil Avila et  al., 2023). 
Optimally, this tool could be further developed into an unsupervised 
or semi-supervised ML method, allowing us to use largely unlabeled 
data, which would increase the generalizability of the potential 
biomarker itself. Moreover, standardized ML processes could 
contribute to the use of good ML practices, where commonly noted 
mistakes in current studies are results that may reflect overfitting or 
other anomalies in the ML implementation. Importantly, future 

studies also need to focus on diversity, equity, and inclusion in both 
training and testing datasets to further ensure good ML practice.

Advances in EEG source localization may also help improve the 
validity and reliability of a potential EEG biomarker for pain. 
Specifically, these methods could be  used to inform which scalp 
electrodes are best positioned to record pain-associated brain activity, 
improving biomarker transparency and usability. As an example, the 
study conducted by Cao et al. demonstrated that using just a handful 
of leads may be enough to detect the presence of a disease, making 
future studies easier to conduct, but also facilitating continuous and 
longer EEG recording for monitoring purposes (Cao et al., 2018). This 
would be further facilitated by way of a portable device (Pu et al., 
2021; Eldabe et al., 2022).

6.1. The potential for multimodal 
biomarkers

Studies on multimodal biomarkers are emerging for chronic 
pain patients (Prichep et al., 2018; Tracey et al., 2019; Eldabe et al., 
2022). The incorporation of computational methods to 
conventional neurophysiological techniques such as EEG can 
be combined with other testing modalities, such as clinical reports, 
blood biomarkers, and quantitative sensory testing, to quantify 
pain and to predict outcomes for chronic pain patients (Califf, 
2018; Mari et al., 2022).

Over recent years, a shift in paradigm for decoding chronic pain 
has already occurred, by incorporating objective neural signals into 
more subjective measurements of pain such as pain and mood 
questionnaires, as well as physiological data such as pulse and skin 
conductance measurements (Lancaster et  al., 2017). With our 
current understanding of the EEG patterns associated with chronic 
pain states, and with the continuous improvement of ML algorithms, 
we now have the tools to propose multimodal biomarkers in the 
future. Another development in biomarker research is that an 
appropriately collected and curated database could be applied to the 
development of multiple biomarkers serving more than one clinical 
purpose (Vuckovic et al., 2014, 2018).

6.2. Limitations of this review

As a narrative review, we  did not employ a systematic set of 
criteria for study inclusion, in part due to the relatively disparate 
literature in machine learning and EEG studies in pain. By presenting 
concepts from the perspective of clinical applicability, we aimed to 
facilitate an understanding of the application of EEG and machine 
learning in studies of chronic pain without the use of 
restrictive language.

6.3. Summary

In summary, impactful studies have been conducted in the past 
decade showing the potential for an EEG-based biomarker for chronic 
pain. Through the establishment of standardized practices and 
improved collaborations between members of the field, EEG-based 
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techniques have the potential to become a key component of chronic 
pain diagnosis and treatment.

Author contributions

MR wrote the first draft of the manuscript. GK, LD, ZC, and JW 
wrote sections of the manuscript. All authors contributed to the article 
and approved the submitted version.

Acknowledgments

The authors acknowledge funding from the National Institutes of 
Health grants NS121776 (JW and ZC), MH118928 (ZC) and 
DA056394 (ZC). Any opinions, findings, and conclusions or 
recommendations expressed in this article are solely those of the 
authors and do not necessarily reflect the views of the funding agencies.

Conflict of interest

JW is a cofounder of Pallas Technologies, Inc., and ZC is a 
scientific advisor of Pallas Technologies, Inc. JW and ZC are inventors 
of a pending US patent application of pain treatment technology.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Aggarwal, S., and Chugh, N. (2022). Review of machine learning techniques for EEG 

based brain computer interface. Arch. Comput. Methods Eng. 29, 3001–3020. doi: 
10.1007/s11831-021-09684-6

Ahn, S., Prim, J. H., Alexander, M. L., McCulloch, K. L., and Fröhlich, F. (2019). 
Identifying and engaging neuronal oscillations by Transcranial alternating current 
stimulation in patients with chronic low Back pain: a randomized, crossover, double-
blind, Sham-Controlled Pilot Study. J. Pain. 20, 277.e1–277.e11. doi: 10.1016/j.
jpain.2018.09.004

Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., and Aljaaf, A. J. (2020). “A 
systematic review on supervised and unsupervised machine learning algorithms for data 
science” in Supervised and unsupervised learning for data science. ed. M. W. Berry 
(Heidelberg: Springer), 3–21.

Apkarian, A. V., Bushnell, M. C., Treede, R.-D., and Zubieta, J.-K. (2005). Human 
brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 
9, 463–484. doi: 10.1016/j.ejpain.2004.11.001

Ataoğlu, E., Tiftik, T., Kara, M., Tunc, H., Ersöz, M., and Akkuş, S. (2013). Effects of 
chronic pain on quality of life and depression in patients with spinal cord injury. Spinal 
Cord 51, 23–26. doi: 10.1038/sc.2012.51

Aunon, J., and Sencaj, R. (1978). Comparison of different techniques for processing 
evoked potentials. Med. Biol. Eng. Comput. 16, 642–650. doi: 10.1007/BF02442443

Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Rosciarelli, F., Arendt-Nielsen, L., 
et al. (2002). Human brain oscillatory activity phase-locked to painful electrical 
stimulations: a multi-channel EEG study. Hum. Brain Mapp. 15, 112–123. doi: 10.1002/
hbm.10013

Baliki, M. N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., et al. 
(2012). Corticostriatal functional connectivity predicts transition to chronic back pain. 
Nature Neurosci. 15, 1117–1119. doi: 10.1038/nn.3153

Barbosa-Torres, C., and Cubo-Delgado, S. (2021). Clinical findings in SMR 
neurofeedback protocol training in women with fibromyalgia syndrome. Brain Sci. 
11:1069. doi: 10.3390/brainsci11081069

Baroni, A., Severini, G., Straudi, S., Buja, S., Borsato, S., and Basaglia, N. (2020). 
Hyperalgesia and central sensitization in subjects with chronic orofacial pain: analysis 
of pain thresholds and EEG biomarkers. Front. Neurosci. 14:552650. doi: 10.3389/
fnins.2020.552650

Baskin, I. I., Winkler, D., and Tetko, I. V. (2016). A renaissance of neural networks in drug 
discovery. Expert Opin. Drug Discov. 11, 785–795. doi: 10.1080/17460441.2016.1201262

Bernardi, L., Bertuccelli, M., Formaggio, E., Rubega, M., Bosco, G., Tenconi, E., et al. 
(2021). Beyond physiotherapy and pharmacological treatment for fibromyalgia 
syndrome: tailored tACS as a new therapeutic tool. Eur. Arch. Psychiatry Clin. Neurosci. 
271, 199–210. doi: 10.1007/s00406-020-01214-y

Besson, J. (1999). The neurobiology of pain. Lancet 353, 1610–1615. doi: 10.1016/
S0140-6736(99)01313-6

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Müller, K. (2008). Optimal 
spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41–56. 
doi: 10.1109/MSP.2008.4408441

Boccard, S. G., Pereira, E. A., Moir, L., Van Hartevelt, T. J., Kringelbach, M. L., 
FitzGerald, J. J., et al. (2014). Deep brain stimulation of the anterior cingulate cortex: 

targeting the affective component of chronic pain. Neuroreport 25, 83–88. doi: 10.1097/
WNR.0000000000000039

Boonstra, A. M., Preuper, H. R. S., Reneman, M. F., Posthumus, J. B., and Stewart, R. E. 
(2008). Reliability and validity of the visual analogue scale for disability in patients with 
chronic musculoskeletal pain. Int. J. Rehabil. Res. 31, 165–169. doi: 10.1097/
MRR.0b013e3282fc0f93

Bressler, S. L. (2011). “Event-related potentials of the cerebral cortex. 
Electrophysiological recording techniques” in Electrophysiological recording techniques, 
Neuromethods. eds. P. Vertes and R. W. Stackman, vol. 54 (Heidelberg: Springer)

Britton, J. W., Frey, L. C., Hopp, J. L., Korb, P., Koubeissi, M. Z., Lievens, W. E., et al. 
(2016) in Electroencephalography (EEG): An introductory text and Atlas of Normal and 
abnormal findings in adults, children, and infants. eds. E. K. ST. Louis and L. C. Frey 
(Chicago: American Epilepsy Society)

Brodersen, K. H., Wiech, K., Lomakina, E. I., Lin, C.-S., Buhmann, J. M., Bingel, U., 
et al. (2012). Decoding the perception of pain from fMRI using multivariate pattern 
analysis. NeuroImage 63, 1162–1170. doi: 10.1016/j.neuroimage.2012.08.035

Buchanan, D. M., Ros, T., and Nahas, R. (2021). Elevated and slowed EEG oscillations 
in patients with post-concussive syndrome and chronic pain following a motor vehicle 
collision. Brain Sci. 11:537. doi: 10.3390/brainsci11050537

Byrom, B., McCarthy, M., Schueler, P., and Muehlhausen, W. (2018). Brain monitoring 
devices in neuroscience clinical research: the potential of remote monitoring using sensors, 
wearables, and mobile devices. Clin. Pharm. Therap. 104, 59–71. doi: 10.1002/cpt.1077

Califf, R. M. (2018). Biomarker definitions and their applications. Exp. Biol. Med. 243, 
213–221. doi: 10.1177/1535370217750088

Camfferman, D., Moseley, G. L., Gertz, K., Pettet, M. W., and Jensen, M. P. (2017). 
Waking EEG cortical markers of chronic pain and sleepiness. Pain Med. 18, 1921–1931. 
doi: 10.1093/pm/pnw294

Cao, Z., Lai, K.-L., Lin, C.-T., Chuang, C.-H., Chou, C.-C., and Wang, S.-J. (2018). 
Exploring resting-state EEG complexity before migraine attacks. Cephalalgia 38, 
1296–1306. doi: 10.1177/0333102417733953

Cao, T., Wang, Q., Liu, D., Sun, J., and Bai, O. (2020). Resting state EEG-based sudden 
pain recognition method and experimental study. Biomed. Signal Process Control 
59:101925. doi: 10.1016/j.bspc.2020.101925

Chang, P., Arendt-Nielsen, L., Graven-Nielsen, T., Svensson, P., and Chen, A. C. 
(2001). Different EEG topographic effects of painful and non-painful intramuscular 
stimulation in man. Exp. Brain Res. 141, 195–203. doi: 10.1007/s002210100864

Chapman, C. R., and Vierck, C. J. (2017). The transition of acute postoperative pain 
to chronic pain: an integrative overview of research on mechanisms. J. Pain 18, e1–e38. 
doi: 10.1016/j.jpain.2016.11.004

Chen, Z. S. (2021). Decoding pain from brain activity. J. Neural Eng. 18:051002. doi: 
10.1088/1741-2552/ac28d4

Chen, J. C., Yao, K., and Hudson, R. E. (2002). Source localization and beamforming. 
IEEE Signal Process. Mag. 19, 30–39. doi: 10.1109/79.985676

Chen, D., Zhang, H., Kavitha, P. T., Loy, F. L., Ng, S. H., Wang, C., et al. (2022). Scalp 
EEG-based pain detection using convolutional neural network. IEEE Trans. Neural Syst. 
Rehabil. Eng. 30, 274–285. doi: 10.1109/TNSRE.2022.3147673

https://doi.org/10.3389/fnins.2023.1186418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s11831-021-09684-6
https://doi.org/10.1016/j.jpain.2018.09.004
https://doi.org/10.1016/j.jpain.2018.09.004
https://doi.org/10.1016/j.ejpain.2004.11.001
https://doi.org/10.1038/sc.2012.51
https://doi.org/10.1007/BF02442443
https://doi.org/10.1002/hbm.10013
https://doi.org/10.1002/hbm.10013
https://doi.org/10.1038/nn.3153
https://doi.org/10.3390/brainsci11081069
https://doi.org/10.3389/fnins.2020.552650
https://doi.org/10.3389/fnins.2020.552650
https://doi.org/10.1080/17460441.2016.1201262
https://doi.org/10.1007/s00406-020-01214-y
https://doi.org/10.1016/S0140-6736(99)01313-6
https://doi.org/10.1016/S0140-6736(99)01313-6
https://doi.org/10.1109/MSP.2008.4408441
https://doi.org/10.1097/WNR.0000000000000039
https://doi.org/10.1097/WNR.0000000000000039
https://doi.org/10.1097/MRR.0b013e3282fc0f93
https://doi.org/10.1097/MRR.0b013e3282fc0f93
https://doi.org/10.1016/j.neuroimage.2012.08.035
https://doi.org/10.3390/brainsci11050537
https://doi.org/10.1002/cpt.1077
https://doi.org/10.1177/1535370217750088
https://doi.org/10.1093/pm/pnw294
https://doi.org/10.1177/0333102417733953
https://doi.org/10.1016/j.bspc.2020.101925
https://doi.org/10.1007/s002210100864
https://doi.org/10.1016/j.jpain.2016.11.004
https://doi.org/10.1088/1741-2552/ac28d4
https://doi.org/10.1109/79.985676
https://doi.org/10.1109/TNSRE.2022.3147673


Rockholt et al. 10.3389/fnins.2023.1186418

Frontiers in Neuroscience 16 frontiersin.org

Chicco, D. T. (2017). Quick tips for machine learning in computational biology. 
BioData Mining 10:35. doi: 10.1186/s13040-017-0155-3

Chowdhury, N. S., Skippen, P., Si, E., Chiang, A. K. I., Millard, S. K., Furman, A. J., 
et al. (2023). The reliability of two prospective cortical biomarkers for pain: EEG peak 
alpha frequency and TMS corticomotor excitability. J. Neurosci. Methods 385:109766. 
doi: 10.1016/j.jneumeth.2022.109766

Dahlhamer, J., Lucas, J., Zelaya, C., Nahin, R., Mackey, S., DeBar, L., et al. (2018). 
Prevalence of chronic pain and high-impact chronic pain among adults—United 
States, 2016. MMWR Morb. Mortal. Wkly Rep. 67:1001. doi: 10.15585/mmwr.
mm6736a2

Dansie, E., and Turk, D. C. (2013). Assessment of patients with chronic pain. Br. J. 
Anaesth. 111, 19–25. doi: 10.1093/bja/aet124

Davis, K. D., Aghaeepour, N., Ahn, A. H., Angst, M. S., Borsook, D., Brenton, A., et al. 
(2020). Discovery and validation of biomarkers to aid the development of safe and 
effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 16, 381–400. 
doi: 10.1038/s41582-020-0362-2

de Melo, G. A., de Oliveira, E. A., dos Santos Andrade, S. M. M., Fernández-Calvo, B., 
and Torro, N. (2020). Comparison of two tDCS protocols on pain and EEG alpha-2 
oscillations in women with fibromyalgia. Sci. Rep. 10:18955. doi: 10.1038/
s41598-020-75861-5

De Vries, M., Wilder-Smith, O. H., Jongsma, M. L., van den Broeke, E. N., 
Arns, M., Van Goor, H., et al. (2013). Altered resting state EEG in chronic pancreatitis 
patients: toward a marker for chronic pain. J. Pain Res. 6:815. doi: 10.2147/JPR.
S50919

Di Pietro, F., Macey, P. M., Rae, C. D., Alshelh, Z., Macefield, V. G., Vickers, E. R., et al. 
(2018). The relationship between thalamic GABA content and resting cortical rhythm 
in neuropathic pain. Hum. Brain Mapp. 39, 1945–1956. doi: 10.1002/hbm.23973

Dinh, S. T., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D., et al. 
(2019). Brain dysfunction in chronic pain patients assessed by resting-state 
electroencephalography. Pain 160:2751. doi: 10.1097/j.pain.0000000000001666

Duerden, E. G., and Albanese, M. C. (2013). Localization of pain-related brain 
activation: a meta-analysis of neuroimaging data. Hum. Brain Mapp. 34, 109–149. doi: 
10.1002/hbm.21416

Einevoll, G. T., Kayser, C., Logothetis, N. K., and Panzeri, S. (2013). Modelling and 
analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. 
Neurosci. 14, 770–785. doi: 10.1038/nrn3599

Eldabe, S., Obara, I., Panwar, C., and Caraway, D. (2022). Biomarkers for chronic pain: 
significance and summary of recent advances. Pain Res. Manag. doi: 
10.1155/2022/1940906

Fallon, N., Chiu, Y., Nurmikko, T., and Stancak, A. (2018). Altered theta oscillations 
in resting EEG of fibromyalgia syndrome patients. Eur. J. Pain 22, 49–57. doi: 10.1002/
ejp.1076

Feng, L., Li, H., Cui, H., Xie, X., Xu, S., and Hu, Y. (2021). Low back pain assessment 
based on alpha oscillation changes in spontaneous electroencephalogram (EEG). Neural 
Plast. 2021. doi: 10.1155/2021/8537437

Ferdek, M. A., Oosterman, J. M., Adamczyk, A. K., van Aken, M., Woudsma, K. J., 
Peeters, B. W., et al. (2019). Effective connectivity of beta oscillations in endometriosis-
related chronic pain during rest and pain-related mental imagery. J. Pain 20, 1446–1458. 
doi: 10.1016/j.jpain.2019.05.011

Fernandez Rojas, R., Huang, X., and Ou, K.-L. A. (2019). Machine learning approach 
for the identification of a biomarker of human pain using fNIRS. Sci. Rep. 9, 1–12. doi: 
10.1038/s41598-019-42098-w

Ferracuti, S., Seri, S., Mattia, D., and Cruccu, G. (1994). Quantitative EEG 
modifications during the cold water pressor test: hemispheric and hand differences. Int. 
J. Psychophysiol. 17, 261–268. doi: 10.1016/0167-8760(94)90068-x

Freye, E., and Levy, J. (2006). The effects of tramadol on pain relief, fast EEG-power 
spectrum and cognitive function in elderly patients with chronic osteoarthritis (OA). 
Acute. Pain. 8, 55–61. doi: 10.1016/j.acpain.2006.03.001

Furman, A. J., Meeker, T. J., Rietschel, J. C., Yoo, S., Muthulingam, J., Prokhorenko, M., 
et al. (2018). Cerebral peak alpha frequency predicts individual differences in pain 
sensitivity. NeuroImage 167, 203–210. doi: 10.1016/j.neuroimage.2017.11.042

Furman, A. J., Prokhorenko, M., Keaser, M. L., Zhang, J., Chen, S., Mazaheri, A., et al. 
(2020). Sensorimotor peak alpha frequency is a reliable biomarker of prolonged pain 
sensitivity. Cereb. Cortex 30, 6069–6082. doi: 10.1093/cercor/bhaa124

Furman, A. J., Thapa, T., Summers, S. J., Cavaleri, R., Fogarty, J. S., Steiner, G. Z., et al. 
(2019). Cerebral peak alpha frequency reflects average pain severity in a human model 
of sustained, musculoskeletal pain. J. Neurophysiol. 122, 1784–1793. doi: 10.1152/
jn.00279.2019

Gan, T. J. (2017). Poorly controlled postoperative pain: prevalence, consequences, and 
prevention. J. Pain Res. 10:2287. doi: 10.2147/JPR.S144066

Gan, T. J., Habib, A. S., Miller, T. E., White, W., and Apfelbaum, J. L. (2014). Incidence, 
patient satisfaction, and perceptions of post-surgical pain: results from a US national 
survey. Curr. Med. Res. Opin. 30, 149–160. doi: 10.1185/03007995.2013.860019

Gardner, J., and Sachdeva, H. (2019). Causes of pain worldwide. Pain, 1191–1192. doi: 
10.1007/978-3-319-99124-5_253

Gatchel, R. J., Fuchs, P. N., and Allen, C. (2016). “Ethical issues in chronic pain 
research” in Ethical Issues in Chronic Pain Management. ed. M. E. Schatman (Boca 
Raton: CRC Press)

Gil Avila, C., Bott, F. S., Tiemann, L., Hohn, V. D., May, E. S., Nickel, M. M., et al. 
(2023). DISCOVER-EEG: an open, fully automated EEG pipeline for biomarker 
discovery in clinical neuroscience. bioRxiv 2023, 20:524897. doi: 10.1101/2023. 
01.20.524897

González-Roldán, A. M., Cifre, I., Sitges, C., and Montoya, P. (2016). Altered dynamic 
of EEG oscillations in fibromyalgia patients at rest. Pain Med. 17, 1058–1068. doi: 
10.1093/pm/pnw023

González-Villar, A. J., Triñanes, Y., Gómez-Perretta, C., and Carrillo-de-
la-Peña, M. T. (2020). Patients with fibromyalgia show increased beta connectivity 
across distant networks and microstates alterations in resting-state 
electroencephalogram. NeuroImage 223:117266. doi: 10.1016/j.neuroimage.2020. 
117266

Gram, M., Erlenwein, J., Petzke, F., Falla, D., Przemeck, M., Emons, M., et al. (2017). 
Prediction of postoperative opioid analgesia using clinical-experimental parameters and 
electroencephalography. Eur. J. Pain 21, 264–277. doi: 10.1002/ejp.921

Graversen, C., Olesen, S. S., Olesen, A. E., Steimle, K., Farina, D., Wilder-Smith, O. H., 
et al. (2012). The analgesic effect of pregabalin in patients with chronic pain is reflected 
by changes in pharmaco-EEG spectral indices. Br J. PClin. harmacol. 73, 363–372. doi: 
10.1111/j.1365-2125.2011.04104.x

Group, F. N. B. W. (2016). “BEST (biomarkers, endpoints, and other tools) resource 
[internet]” in Silver spring (MD): Food and Drug Administration (US) (Bethesda (MD): 
National Institutes of Health (US))

Gunn, J., Hill, M. M., Cotten, B. M., and Deer, T. R. (2020). An analysis of biomarkers 
in patients with chronic pain. Pain Physician 23:E41. doi: 10.36076/PPJ.2020/23/E41

Guo, X., Zhang, Q., Singh, A., Wang, J., and Chen, Z. S. (2020). Granger causality 
analysis of rat cortical functional connectivity in pain. J. Neural Eng. 17:016050. doi: 
10.1088/1741-2552/ab6cba

Hadjileontiadis, L. J. (2015). EEG-based tonic cold pain characterization using wavelet 
higher order spectral features. I.E.E.E. Trans. Biomed. Eng. 62, 1981–1991. doi: 10.1109/
TBME.2015.2409133

Haefeli, M., and Elfering, A. (2006). Pain assessment. Eur. Spine J. 15, S17–S24. doi: 
10.1007/s00586-005-1044-x

Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., et al. 
(2007). Review on solving the forward problem in EEG source analysis. J. Neuroeng. 
Rehabil. 4, 1–29. doi: 10.1186/1743-0003-4-46

Hammal, Z., and Cohn, J. F. (2012). Automatic detection of pain intensity. Proc ACM 
Int. Conf. Multimodal. Interact. 2012, 47–52. doi: 10.1145/2388676.2388688

Hansen, T. M., Mark, E. B., Olesen, S. S., Gram, M., Frøkjær, J. B., and Drewes, A. M. 
(2017). Characterization of cortical source generators based on electroencephalography 
during tonic pain. J. Pain Res. 10:1401. doi: 10.2147/JPR.S132909

Harland, T., Hadanny, A., and Pilitsis, J. G. (2022). Machine learning and pain 
outcomes. Neurosurg. Clin. N. Am. 33, 351–358. doi: 10.1016/j.nec.2022.02.012

Hasenstab, K., Sugar, C. A., Telesca, D., McEvoy, K., Jeste, S., and Şentürk, D. (2015). 
Identifying longitudinal trends within EEG experiments. Biometrics 71, 1090–1100. doi: 
10.1111/biom.12347

Heitmann, H., Ávila, C. G., Nickel, M. M., Dinh, S. T., May, E. S., Tiemann, L., et al. 
(2022). Longitudinal resting-state electroencephalography in patients with chronic pain 
undergoing interdisciplinary multimodal pain therapy. Pain 163, e997–e1005. doi: 
10.1097/j.pain.0000000000002565

Herrmann, C. S., and Knight, R. T. (2001). Mechanisms of human attention: event-
related potentials and oscillations. Neurosci. Biobehav. Rev. 25, 465–476. doi: 10.1016/
s0149-7634(01)00027-6

Hollmann, M. W., Rathmell, J. P., and Lirk, P. (2019). Optimal postoperative pain 
management: redefining the role for opioids. Lancet 393, 1483–1485. doi: 10.1016/
S0140-6736(19)30854-2

Hosseini, M.-P., Hosseini, A., and Ahi, K. (2020). A review on machine learning for 
EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 14, 204–218. doi: 
10.1109/RBME.2020.2969915

Hu, L., and Iannetti, G. D. (2016). Painful issues in pain prediction. Trends Neurosci. 
39, 212–220. doi: 10.1016/j.tins.2016.01.004

Hu, L., and Zhang, Z., editors. EEG signal processing and feature extraction, Springer, 
Heidelberg (2019).

Huber, M., Bartling, J., Pachur, D. V., Woikowsky-Biedau, S., and Lautenbacher, S. 
(2006). EEG responses to tonic heat pain. Exp. Brain Res. 173, 14–24. doi: 10.1007/
s00221-006-0366-1

Iannetti, G. D., Hughes, N. P., Lee, M. C., and Mouraux, A. (2008). Determinants of 
laser-evoked EEG responses: pain perception or stimulus saliency? J. Neurophysiol. 100, 
815–828. doi: 10.1152/jn.00097.2008

Inouye, T., Shinosaki, K., Sakamoto, H., Toi, S., Ukai, S., Iyama, A., et al. (1991). 
Quantification of EEG irregularity by use of the entropy of the power spectrum. 
Electroencephalogr. Clin. Neurophysiol. 79, 204–210. doi: 10.1016/0013-4694(91)90138-t

https://doi.org/10.3389/fnins.2023.1186418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1016/j.jneumeth.2022.109766
https://doi.org/10.15585/mmwr.mm6736a2
https://doi.org/10.15585/mmwr.mm6736a2
https://doi.org/10.1093/bja/aet124
https://doi.org/10.1038/s41582-020-0362-2
https://doi.org/10.1038/s41598-020-75861-5
https://doi.org/10.1038/s41598-020-75861-5
https://doi.org/10.2147/JPR.S50919
https://doi.org/10.2147/JPR.S50919
https://doi.org/10.1002/hbm.23973
https://doi.org/10.1097/j.pain.0000000000001666
https://doi.org/10.1002/hbm.21416
https://doi.org/10.1038/nrn3599
https://doi.org/10.1155/2022/1940906
https://doi.org/10.1002/ejp.1076
https://doi.org/10.1002/ejp.1076
https://doi.org/10.1155/2021/8537437
https://doi.org/10.1016/j.jpain.2019.05.011
https://doi.org/10.1038/s41598-019-42098-w
https://doi.org/10.1016/0167-8760(94)90068-x
https://doi.org/10.1016/j.acpain.2006.03.001
https://doi.org/10.1016/j.neuroimage.2017.11.042
https://doi.org/10.1093/cercor/bhaa124
https://doi.org/10.1152/jn.00279.2019
https://doi.org/10.1152/jn.00279.2019
https://doi.org/10.2147/JPR.S144066
https://doi.org/10.1185/03007995.2013.860019
https://doi.org/10.1007/978-3-319-99124-5_253
https://doi.org/10.1101/2023.01.20.524897
https://doi.org/10.1101/2023.01.20.524897
https://doi.org/10.1093/pm/pnw023
https://doi.org/10.1016/j.neuroimage.2020.117266
https://doi.org/10.1016/j.neuroimage.2020.117266
https://doi.org/10.1002/ejp.921
https://doi.org/10.1111/j.1365-2125.2011.04104.x
https://doi.org/10.36076/PPJ.2020/23/E41
https://doi.org/10.1088/1741-2552/ab6cba
https://doi.org/10.1109/TBME.2015.2409133
https://doi.org/10.1109/TBME.2015.2409133
https://doi.org/10.1007/s00586-005-1044-x
https://doi.org/10.1186/1743-0003-4-46
https://doi.org/10.1145/2388676.2388688
https://doi.org/10.2147/JPR.S132909
https://doi.org/10.1016/j.nec.2022.02.012
https://doi.org/10.1111/biom.12347
https://doi.org/10.1097/j.pain.0000000000002565
https://doi.org/10.1016/s0149-7634(01)00027-6
https://doi.org/10.1016/s0149-7634(01)00027-6
https://doi.org/10.1016/S0140-6736(19)30854-2
https://doi.org/10.1016/S0140-6736(19)30854-2
https://doi.org/10.1109/RBME.2020.2969915
https://doi.org/10.1016/j.tins.2016.01.004
https://doi.org/10.1007/s00221-006-0366-1
https://doi.org/10.1007/s00221-006-0366-1
https://doi.org/10.1152/jn.00097.2008
https://doi.org/10.1016/0013-4694(91)90138-t


Rockholt et al. 10.3389/fnins.2023.1186418

Frontiers in Neuroscience 17 frontiersin.org

Isnard, J., Magnin, M., Jung, J., Mauguière, F., and Garcia-Larrea, L. (2011). Does the 
insula tell our brain that we  are in pain? Pain 152, 946–951. doi: 10.1016/j.
pain.2010.12.025

Jackson, A. F., and Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG 
measurement: a review for the rest of us. Psychophysiology 51, 1061–1071. doi: 10.1111/
psyp.12283

Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F., and Gramfort, A. (2017). 
Autoreject: automated artifact rejection for MEG and EEG data. NeuroImage 159, 
417–429. doi: 10.1016/j.neuroimage.2017.06.030

Jensen, M. P., Gertz, K. J., Kupper, A. E., Braden, A. L., Howe, J. D., Hakimian, S., et al. 
(2013). Steps toward developing an EEG biofeedback treatment for chronic pain. Appl. 
Psychophysiol. Biofeedback 38, 101–108. doi: 10.1007/s10484-013-9214-9

Jensen, M. P., Hakimian, S., Ehde, D. M., Day, M. A., Pettet, M. W., Yoshino, A., et al. 
(2021). Pain-related beliefs, cognitive processes, and electroencephalography band 
power as predictors and mediators of the effects of psychological chronic pain 
interventions. Pain 162:2036. doi: 10.1097/j.pain.0000000000002201

Jensen, M. P., Hakimian, S., Sherlin, L. H., and Fregni, F. (2008). New insights into 
neuromodulatory approaches for the treatment of pain. J. Pain 9, 193–199. doi: 
10.1016/j.jpain.2007.11.003

Jenssen, M. D. K., Bakkevoll, P. A., Ngo, P. D., Budrionis, A., Fagerlund, A. J., 
Tayefi, M., et al. (2021). Machine learning in chronic pain research: a scoping review. 
Appl. Sci. 11:3205. doi: 10.3390/app11073205

Jia, X., Li, K., Li, X., and Zhang, A. (2014). A novel semi-supervised deep learning 
framework for affective state recognition on eeg signals. IEEE Int. Conf. Bioinformatics 
Bioeng., 30–37. doi: 10.1109/BIBE.2014.26

Jiang, X., Bian, G.-B., and Tian, Z. (2019). Removal of artifacts from EEG signals: a 
review. Sensors 19:987. doi: 10.3390/s19050987

Jobert, M., Wilson, F. J., Ruigt, G. S., Brunovsky, M., Prichep, L. S., Drinkenburg, W. H., 
et al. (2012). Guidelines for the recording and evaluation of pharmaco-EEG data in man: 
the international Pharmaco-EEG society (IPEG). Neuropsychobiology 66, 201–220. doi: 
10.1159/000343478

Johannes, C. B., Le, T. K., Zhou, X., Johnston, J. A., and Dworkin, R. H. (2010). The 
prevalence of chronic pain in United States adults: results of an internet-based survey. 
J. Pain 11, 1230–1239. doi: 10.1016/j.jpain.2010.07.002

Katsigiannis, S., and Ramzan, N. (2017). DREAMER: a database for emotion 
recognition through EEG and ECG signals from wireless low-cost off-the-shelf 
devices. IEEE J. Biomedical. Health Inform. 22, 98–107. doi: 10.1109/
JBHI.2017.2688239

Kehlet, H., Jensen, T. S., and Woolf, C. J. (2006). Persistent postsurgical pain: risk 
factors and prevention. Lancet 367, 1618–1625. doi: 10.1016/S0140-6736(06)68700-X

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in 
resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev. 49, 
105–113. doi: 10.1016/j.neubiorev.2014.12.010

Kimura, A., Mitsukura, Y., Oya, A., Matsumoto, M., Nakamura, M., Kanaji, A., et al. 
(2021). Objective characterization of hip pain levels during walking by combining 
quantitative electroencephalography with machine learning. Sci. Rep. 11, 1–10. doi: 
10.1038/s41598-021-82696-1

Kinnealey, M., and Fuiek, M. (1999). The relationship between sensory defensiveness, 
anxiety, depression and perception of pain in adults. Occup. Ther. Int. 6, 195–206. doi: 
10.1002/oti.97

Kragel, P. A., Koban, L., Barrett, L. F., and Wager, T. D. (2018). Representation, pattern 
information, and brain signatures: from neurons to neuroimaging. Neuron 99, 257–273. 
doi: 10.1016/j.neuron.2018.06.009

Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., and Colino, F. L. (2017). 
Choosing MUSE: validation of a low-cost, portable EEG system for ERP research. Front. 
Neurosci. 11:109. doi: 10.3389/fnins.2017.00109

Kucyi, A., and Davis, K. D. (2015). The dynamic pain connectome. Trends. 
Neurosciences 38, 86–95. doi: 10.1016/j.tins.2014.11.006

Ladha, K. S., Patorno, E., Huybrechts, K. F., Liu, J., Rathmell, J. P., and Bateman, B. T. 
(2016). Variations in the use of perioperative multimodal analgesic therapy. 
Anesthesiology 124, 837–845. doi: 10.1097/ALN.0000000000001034

Lamichhane, B., Jayasekera, D., Jakes, R., Glasser, M. F., Zhang, J., Yang, C., et al. 
(2021). Multi-modal biomarkers of low back pain: a machine learning approach. 
Neuroimage Clin. 29:102530. doi: 10.1016/j.nicl.2020.102530

Lancaster, J., Mano, H., Callan, D., Kawato, M., and Seymour, B. (2017). Decoding 
acute pain with combined EEG and physiological data. IEEE Int. Conf. Neural. Eng., 
521–524. doi: 10.1109/NER.2017.8008404

Le Pera, D., Svensson, P., Valeriani, M., Watanabe, I., Arendt-Nielsen, L., and 
Chen, A. C. (2000). Long-lasting effect evoked by tonic muscle pain on parietal EEG 
activity in humans. Clin. Neurophysiol. 111, 2130–2137. doi: 10.1016/
s1388-2457(00)00474-0

Lee, C. H., Kim, H. S., Kim, Y.-S., Jung, S., Yoon, C. H., and Kwon, O.-Y. (2021). 
Cerebral current-source distribution associated with pain improvement by non-invasive 
painless signaling therapy in patients with failed back surgery syndrome. Korean J. Pain. 
34, 437–446. doi: 10.3344/kjp.2021.34.4.437

Lendaro, E., Balouji, E., Baca, K., Muhammad, A. S., and Ortiz-Catalan, M. (2021). 
Common spatial pattern EEG decomposition for phantom limb pain detection. Ann. 
Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 726–729. doi: 10.1109/EMBC46164. 
2021.9630561

Levitt, J., Edhi, M. M., Thorpe, R. V., Leung, J. W., Michishita, M., Koyama, S., 
et al. (2020). Pain phenotypes classified by machine learning using 
electroencephalography features. NeuroImage 223:117256. doi: 10.1016/j.
neuroimage.2020.117256

Levitt, J., and Saab, C. Y. (2019). What does a pain ‘biomarker’mean and can a 
machine be  taught to measure pain? Neurosci. Lett. 702, 40–43. doi: 10.1016/j.
neulet.2018.11.038

Liberati, G., Klöcker, A., Algoet, M., Mulders, D., Maia Safronova, M., Ferrao 
Santos, S., et al. (2018). Gamma-band oscillations preferential for nociception can 
be recorded in the human insula. Cereb. Cortex 28, 3650–3664. doi: 10.1093/cercor/
bhx237

Liberati, G., Mulders, D., Algoet, M., van den Broeke, E. N., Santos, S. F., Ribeiro 
Vaz, J. G., et al. (2020). Insular responses to transient painful and non-painful thermal 
and mechanical spinothalamic stimuli recorded using intracerebral EEG. Sci. Rep. 
10:22319. doi: 10.1038/s41598-020-79371-2

Liu, C., Chien, J., Chang, Y., Kim, J., Anderson, W., and Lenz, F. (2015). Functional 
role of induced gamma oscillatory responses in processing noxious and innocuous 
sensory events in humans. Neuroscience 310, 389–400. doi: 10.1016/j.
neuroscience.2015.09.047

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 
453, 869–878. doi: 10.1038/nature06976

Lötsch, J., Ultsch, A., and Kalso, E. (2017). Prediction of persistent post-surgery pain 
by preoperative cold pain sensitivity: biomarker development with machine-learning-
derived analysis. BJA. Br. J. Anaesth. 119, 821–829. doi: 10.1093/bja/aex236

Lu, H., Eng, H.-L., Guan, C., Plataniotis, K. N., and Venetsanopoulos, A. N. (2010). 
Regularized common spatial pattern with aggregation for EEG classification in small-
sample setting. IEEE Trans. Biomed. Eng. 57, 2936–2946. doi: 10.1109/
TBME.2010.2082540

Mari, T., Henderson, J., Maden, M., Nevitt, S., Duarte, R., and Fallon, N. (2022). 
Systematic review of the effectiveness of machine learning algorithms for classifying pain 
intensity, phenotype or treatment outcomes using electroencephalogram data. J. Pain. 
doi: 10.1016/j.jpain.2021.07.011

Martel, M., Harvey, M.-P., Houde, F., Balg, F., Goffaux, P., and Léonard, G. (2017). 
Unravelling the effect of experimental pain on the corticomotor system using 
transcranial magnetic stimulation and electroencephalography. Exp. Brain Res. 235, 
1223–1231. doi: 10.1007/s00221-017-4880-0

Martín-Brufau, R., Gómez, M. N., Sanchez-Sanchez-Rojas, L., and Nombela, C. 
(2021). Fibromyalgia detection based on EEG connectivity patterns. J. Clin. Med. 
10:3277. doi: 10.3390/jcm10153277

Matsangidou, M., Liampas, A., Pittara, M., Pattichi, C. S., and Zis, P. (2021). Machine 
learning in pain medicine: an up-to-date systematic review. Pain Ther., 10, 1067–1084. 
doi: 10.1007/s40122-021-00324-2

May, E. S., Ávila, C. G., Dinh, S. T., Heitmann, H., Hohn, V. D., Nickel, M. M., et al. 
(2021). Dynamics of brain function in patients with chronic pain assessed by microstate 
analysis of resting-state electroencephalography. Pain 162:2894. doi: 10.1097/j.
pain.0000000000002281

May, E. S., Nickel, M. M., Ta Dinh, S., Tiemann, L., Heitmann, H., Voth, I., et al. 
(2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain 
patients. Hum. Brain Mapp. 40, 293–305. doi: 10.1002/hbm.24373

Mendonça-de-Souza, M., Monteiro, U. M., Bezerra, A. S., Silva-de-Oliveira, A. P., 
Ventura-da-Silva, B. R., Barbosa, M. S., et al. (2012). Resilience in migraine brains: 
decrease of coherence after photic stimulation. Front. Hum. Neurosci. 6:207. doi: 
10.3389/fnhum.2012.00207

Meneses, F. M., Queirós, F. C., Montoya, P., Miranda, J. G., Dubois-Mendes, S. M., 
Sá, K. N., et al. (2016). Patients with rheumatoid arthritis and chronic pain display 
enhanced alpha power density at rest. Front. Hum. Neurosci. 10:395. doi: 10.3389/
fnhum.2016.00395

Merk, T., Peterson, V., Köhler, R., Haufe, S., Richardson, R. M., and Neumann, W.-J. 
(2022). Machine learning based brain signal decoding for intelligent adaptive deep brain 
stimulation. Exp. Neurol.:113993. doi: 10.1016/j.expneurol.2022

Michel, C. M., and Brunet, D. (2019). EEG source imaging: a practical review of the 
analysis steps. Front. Neurol. 10:325. doi: 10.3389/fneur.2019.00325

Millard, S. K., Furman, A. J., Kerr, A., Seminowicz, D. A., Gao, F., Naidu, B. V., et al. 
(2022). Predicting postoperative pain in lung cancer patients using preoperative peak 
alpha frequency. Br. J. Anaesth. 128, e346–e348. doi: 10.1016/j.bja.2022.03.006

Misra, G., Wang, W., Archer, D. B., Roy, A., and Coombes, S. A. (2017). Automated 
classification of pain perception using high-density electroencephalography data. J. 
Neurophysiol. 117, 786–795. doi: 10.1152/jn.00650.2016

Mokhtari, T., Tu, Y., and Hu, L. (2019). Involvement of the hippocampus in chronic 
pain and depression. Brain Sci. Adv. 5, 288–298. doi: 10.26599/BSA.2019.90500

Morton, D. L., Sandhu, J. S., and Jones, A. K. (2016). Brain imaging of pain: state of 
the art. J. Pain Res. 9:613. doi: 10.2147/JPR.S60433

https://doi.org/10.3389/fnins.2023.1186418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.pain.2010.12.025
https://doi.org/10.1016/j.pain.2010.12.025
https://doi.org/10.1111/psyp.12283
https://doi.org/10.1111/psyp.12283
https://doi.org/10.1016/j.neuroimage.2017.06.030
https://doi.org/10.1007/s10484-013-9214-9
https://doi.org/10.1097/j.pain.0000000000002201
https://doi.org/10.1016/j.jpain.2007.11.003
https://doi.org/10.3390/app11073205
https://doi.org/10.1109/BIBE.2014.26
https://doi.org/10.3390/s19050987
https://doi.org/10.1159/000343478
https://doi.org/10.1016/j.jpain.2010.07.002
https://doi.org/10.1109/JBHI.2017.2688239
https://doi.org/10.1109/JBHI.2017.2688239
https://doi.org/10.1016/S0140-6736(06)68700-X
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1038/s41598-021-82696-1
https://doi.org/10.1002/oti.97
https://doi.org/10.1016/j.neuron.2018.06.009
https://doi.org/10.3389/fnins.2017.00109
https://doi.org/10.1016/j.tins.2014.11.006
https://doi.org/10.1097/ALN.0000000000001034
https://doi.org/10.1016/j.nicl.2020.102530
https://doi.org/10.1109/NER.2017.8008404
https://doi.org/10.1016/s1388-2457(00)00474-0
https://doi.org/10.1016/s1388-2457(00)00474-0
https://doi.org/10.3344/kjp.2021.34.4.437
https://doi.org/10.1109/EMBC46164.2021.9630561
https://doi.org/10.1109/EMBC46164.2021.9630561
https://doi.org/10.1016/j.neuroimage.2020.117256
https://doi.org/10.1016/j.neuroimage.2020.117256
https://doi.org/10.1016/j.neulet.2018.11.038
https://doi.org/10.1016/j.neulet.2018.11.038
https://doi.org/10.1093/cercor/bhx237
https://doi.org/10.1093/cercor/bhx237
https://doi.org/10.1038/s41598-020-79371-2
https://doi.org/10.1016/j.neuroscience.2015.09.047
https://doi.org/10.1016/j.neuroscience.2015.09.047
https://doi.org/10.1038/nature06976
https://doi.org/10.1093/bja/aex236
https://doi.org/10.1109/TBME.2010.2082540
https://doi.org/10.1109/TBME.2010.2082540
https://doi.org/10.1016/j.jpain.2021.07.011
https://doi.org/10.1007/s00221-017-4880-0
https://doi.org/10.3390/jcm10153277
https://doi.org/10.1007/s40122-021-00324-2
https://doi.org/10.1097/j.pain.0000000000002281
https://doi.org/10.1097/j.pain.0000000000002281
https://doi.org/10.1002/hbm.24373
https://doi.org/10.3389/fnhum.2012.00207
https://doi.org/10.3389/fnhum.2016.00395
https://doi.org/10.3389/fnhum.2016.00395
https://doi.org/10.1016/j.expneurol.2022
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.1016/j.bja.2022.03.006
https://doi.org/10.1152/jn.00650.2016
https://doi.org/10.26599/BSA.2019.90500
https://doi.org/10.2147/JPR.S60433


Rockholt et al. 10.3389/fnins.2023.1186418

Frontiers in Neuroscience 18 frontiersin.org

Mouraux, A., and Iannetti, G. D. (2018). The search for pain biomarkers in the human 
brain. Brain 141, 3290–3307. doi: 10.1093/brain/awy281

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and 
Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: from 
brain–computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90. 
doi: 10.1016/j.jneumeth.2007.09.022

Mussigmann, T., Bardel, B., and Lefaucheur, J.-P. (2022). Resting-state 
electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic 
review. NeuroImage:119351. doi: 10.1016/j.neuroimage.2022.119351

Navarro López, J., Moral Bergós, R., and Marijuán, P. C. (2015). Significant new 
quantitative EGG patterns in fibromyalgia. Eur. J. Psychiat. 29, 277–292. doi: 10.4321/
S0213-61632015000400005

Necka, E. A., Lee, I.-S., Kucyi, A., Cheng, J. C., Yu, Q., and Atlas, L. Y. (2019). 
Applications of dynamic functional connectivity to pain and its modulation. Pain 
Rep.:4:e752. doi: 10.1097/PR9.0000000000000752

Nickel, M. M., May, E. S., Tiemann, L., Postorino, M., Dinh, S. T., and Ploner, M. 
(2017). Autonomic responses to tonic pain are more closely related to stimulus 
intensity than to pain intensity. Pain 158, 2129–2136. doi: 10.1097/j.
pain.0000000000001010

Nurse, E., Mashford, B. S., Yepes, A. J., Kiral-Kornek, I., Harrer, S., and Freestone, D. R. 
(2016). Decoding EEG and LFP signals using deep learning: heading TrueNorth. ACM 
Int. Conf. Comut. Front., 259–266. doi: 10.1145/2903150.2903159

Olejarczyk, E., Marzetti, L., Pizzella, V., and Zappasodi, F. (2017). Comparison of 
connectivity analyses for resting state EEG data. J. Neural Eng. 14:036017. doi: 
10.1088/1741-2552/aa6401

Parker, T., Raghu, A., Huang, Y., Gillies, M. J., FitzGerald, J. J., Aziz, T., et al. (2021). 
Paired acute invasive/non-invasive stimulation (PAINS) study: a phase I/II randomized, 
sham-controlled crossover trial in chronic neuropathic pain. Brain Stimul. 14, 
1576–1585. doi: 10.1016/j.brs.2021.10.384

Patel, K., Henshaw, J., Sutherland, H., Taylor, J. R., Casson, A. J., Lopez-Diaz, K., et al. 
(2021). Using EEG alpha states to understand learning during alpha neurofeedback 
training for chronic pain. Front. Neurosci. 14:620666. doi: 10.3389/fnins.2020.620666

Pedroni, A., Bahreini, A., and Langer, N. (2019). Automagic: standardized 
preprocessing of big EEG data. NeuroImage 200, 460–473. doi: 10.1016/j.
neuroimage.2019.06.046

Peng, W., and Tang, D. (2016). Pain related cortical oscillations: methodological 
advances and potential applications. Front. Comput. Neurosci. 10:9. doi: 10.3389/
fncom.2016.00009

Perl, E. R. (2007). Ideas about pain, a historical view. Nat. Rev. Neurosci. 8, 71–80. doi: 
10.1038/nrn2042

Peyron, R., Frot, M., Schneider, F., Garcia-Larrea, L., Mertens, P., Barral, F.-G., et al. 
(2002). Role of operculoinsular cortices in human pain processing: converging evidence 
from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. 
NeuroImage 17, 1336–1346. doi: 10.1006/nimg.2002.1315

Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Res 
41:125760. doi: 10.1016/s0042-6989(00)00235-2

Pinheiro, E. S. D. S., Queirós, F. C. D., Montoya, P., Santos, C. L., Nascimento, M. A. 
D., Ito, C. H., et al. (2016). Electroencephalographic patterns in chronic pain: a 
systematic review of the literature. PLoS One 11:e0149085. doi: 10.1371/journal.
pone.0149085

Plaghki, L., and Mouraux, A. (2005). EEG and laser stimulation as tools for pain 
research. Curr. Opin. Investig. Drugs 6, 58–64.

Ploner, M., Sorg, C., and Gross, J. (2017). Brain rhythms of pain. Trends Cogn. Sci. 21, 
100–110. doi: 10.1016/j.tics.2016.12.001

Power, J. D., Plitt, M., Laumann, T. O., and Martin, A. (2017). Sources and implications 
of whole-brain fMRI signals in humans. NeuroImage 146, 609–625. doi: 10.1016/j.
neuroimage.2016.09.038

Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension 
of pain. Science 288, 1769–1772. doi: 10.1126/science.288.5472.1769

Prichep, L. S., Shah, J., Merkin, H., and Hiesiger, E. M. (2018). Exploration of the 
pathophysiology of chronic pain using quantitative EEG source localization. Clin. EEG 
Neurosci. 49, 103–113. doi: 10.1177/1550059417736444

Prinsloo, S., Novy, D., Driver, L., Lyle, R., Ramondetta, L., Eng, C., et al. (2017). 
Randomized controlled trial of neurofeedback on chemotherapy-induced peripheral 
neuropathy: a pilot study. Cancer 123, 1989–1997. doi: 10.1002/cncr.30649

Pu, L., Lion, K. M., Todorovic, M., and Moyle, W. (2021). Portable EEG monitoring 
for older adults with dementia and chronic pain - a feasibility study. Geriatr. Nurs. 42, 
124–128. doi: 10.1016/j.gerinurse.2020.12.008

Quiton, R. L., and Greenspan, J. D. (2008). Across-and within-session variability of 
ratings of painful contact heat stimuli. Pain 137, 245–256. doi: 10.1016/j.pain.2007.08.034

Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., and Bushnell, M. C. (1997). Pain 
affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 
968–971. doi: 10.1126/science.277.5328.968

Reckziegel, D., Vachon-Presseau, E., Petre, B., Schnitzer, T. J., Baliki, M., and 
Apkarian, A. V. (2019). Deconstructing biomarkers for chronic pain: context and 
hypothesis dependent biomarker types in relation to chronic pain. Pain 160:S37. doi: 
10.1097/j.pain.0000000000001529

Riaz, F., Hassan, A., Rehman, S., Niazi, I. K., and Dremstrup, K. (2015). EMD-based 
temporal and spectral features for the classification of EEG signals using supervised 
learning. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 28–35. doi: 10.1109/
TNSRE.2015.2441835

Rosa, M. J., and Seymour, B. (2014). Decoding the matrix: benefits and limitations of 
applying machine learning algorithms to pain neuroimaging. Pain 155, 864–867. doi: 
10.1016/j.pain.2014.02.013

Rouleau, R. D., Lagrandeur, L., Daigle, K., Lorrain, D., Léonard, G., 
Whittingstall, K., et al. (2015). Significance of non-phase locked oscillatory brain 
activity in response to noxious stimuli. Can. J. Neurol. Sci. 42, 436–443. doi: 10.1017/
cjn.2015.294

Sakkalis, V. (2011). Review of advanced techniques for the estimation of brain 
connectivity measured with EEG/MEG. Comput. Biol. Med. 41, 1110–1117. doi: 
10.1016/j.compbiomed.2011.06.020

Santana, J. E. R., Baptista, A. F., Lucena, R., Lopes, T. D. S., do Rosário, R. S., 
Xavier, M. R., et al. (2021). Altered dynamic brain connectivity in individuals with sickle 
cell disease and chronic pain secondary to hip osteonecrosis. Clin. EEG 
Neurosci.:15500594211054297. doi: 10.1177/15500594211054297

Sawamoto, N., Honda, M., Okada, T., Hanakawa, T., Kanda, M., Fukuyama, H., et al. 
(2000). Expectation of pain enhances responses to nonpainful somatosensory 
stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an 
event-related functional magnetic resonance imaging study. J. Neurosci. 20, 7438–7445. 
doi: 10.1523/JNEUROSCI.20-19-07438.2000

Schmidt, S., Gmeiner, S., Schultz, C., Löwer, M., Kuhn, K., Naranjo, J. R., et al. (2015). 
Mindfulness-based stress reduction (MBSR) as treatment for chronic back pain-an 
observational study with assessment of thalamocortical dysrhythmia. Complement. Med. 
Res. 22, 298–303. doi: 10.1159/000440687

Schmidt, S., Naranjo, J. R., Brenneisen, C., Gundlach, J., Schultz, C., Kaube, H., et al. 
(2012). Pain ratings, psychological functioning and quantitative EEG in a controlled 
study of chronic back pain patients. PLoS One 7:e31138. doi: 10.1371/journal.
pone.0031138

Schoffelen, J. M., and Gross, J. (2009). Source connectivity analysis with MEG and 
EEG. Hum. Brain Mapp. 30, 1857–1865. doi: 10.1002/hbm.20745

Schouppe, S., Van Oosterwijck, S., Danneels, L., Van Damme, S., and Van 
Oosterwijck, J. (2020). Are functional brain alterations present in low back pain? A 
systematic review of EEG studies. J. Pain 21, 25–43. doi: 10.1016/j.jpain.2019.06.010

Schuchat, A., Houry, D., and Guy, G. P. (2017). New data on opioid use and prescribing 
in the United States. JAMA 318, 425–426. doi: 10.1001/jama.2017.8913

Schulz, E., May, E. S., Postorino, M., Tiemann, L., Nickel, M. M., Witkovsky, V., et al. 
(2015). Prefrontal gamma oscillations encode tonic pain in humans. Cereb. Cortex 25, 
4407–4414. doi: 10.1093/cercor/bhv043

Schulz, E., Tiemann, L., Witkovsky, V., Schmidt, P., and Ploner, M. (2012a). Gamma 
oscillations are involved in the sensorimotor transformation of pain. J. Neurophysiol. 
108, 1025–1031. doi: 10.1152/jn.00186.2012

Schulz, E., Zherdin, A., Tiemann, L., Plant, C., and Ploner, M. (2012b). Decoding an 
individual's sensitivity to pain from the multivariate analysis of EEG data. Cereb. Cortex 
22, 1118–1123. doi: 10.1093/cercor/bhr186

Seeber, M., Cantonas, L.-M., Hoevels, M., Sesia, T., Visser-Vandewalle, V., and 
Michel, C. M. (2019). Subcortical electrophysiological activity is detectable with 
high-density EEG source imaging. Nat. Commun. 10:753. doi: 10.1038/
s41467-019-08725-w

Seminowicz, D. A., Thapa, T., Furman, A. J., Summers, S. J., Cavaleri, R., Fogarty, J. S., 
et al. (2018). Slow peak alpha frequency and corticomotor depression linked to high pain 
susceptibility in transition to sustained pain. BioRxiv:278598. doi: 10.1101/278598

Seminowicz, D. A., Thapa, T., and Schabrun, S. M. (2019). Corticomotor depression 
is associated with higher pain severity in the transition to sustained pain: a longitudinal 
exploratory study of individual differences. J. Pain 20, 1498–1506. doi: 10.1016/j.
jpain.2019.06.005

She, Q., Hu, B., Luo, Z., Nguyen, T., and Zhang, Y. (2019). A hierarchical semi-
supervised extreme learning machine method for EEG recognition. Med. Biol. Eng. 
Comput. 57, 147–157. doi: 10.1007/s11517-018-1875-3

Siddiqi, S. H., Kording, K. P., Parvizi, J., and Fox, M. D. (2022). Causal mapping of 
human brain function. Nat. Rev. Neurosci. 23, 361–375. doi: 10.1038/s41583-022-00583-8

So, H. C. (2011). “source localization: algorithms and analysis” in Handbook of position 
location: Theory, practice, and advances. eds. S. A. Zekavat and M. R. Buehrer (Hoboken, 
Wiley), 25–66.

Sohrabpour, A., Ye, S., Worrell, G. A., Zhang, W., and He, B. (2016). Noninvasive 
electromagnetic source imaging and granger causality analysis: an electrophysiological 
connectome (eConnectome) approach. IEEE Trans. Biomed. Eng. 63, 2474–2487. doi: 
10.1109/TBME.2016.2616474

https://doi.org/10.3389/fnins.2023.1186418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1093/brain/awy281
https://doi.org/10.1016/j.jneumeth.2007.09.022
https://doi.org/10.1016/j.neuroimage.2022.119351
https://doi.org/10.4321/S0213-61632015000400005
https://doi.org/10.4321/S0213-61632015000400005
https://doi.org/10.1097/PR9.0000000000000752
https://doi.org/10.1097/j.pain.0000000000001010
https://doi.org/10.1097/j.pain.0000000000001010
https://doi.org/10.1145/2903150.2903159
https://doi.org/10.1088/1741-2552/aa6401
https://doi.org/10.1016/j.brs.2021.10.384
https://doi.org/10.3389/fnins.2020.620666
https://doi.org/10.1016/j.neuroimage.2019.06.046
https://doi.org/10.1016/j.neuroimage.2019.06.046
https://doi.org/10.3389/fncom.2016.00009
https://doi.org/10.3389/fncom.2016.00009
https://doi.org/10.1038/nrn2042
https://doi.org/10.1006/nimg.2002.1315
https://doi.org/10.1016/s0042-6989(00)00235-2
https://doi.org/10.1371/journal.pone.0149085
https://doi.org/10.1371/journal.pone.0149085
https://doi.org/10.1016/j.tics.2016.12.001
https://doi.org/10.1016/j.neuroimage.2016.09.038
https://doi.org/10.1016/j.neuroimage.2016.09.038
https://doi.org/10.1126/science.288.5472.1769
https://doi.org/10.1177/1550059417736444
https://doi.org/10.1002/cncr.30649
https://doi.org/10.1016/j.gerinurse.2020.12.008
https://doi.org/10.1016/j.pain.2007.08.034
https://doi.org/10.1126/science.277.5328.968
https://doi.org/10.1097/j.pain.0000000000001529
https://doi.org/10.1109/TNSRE.2015.2441835
https://doi.org/10.1109/TNSRE.2015.2441835
https://doi.org/10.1016/j.pain.2014.02.013
https://doi.org/10.1017/cjn.2015.294
https://doi.org/10.1017/cjn.2015.294
https://doi.org/10.1016/j.compbiomed.2011.06.020
https://doi.org/10.1177/15500594211054297
https://doi.org/10.1523/JNEUROSCI.20-19-07438.2000
https://doi.org/10.1159/000440687
https://doi.org/10.1371/journal.pone.0031138
https://doi.org/10.1371/journal.pone.0031138
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1016/j.jpain.2019.06.010
https://doi.org/10.1001/jama.2017.8913
https://doi.org/10.1093/cercor/bhv043
https://doi.org/10.1152/jn.00186.2012
https://doi.org/10.1093/cercor/bhr186
https://doi.org/10.1038/s41467-019-08725-w
https://doi.org/10.1038/s41467-019-08725-w
https://doi.org/10.1101/278598
https://doi.org/10.1016/j.jpain.2019.06.005
https://doi.org/10.1016/j.jpain.2019.06.005
https://doi.org/10.1007/s11517-018-1875-3
https://doi.org/10.1038/s41583-022-00583-8
https://doi.org/10.1109/TBME.2016.2616474


Rockholt et al. 10.3389/fnins.2023.1186418

Frontiers in Neuroscience 19 frontiersin.org

Stern, J., Jeanmonod, D., and Sarnthein, J. (2006). Persistent EEG overactivation in the 
cortical pain matrix of neurogenic pain patients. NeuroImage 31, 721–731. doi: 10.1016/j.
neuroimage.2005.12.042

Su, Q., Song, Y., Zhao, R., and Liang, M. (2019). A review on the ongoing quest for a 
pain signature in the human brain. Brain Sci. Adv. 5, 274–287. doi: 10.26599/
BSA.2019.9050024

Sufianov, A., Shapkin, A., Sufianova, G., Elishev, V., Barashin, D., Berdichevskii, V., 
et al. (2014). Functional and metabolic changes in the brain in neuropathic pain 
syndrome against the background of chronic epidural electrostimulation of the spinal 
cord. Bull. Exp. Biol. Med. 157, 462–465. doi: 10.1007/s10517-014-2591-0

Sun, G., Wen, Z., Ok, D., Doan, L., Wang, J., and Chen, Z. S. (2021). Detecting acute 
pain signals from human EEG. J. Neurosci. Methods 347:108964. doi: 10.1016/j.
jneumeth.2020.108964

Taesler, P., and Rose, M. (2016). Prestimulus theta oscillations and connectivity 
modulate pain perception. J. Neurosci. 36, 5026–5033. doi: 10.1523/
JNEUROSCI.3325-15.2016

Tan, L. L., Oswald, M. J., and Kuner, R. (2021). Neurobiology of brain oscillations in 
acute and chronic pain. Trends Neurosci. 44, 629–642. doi: 10.1016/j.tins.2021.05.003

Teel, E. F., Ocay, D. D., Blain-Moraes, S., and Ferland, C. E. (2022). Accurate classification 
of pain experiences using wearable electroencephalography in adolescents with and without 
chronic musculoskeletal pain. Front. Pain. Res. 3:162. doi: 10.3389/fpain.2022.991793

Teixeira, M., Mancini, C., Wicht, C. A., Maestretti, G., Kuntzer, T., Cazzoli, D., et al. (2021). 
Beta electroencephalographic oscillation is a potential GABAergic biomarker of chronic 
peripheral neuropathic pain. Front. Neurosci. 15:594536. doi: 10.3389/fnins.2021.594536

Teixeira, P. E., Pacheco-Barrios, K., Uygur-Kucukseymen, E., Machado, R. M., 
Balbuena-Pareja, A., Giannoni-Luza, S., et al. (2022). Electroencephalography signatures 
for conditioned pain modulation and pain perception in nonspecific chronic low back 
pain—an exploratory study. Pain Med. 23, 558–570. doi: 10.1093/pm/pnab293

Telkes, L., Hancu, M., Paniccioli, S., Grey, R., Briotte, M., McCarthy, K., et al. (2020). 
Differences in EEG patterns between tonic and high frequency spinal cord stimulation 
in chronic pain patients. Clin. Neurophysiol. 131, 1731–1740. doi: 10.1016/j.
clinph.2020.03.040

Teplan, M. (2002). Fundamentals of EEG measurement. Meas. Sci. Rev. 2, 1–11.

Thibaut, A., Russo, C., Hurtado-Puerto, A. M., Morales-Quezada, J. L., Deitos, A., 
Petrozza, J. C., et al. (2017). Effects of transcranial direct current stimulation, transcranial 
pulsed current stimulation, and their combination on brain oscillations in patients with 
chronic visceral pain: a pilot crossover randomized controlled study. Front. Neurol. 
8:576. doi: 10.3389/fneur.2017.00576

Topaz, L. S., Frid, A., Granovsky, Y., Zubidat, R., Crystal, S., Buxbaum, C., et al. (2022). 
Electroencephalography functional connectivity—a biomarker for painful 
polyneuropathy. Eur. J. Neurol. doi: 10.1111/ene.15575

Tracey, I. (2021). Neuroimaging enters the pain biomarker arena. Sci. Transl. Med. 
13:eabj7358. doi: 10.1126/scitranslmed.abj7358

Tracey, I., Woolf, C. J., and Andrews, N. A. (2019). Composite pain biomarker 
signatures for objective assessment and effective treatment. Neuron 101, 783–800. doi: 
10.1016/j.neuron.2019.02.019

Tu, Y., Tan, A., Bai, Y., Hung, Y. S., and Zhang, Z. (2016). Decoding subjective intensity 
of nociceptive pain from pre-stimulus and post-stimulus brain activities. Front. Comput. 
Neurosci. 10:32. doi: 10.3389/fncom.2016.00032

Urigüen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact removal—state-of-the-art 
and guidelines. J. Neural Eng. 12:031001. doi: 10.1088/1741-2560/12/3/031001

Uygur-Kucukseymen, E., Castelo-Branco, L., Pacheco-Barrios, K., 
Luna-Cuadros, M. A., Cardenas-Rojas, A., Giannoni-Luza, S., et al. (2020). Decreased 
neural inhibitory state in fibromyalgia pain: a cross-sectional study. Neurophysiol. Clin. 
50, 279–288. doi: 10.1016/j.neucli.2020.06.002

Vachon-Presseau, E., Centeno, M., Ren, W., Berger, S., Tétreault, P., Ghantous, M., 
et al. (2016). The emotional brain as a predictor and amplifier of chronic pain. J. Dent. 
Res. 95, 605–612. doi: 10.1177/0022034516638027

van den Broeke, E. N., Wilder-Smith, O. H., van Goor, H., Vissers, K. C., and van 
Rijn, C. M. (2013). Patients with persistent pain after breast cancer treatment show 
enhanced alpha activity in spontaneous EEG. Pain Med. 14, 1893–1899. doi: 10.1111/
pme.12216

Van Der Miesen, M. M., Lindquist, M. A., and Wager, T. D. (2019). Neuroimaging-
based biomarkers for pain: state of the field and current directions. Pain Rep 4:e751. doi: 
10.1097/PR9.0000000000000751

Vanneste, S., Song, J.-J., and De Ridder, D. (2018). Thalamocortical dysrhythmia 
detected by machine learning. Nat. Commun. 9, 1–13. doi: 10.1038/s41467-018-02820-0

Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., and Tommerdahl, M. (2013). 
Role of primary somatosensory cortex in the coding of pain. Pain 154, 334–344. doi: 
10.1016/j.pain.2012.10.021

Villafaina, S., Collado-Mateo, D., Fuentes-Garcia, J. P., Cano-Plasencia, R., and Gusi, N. 
(2019). Impact of fibromyalgia on alpha-2 EEG power spectrum in the resting condition: a 
descriptive correlational study. Biomed. Res. Int. 2019:7851047. doi: 10.1155/2019/7851047

von Hehn, C. A., Baron, R., and Woolf, C. J. (2012). Deconstructing the neuropathic 
pain phenotype to reveal neural mechanisms. Neuron 73, 638–652. doi: 10.1016/j.
neuron.2012.02.008

Vuckovic, A., Gallardo, V. J. F., Jarjees, M., Fraser, M., and Purcell, M. (2018). 
Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin. 
Neurophysiol. 129, 1605–1617. doi: 10.1016/j.clinph.2018.04.750

Vuckovic, A., Hasan, M. A., Fraser, M., Conway, B. A., Nasseroleslami, B., and 
Allan, D. B. (2014). Dynamic oscillatory signatures of central neuropathic pain in spinal 
cord injury. J. Pain 15, 645–655. doi: 10.1016/j.jpain.2014.02.005

Vuckovic, A., Jarjees, M. S., Hasan, M. A., Purcell, M., and Fraser, M. (2022). “EEG 
biomarkers of pain and applications of machine learning” in Spinal Cord Injury Pain. 
eds. C. Sang and C. Hulsebosch (Amsterdam: Elsevier), 199–225.

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., and Kross, E. (2013). 
An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397. 
doi: 10.1056/NEJMoa1204471

Wang, J., Li, D., Li, X., Liu, F.-Y., Xing, G.-G., Cai, J., et al. (2011). Phase–amplitude 
coupling between theta and gamma oscillations during nociception in rat 
electroencephalography. Neurosci. Lett. 499, 84–87. doi: 10.1016/j.neulet.2011.05.037

Wei, M., Liao, Y., Liu, J., Li, L., Huang, G., Huang, J., et al. (2022). EEG beta-band 
spectral entropy can predict the effect of drug treatment on pain in patients with herpes 
zoster. J. Clin. Neurophysiol. 39, 166–173. doi: 10.1097/WNP.0000000000000758

Woo, C.-W., Chang, L. J., Lindquist, M. A., and Wager, T. D. (2017). Building better 
biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377. 
doi: 10.1038/nn.4478

Wu, W., Chen, Z., Gao, X., Li, Y., Brown, E. N., and Gao, S. (2014). Probabilistic 
common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. 
Mach. Intell. 37, 639–653. doi: 10.1109/TPAMI.2014.2330598

Xu, X., and Huang, Y. (2020). Objective pain assessment: a key for the management 
of chronic pain. F1000Res 9:F1000. doi: 10.12688/f1000research.20441.1

Yong, R. J., Mullins, P. M., and Bhattacharyya, N. (2022). Prevalence of chronic pain among 
adults in the United States. Pain 163, e328–e332. doi: 10.1097/j.pain.0000000000002291

Yüksel, M., Ayaş, Ş., Cabıoğlu, M. T., Yılmaz, D., and Cabıoğlu, C. (2019). Quantitative 
data for transcutaneous electrical nerve stimulation and acupuncture effectiveness in 
treatment of fibromyalgia syndrome. Evid. Based Complement. Alternat. Med. 
2019:9684649. doi: 10.1155/2019/9684649. doi:10.1155/2019/9684649

Zebhauser, P. T., Hohn, V. D., and Ploner, M. (2023). Resting-state 
electroencephalography and magnetoencephalography as biomarkers of chronic pain: 
a systematic review. Pain 164, 1200–1221. doi: 10.1097/j.pain.0000000000002825

Zhang, Q., Manders, T., Tong, A. P., Yang, R., Garg, A., Martinez, E., et al. (2017). Chronic 
pain induces generalized enhancement of aversion. elife 6:e25302. doi: 10.7554/eLife.25302

Zhou, R., Wang, J., Qi, W., Liu, F.-Y., Yi, M., Guo, H., et al. (2018). Elevated resting 
state gamma oscillatory activities in electroencephalogram of patients with post-herpetic 
neuralgia. Front. Neurosci. 12:750. doi: 10.3389/fnins.2018.00750

Zimmer, Z., Fraser, K., Grol-Prokopczyk, H., and Zajacova, A. (2022). A global study 
of pain prevalence across 52 countries: examining the role of country-level contextual 
factors. Pain 163, 1740–1750. doi: 10.1097/j.pain.0000000000002557

Zis, P., Liampas, A., Artemiadis, A., Tsalamandris, G., Neophytou, P., Unwin, Z., et al. 
(2022). EEG recordings as biomarkers of pain perception: where do we stand and where 
to go? Pain Ther. 11, 369–380. doi: 10.1007/s40122-022-00372-2

Zolezzi, D. M., Alonso-Valerdi, L. M., Naal-Ruiz, N. E., and Ibarra-Zarate, D. (2021). 
Identification of Neuropathic Pain Severity Based on Linear and Non-Linear EEG 
Features. Annu Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 169–173. doi: 10.1109/
EMBC46164.2021.9630101

Zortea, M., Beltran, G., Alves, R. L., Vicuña, P., Torres, I. L., Fregni, F., et al. (2021). 
Spectral Power density analysis of the resting-state as a marker of the central effects of 
opioid use in fibromyalgia. Sci. Reports 11:22716. doi: 10.1038/s41598-021-01982-0

https://doi.org/10.3389/fnins.2023.1186418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neuroimage.2005.12.042
https://doi.org/10.1016/j.neuroimage.2005.12.042
https://doi.org/10.26599/BSA.2019.9050024
https://doi.org/10.26599/BSA.2019.9050024
https://doi.org/10.1007/s10517-014-2591-0
https://doi.org/10.1016/j.jneumeth.2020.108964
https://doi.org/10.1016/j.jneumeth.2020.108964
https://doi.org/10.1523/JNEUROSCI.3325-15.2016
https://doi.org/10.1523/JNEUROSCI.3325-15.2016
https://doi.org/10.1016/j.tins.2021.05.003
https://doi.org/10.3389/fpain.2022.991793
https://doi.org/10.3389/fnins.2021.594536
https://doi.org/10.1093/pm/pnab293
https://doi.org/10.1016/j.clinph.2020.03.040
https://doi.org/10.1016/j.clinph.2020.03.040
https://doi.org/10.3389/fneur.2017.00576
https://doi.org/10.1111/ene.15575
https://doi.org/10.1126/scitranslmed.abj7358
https://doi.org/10.1016/j.neuron.2019.02.019
https://doi.org/10.3389/fncom.2016.00032
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1016/j.neucli.2020.06.002
https://doi.org/10.1177/0022034516638027
https://doi.org/10.1111/pme.12216
https://doi.org/10.1111/pme.12216
https://doi.org/10.1097/PR9.0000000000000751
https://doi.org/10.1038/s41467-018-02820-0
https://doi.org/10.1016/j.pain.2012.10.021
https://doi.org/10.1155/2019/7851047
https://doi.org/10.1016/j.neuron.2012.02.008
https://doi.org/10.1016/j.neuron.2012.02.008
https://doi.org/10.1016/j.clinph.2018.04.750
https://doi.org/10.1016/j.jpain.2014.02.005
https://doi.org/10.1056/NEJMoa1204471
https://doi.org/10.1016/j.neulet.2011.05.037
https://doi.org/10.1097/WNP.0000000000000758
https://doi.org/10.1038/nn.4478
https://doi.org/10.1109/TPAMI.2014.2330598
https://doi.org/10.12688/f1000research.20441.1
https://doi.org/10.1097/j.pain.0000000000002291
https://doi.org/10.1155/2019/9684649. 10.1155/2019/9684649
https://doi.org/10.1097/j.pain.0000000000002825
https://doi.org/10.7554/eLife.25302
https://doi.org/10.3389/fnins.2018.00750
https://doi.org/10.1097/j.pain.0000000000002557
https://doi.org/10.1007/s40122-022-00372-2
https://doi.org/10.1109/EMBC46164.2021.9630101
https://doi.org/10.1109/EMBC46164.2021.9630101
https://doi.org/10.1038/s41598-021-01982-0

	In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand?
	1. Introduction
	2. The benefits of EEG for biomarker studies on chronic pain
	2.1. Measurement of pain-related brain activity
	2.1.1. Bottom-up measurements based on pain-induced behavior
	2.1.2. Top-down measurements based on brain activity
	2.2. Advantages and disadvantages of EEG for chronic pain studies

	3. Extracting pain-related features from EEG data
	3.1. Preprocessing: artifact removal
	3.2. Resting-state versus stimulus-evoked processing
	3.3. EEG feature extraction
	3.3.1. Spatial features
	3.3.2. Temporal and spectral features
	3.3.3. Source localization
	3.3.4. Connectivity patterns

	4. Application of machine learning to EEG studies of chronic pain
	4.1. Overview of machine learning algorithms
	4.2. Supervised versus unsupervised learning approaches
	4.3. Important considerations for ML in EEG studies of chronic pain

	5. Types of potential EEG biomarkers and their utility in chronic pain research
	5.1. Diagnostic biomarkers
	5.2. Prognostic biomarkers
	5.3. Predictive and monitoring biomarkers

	6. The future of EEG as a biomarker for chronic pain
	6.1. The potential for multimodal biomarkers
	6.2. Limitations of this review
	6.3. Summary

	Author contributions
	Conflict of interest
	Publisher’s note

	References



