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Introduction: The single equivalent current dipole (sECD) is the standard 
clinical procedure for presurgical language mapping in epilepsy using 
magnetoencephalography (MEG). However, the sECD approach has not been 
widely used in clinical assessments, mainly because it requires subjective 
judgements in selecting several critical parameters. To address this limitation, we 
developed an automatic sECD algorithm (AsECDa) for language mapping.

Methods: The localization accuracy of the AsECDa was evaluated using synthetic 
MEG data. Subsequently, the reliability and efficiency of AsECDa were compared 
to three other common source localization methods using MEG data recorded 
during two sessions of a receptive language task in 21 epilepsy patients. These 
methods include minimum norm estimation (MNE), dynamic statistical parametric 
mapping (dSPM), and dynamic imaging of coherent sources (DICS) beamformer.

Results: For the synthetic single dipole MEG data with a typical signal-to-noise ratio, 
the average localization error of AsECDa was less than 2 mm for simulated superficial 
and deep dipoles. For the patient data, AsECDa showed better test-retest reliability 
(TRR) of the language laterality index (LI) than MNE, dSPM, and DICS beamformer. 
Specifically, the LI calculated with AsECDa revealed excellent TRR between the two 
MEG sessions across all patients (Cor = 0.80), while the LI for MNE, dSPM, DICS-
event-related desynchronization (ERD) in the alpha band, and DICS-ERD in the low 
beta band ranged lower (Cor = 0.71, 0.64, 0.54, and 0.48, respectively). Furthermore, 
AsECDa identified 38% of patients with atypical language lateralization (i.e., right 
lateralization or bilateral), compared to 73%, 68%, 55%, and 50% identified by DICS-
ERD in the low beta band, DICS-ERD in the alpha band, MNE, and dSPM, respectively. 
Compared to other methods, AsECDa’s results were more consistent with previous 
studies that reported atypical language lateralization in 20-30% of epilepsy patients.

Discussion: Our study suggests that AsECDa is a promising approach for 
presurgical language mapping, and its fully automated nature makes it easy to 
implement and reliable for clinical evaluations.
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1. Introduction

In the last few decades, magnetoencephalography (MEG) has been 
established as a non-invasive modality for presurgical identification of 
the irritative zone in patients with epilepsy (Minassian et al., 1999). 
Additionally, MEG has been used for presurgical mapping of the 
auditory, visual, motor, and somatosensory cortex and of language-
related cortex for assessment of the laterality and localization of language 
networks (Bowyer et  al., 2020a). Multiple mathematical modeling 
approaches have been developed for source localization using 
MEG. However, the single equivalent current dipole (sECD) is the most 
common approach in clinical applications. Other approaches have also 
been considered and include distributed source models such as 
minimum norm estimation (MNE; Dikker and Pylkkanen, 2013), 
dynamic statistical parametric mapping (dSPM; Tanaka et al., 2013), and 
MR-FOCUSS (Bowyer et al., 2005) as well as beamforming methods 
such as dynamic imaging of coherent sources (DICS; Foley et al., 2019), 
linearly constrained minimum variance (LCMV) filtering (Sharma et al., 
2021), and synthetic aperture magnetometry (SAM; Hirata et al., 2010).

The sECD approach has been validated for language lateralization 
against the Wada test (Papanicolaou et al., 2004; Merrifield et al., 2007; 
Doss et al., 2009; Ota et al., 2011) and for language localization against 
intraoperative cortical stimulation mapping (Simos et al., 1999). In 
addition, the sECD approach has been shown to have good inter-rater 
and test–retest reliability for mapping of receptive language (Breier 
et al., 2000; Lee et al., 2006). Although the utility and efficiency of the 
sECD approach for language mapping have been shown in previous 
studies, this approach has not been widely used in clinical evaluations 
or in research investigations. A reason for this is that sECD mapping 
requires subjective judgments in selecting several critical parameters, 
which may be inconsistent depending on the clinical experience of the 
investigators (Papanicolaou et al., 2006). In particular, an essential step 
is the selection of an optimal subset of MEG sensors (separately for 
the left and right hemispheres) at each of several successive time 
points in order to fit dipoles based on the measured magnetic fields. 
To address the technical limitations of the manual sECD approach, 
we developed an automatic sECD algorithm (AsECDa) that is able to 
automatically select an optimal subset of sensors at a given time point 
and determine the required number of dipoles in each hemisphere 
that adequately models the measured magnetic fields.

We first evaluated the accuracy of the developed AsECDa using 
synthetic MEG data. Then we compared the performance of AsECDa, 
MNE, dSPM, and DICS beamformer for language mapping using 
MEG data recorded during a receptive language task in patients with 
epilepsy. We  assessed the performance of the language mapping 
methods by evaluating the test–retest reliability of their language 
laterality estimates and by comparing these estimates against the 
expected language representation in epilepsy patients determined 
based on previous studies.

This study, to the best of our knowledge, is the first to compare the 
performance of the AsECDa for language mapping with that of three 
other common MEG source modeling techniques (i.e., MNE, dSPM, 
and DICS beamformer) using the same, clinically acquired, data from 
a series of epilepsy patients (including children) for whom the 
recording of good data is challenging. In addition, the inverse 
solutions of all four source modeling techniques were implemented 
using the same neuroimaging software [i.e., the FieldTrip toolbox for 
MATLAB (Oostenveld et  al., 2011)] in order to prevent any bias 

favoring any one approach that might occur with the use of multiple 
software packages.

2. Methods

2.1. Patients

Approximately 40 patients with epilepsy and/or brain tumors 
underwent MEG data collection between June 2021 to March 2022 as 
part of the presurgical evaluation process at Dell Children’s Medical 
Center (DCMC), Austin, TX, USA. From these patients, 21 (11 male; 
23.0 ± 16.6 [mean ± standard deviation (SD)] years of age; 18 right-
handed and three left-handed) were retrospectively selected for 
inclusion in this study (Table 1). Those included were patients: (a) who 
underwent MEG presurgical receptive language mapping, (b) who 
underwent MEG data collection without sedation or general 
anesthesia, and (c) whose MEG data were not contaminated with 
artifacts generated by vagus nerve stimulation implantation, 
orthodontic devices, ventriculoperitoneal shunts, and/or 
environmental noise. The study was approved by the Institutional 
Review Board (IRB) of the University of Texas at Austin and Ascension 
Site Approval Committee to access archival data.

2.2. Language task protocol

As part of presurgical evaluations in our center, patients completed 
an auditory word recognition task (WRT) for receptive language 
mapping. This receptive language task was adapted from the 
continuous auditory word recognition protocol previously described 
in Papanicolaou et al. (2004). This task has been routinely used in 
many clinical centers for MEG language mapping (Pirmoradi et al., 
2010). Immediately prior to the beginning of the MEG scan, patients 
were instructed to listen to and memorize five target words (“little,” 
“please,” “drink,” “jump,” and “good”). The target words were presented 
multiple times until the instructor was reasonably confident that the 
patients were able to recall the words and follow the instructions. 
During the MEG recordings, the patients were instructed to close 
their eyes and lift their right index finger when they recognized one 
of the five target words. MEG recordings during the same task were 
repeated in all patients over two consecutive back-to-back sessions 
(Session 1 and Session 2), which means that the second session started 
immediately after the first session ended.

The stimuli comprised three blocks, each of which included 40 
(non-repeating) distractor words and the five target words in a random 

TABLE 1 Demographic and clinical data.

Number of patients (n) 21

Male (n, %) 11 (52%)

Age (year, mean ± SD) 23.0 ± 16.6

Handedness (n, Left/Right) 3/18

Full-scale intelligence quotient [FSIQ] (mean ± SD) 87.3 ± 16.5

Seizure lateralization (n, Left/Bilateral/Right) 8/6/7

Seizure/interictal discharge localization in temporal 

lobe (n)

14
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order (Supplementary Figure S1). Approximately 60 and 40% of these 
45 words were monosyllabic and disyllabic, respectively. The duration 
of the words was 587 ± 86 [mean ± SD] ms. Stimuli were delivered 
binaurally via plastic tubes terminating in ear inserts at the patient’s 
ears and were presented with a randomly varied interstimulus interval 
(ISI) ranging between 2,000 to 3,000 ms (2,500 ± 280 [mean ± SD] ms).

2.3. MEG data acquisition and 
pre-processing

A whole-head 306-channel MEG system (Elekta Neuromag® 
TRIUX™, MEGIN Oy [formerly Elekta Oy], Helsinki, Finland) housed 
in a magnetically shielded room at DCMC was used to collect MEG data. 
An online high-pass filter of 0.1 Hz and a sampling rate of 1,000 Hz were 
used. Five head position indicator (HPI) coils were attached to the head 
and used to determine the head’s position during the data collection. The 
scalp outline (i.e., headshape) and HPI coil positions were digitized using 
a 3-D digitizer (Fastrak, Polhemus, Colchester, VT, USA).

MEG data were initially preprocessed using MaxFilter 2.2.12 
(Elekta Neuromag® Oy, Helsinki, Finland) to reject environmental 
noise using the temporal extension of signal space separation (tSSS) 
method (Taulu and Simola, 2006) with a 10 s sliding window and a 
correlation threshold of 0.98. The MEG data were then 0.1–170 Hz 
bandpass filtered, 60 and 120 Hz bandstop filtered, epoched from −1 
to 2 s relative to the onset of stimuli, and baseline corrected using a 
time window from −100 to 0 ms. Trials containing artifacts were 
removed via visual inspection according to temporal variance, z-score, 
and kurtosis outliers using a semi-automated artifact identification 
procedure in the FieldTrip toolbox.1 Since the AsECDa is based on the 
local maxima of the gradients of the magnetic fields, the MEG data 
were restricted to the 204 gradiometers.

1 https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/

For the AsECDa, MNE, and dSPM, the epoched data were 20 Hz 
lowpass filtered in order to generate 0.1–20 Hz bandpass filtered data. 
For the DICS beamformer, we used the 0.1–170 Hz bandpass filtered 
epochs, which were analyzed in five canonical frequency bands (i.e., 
alpha [8–12 Hz], low beta [12–20 Hz], high beta [20–30 Hz], low 
gamma [30–50 Hz], and high gamma [50–110 Hz]). It is noteworthy 
that in order to compare the efficacy of the different methods (i.e., 
AsECDa, MNE, dSPM, and DICS) in assessing laterality we were 
obliged to use each method in the standard way that most experts 
implement. Specifically, we used a 0.1–170 Hz bandpass filter for the 
DICS beamformer and then calculated the source power in the five 
frequency bands using the broadband (i.e., 0.1–170 Hz) MEG signals. 
While we used 0.1–20 Hz bandpass filter for the other three methods 
(i.e., ECD, MNE, and dSPM), it is important to note that using a 
0.1–170 Hz bandpass filter will not significantly change the time 
course of the average EMFs in the MEG sensors (see 
Supplementary Figure S2) and the resultant source localization by 
these methods. It is also important to note that the concept behind 
source modeling based on the DICS beamformer is quite different 
than that for the other three methods (i.e., ECD, MNE, and dSPM); 
thus, using the exact filtering for them is not a common 
recommendation for the analysis of MEG data. For example, a low 
pass filter (e.g., at 20 Hz) will reduce the high frequency noise and 
artifacts in the EMF signals and has a positive effect on the source 
localization by the ECD, MNE, and dSPM. However, a low pass filter 
at 20 Hz cannot be  used for the DICS beamformer if we  wish to 
measure the power of brain signals in high beta (20–30 Hz) and 
gamma (>30 Hz) bands.

Sensor-level time-frequency analysis was conducted to confirm 
the presence of event-related desynchronization (ERD) and event-
related synchronization (ERS), which reflect band-limited power 
alteration in neuronal oscillations (Ressel et al., 2008; Kadis et al., 2011; 
Yu et al., 2014; Youssofzadeh and Babajani-Feremi, 2019). Similar to 
the source-level analyses, only artifact-free epochs were used in the 
sensor-level time-frequency analysis. A multitaper time-frequency 
analysis was performed on recordings from all MEG sensors in each 
patient using the following parameters: (a) taper: discrete prolate 
spheroidal sequences (DPSS); (b) frequency of interest (FOI): 8 to 
110 Hz with steps of 1 Hz; (c) spectral smoothing through multi-
tapering: 0.4*FOI (if FOI < 30 Hz) or 12 (if FOI ≥ 30 Hz); (d) length of 
time window: 7/FOI (if FOI < 30 Hz) or 250 ms (if FOI ≥ 30 Hz); and 
(e) times of interest: −1 to 2 s. The resulting time-frequency power 
spectra were baseline-corrected using a −500 to −100 ms time window 
relative to stimulus onset. The results of the time-frequency analysis in 
a representative patient are shown in Figure 1. As shown in this figure, 
a time window from 250 to 650 ms shows suppression of power in 
lower frequencies, specifically in the alpha and beta bands. Our results 
revealed an overall suppression of power in alpha and beta bands 
across subjects, although this suppression had a low consistency across 
either the two MEG sessions or across the subjects. A trend toward 
augmentation of power in the gamma band was observed, although 
this trend was inconsistent across subjects.

2.4. MEG forward model

High-resolution T1-weighted anatomical MRI images were 
co-registered to the MEG data using the surface-matching method in 

FIGURE 1

Time-frequency analysis in a representative patient averaged across 
all gradiometer sensors in the left temporal region. Time zero 
represents onset of the auditory stimuli. A time window from −500 
to −100 ms (purple rectangle) and a time window from 250 to 650 ms 
(black rectangle) were used as baseline and active intervals, 
respectively, in DICS beamformer. DICS, dynamic imaging of 
coherent sources.
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the FieldTrip toolbox. The scalp outline and the three anatomical 
landmarks (the nasion and the two pre-auricular points) were used to 
guide co-registration of the MEG data with the MRI data. The 
co-registered MRI was segmented, and the brain surface from the 
segmented MRI was used to compute a single-sphere volume 
conductor model for calculation of the lead-fields for the sECD, DICS 
beamformer, MNE, and dSPM methods.

For the sECD and DICS beamformer, the source model was 
defined on a regular 3-D template grid (8,740 points with 4 mm 
resolution) in normalized Montreal Neurological Institute (MNI) 
space. The template grid was then volumetrically warped to the native 
space of the individual using a non-linear transformation based on the 
spatial normalization of the subject’s T1 image to the standard MNI 
space. The location of the dipoles for the sECD and the activity of the 
sources for the DICS beamformer in the template grid were mapped 
to the Brainnetome volumetric atlas (Fan et al., 2016) to find sources 
in the language-specific regions-of-interest (ROIs).

A cortical surface was used for the source model for the MNE and 
dSPM methods. The individual anatomical MRI of each subject was 
used to generate a cortical surface using the standard FreeSurfer 
recon-all pipeline (Fischl, 2012). In brief, this pipeline performs 
intensity normalization, skull stripping, subcortical volume 
generation, gray/white matter segmentation, and parcellation. After 
running the recon-all pipeline, the generated file describing the white-
grey matter boundary surface was used in the MNE Suite software 
package (Matti Hämäläinen, Martinos Center for Biomedical Imaging, 
Massachusetts General Hospital, MA) to create a set of points that 
covers the cortical surface based on the topology of a recursively 
subdivided octahedron by a factor of 6 (“oct-6”). The generated 
cortical surface had 8,196 points. We used the Destrieux standard atlas 
(Destrieux et al., 2010), provided by FreeSurfer, to parcellate the MNE 
and dSPM solutions and find those within the language-specific ROIs.

2.5. Automatic sECD algorithm for 
language mapping

Overall procedures of the automatic sECD algorithm (AsECDa) 
are shown in Figure 2. The cleaned and averaged evoked magnetic 
field (EMF) data were submitted to an automatic algorithm to identify 
at each point in time (every 1 ms) the presence of one or more dipolar 
magnetic field distributions. At each time point, a group of 
neighboring MEG channels that best cover each dipolar magnetic field 
distribution were selected and used to estimate the location, direction, 
and moment of a dipole source. The automatic channel group selection 
at each point in time was the core of the proposed automatic 
algorithm. To select an appropriate group of neighboring channels at 
a given latency, the algorithm used the magnetic fields of the planar 
gradiometer channels, leveraging the fact that the dipole sources are 
generally located below the maxima of the planar gradients of the 
field. In the MEGIN/Elekta MEG system, there are two perpendicular 
(i.e., horizontal and vertical) gradiometer channels at each sensor 
location. The magnetic fields of the two channels were combined to 
generate a single positive value per sensor location. The 3-D positions 
of the planar gradiometer channels were projected to a 2-D layout. The 
measured magnetic fields of these channels were then spatially 
smoothed using a 2-D Gaussian smoothing kernel with a standard 
deviation of SD = min(d) where d is the 2-D distances between all 
channel pairs. At a given latency, the local maxima and global 

maximum of the smoothed field pattern were calculated. Up to 5 of 
the strongest local maxima were retained if their values were at least 
10% of the value of the global maximum in order to prevent fitting 
spurious dipoles with low signal-to-noise ratio.

The selected, up to 5, local maxima were divided into left and right 
hemisphere subsets, and global maxima for the right and left subsets 
were calculated separately. For each hemisphere, only maxima with a 
value of at least 75% of the value of the global maximum in the 
corresponding hemisphere were retained. For each of the surviving 
maxima in the left and right hemispheres at a given latency, 
neighboring channels were selected and used to fit a single dipole. To 
select the neighboring channels around the central channel at a local 
maximum, a 1-D Gaussian curve was fit to the measured magnetic 
fields as a function of the 2-D distances between the central channel 
and the other channels. Only channels with a normalized distance of 
no more than 0.4 were included in the 1-D Gaussian fit. A minimum 
and maximum cutoff for the radius around the central local maximum 
channel (Rad_Cutoff) was calculated as follows:

 
Rad Cutoff Sigma Factor

Rad Rad_ min max
_ ·

min_
max_= 

















σ ,
, 

 (1)

where σ is the standard deviation of the estimated 1-D Gaussian 
curve and the parameters Sigma_Factor, Min_Rad, and Max_Rad 
were set to 1.0, 0.1, 0.25, respectively. All channels with a distance less 
than Rad_Cutoff were selected and used for dipole fitting as 
implemented using the “ft_dipolefitting” function of the FieldTrip 
toolbox. The whole brain is initially scanned with a single dipole on 
the individual grid (8,740 points at a 4 mm resolution) to find the 
optimal starting location, and a non-linear search algorithm is then 
used to find the location and moment of the dipole that best explains 
the measured magnetic field pattern in the selected channel group.

The dipoles corresponding to the local maxima of the field pattern 
were fitted at each successive time point (every 1 ms). Only dipoles 
that met our criteria of acceptability (correlation between the 
estimated and measured MEG fields in the selected channels ≥0.90; 
and relative residual variance of the fitted dipole <20%) were kept and 
submitted to a spatiotemporal smoothing process, motivated by 
Papanicolaou et al. (2004), to promote spatiotemporally connected 
dipoles and remove isolated dipoles. As part of this process, the 
following rank measure was calculated:
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where Ranki is the ranking factor for the ith dipole, n is the total 
number of dipoles in the time window of interest, dij and tij are the 3-D 
distance and time difference, respectively, between the ith and jth 
dipoles, and σs = 10 mm and σt = 50 ms are standard deviations of the 
Gaussian kernel for spatial and temporal smoothing. Only dipoles 
within the top 70% ranking factor were retained for computation of 
the laterality index.

To determine whether the dipoles are within the language-specific 
ROIs, the locations of the dipoles were transformed into MNI standard 
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coordinate space and then parcellated using the 246 (210 cortical, 36 
subcortical) ROIs of the Brainnetome atlas. 50 ROIs in each 
hemisphere were selected as the language-specific ROIs 

(Supplementary Table S1a). For a specific time-window of interest 
(e.g., 150 to 600 ms in this study), the laterality index (LI) was 
calculated as follows:

FIGURE 2

Proposed automatic sECD algorithm (AsECDa) for language mapping using MEG. (A) Time courses of the MEG gradiometers; the time courses of the 
gradiometers selected in (B) are in blue color and that of the rest of sensors are in gray color. (b) The 2D topo-plot of MEG gradiometers at a given 
time point (t = 150 ms). The selected optimal subset of MEG sensors (separately for the left and right hemispheres) at the given time point are marked by 
crossing circles. (C) The measured magnetic fields shown in (b) are spatially smoothed using a 2-D Gaussian smoothing kernel, which resulted in two 
maxima (one in the left and another in the right). The selected optimal subset of MEG sensors is marked by circles. (D) Locations of two dipoles 
(separately for the left and right hemispheres) fitted to the measured magnetic fields of the selected sensors are shown in the native space. 
(E) Locations of all fitted dipoles (in a representative patient) within a 150 to 650 ms time window are shown in standard MNI space. Only language-
related dipoles are shown. MEG, magnetoencephalography; MNI, Montreal Neurological Institute; sECD, single equivalent current dipole.

https://doi.org/10.3389/fnins.2023.1151885
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Babajani-Feremi et al. 10.3389/fnins.2023.1151885

Frontiers in Neuroscience 06 frontiersin.org

 
LI L R

L R
=

−
+  

(3)

where L and R are the number of dipoles in the left and right 
language-specific ROIs, respectively.

2.6. MNE and dSPM for language mapping

The MNE (Hamalainen and Ilmoniemi, 1994) and dSPM (Dale 
et al., 2000) algorithms were used to reconstruct source activities from 
the cleaned and averaged EMF data. The MNE was calculated by 
applying a linear inverse operator W to the measured EMF signals:

 s t x t


( ) = ( )W  (4)

where x(t) represents the measured MEG data at time t and s(t) is 
the corresponding current values in the cortical surface source space. 
The inverse operator W in the MNE solution can be  obtained 
as follows:

 
W RA ARA C= +( )−T T λ2

1

 
(5)

where A is the lead field matrix (calculated based on a cortical 
surface with 8,196 source locations as described in Section 2.4), C and 
R are covariance matrices of the noise and source activities, 
respectively, and λ2 is a regularization parameter (Liu et al., 2002). 
Minimum norm estimates of source activity were obtained based on 
the “minimumnormestimate” function in the FieldTrip toolbox. No 
orientation constraints were applied to the source. An identity matrix 
was assigned to the source covariance matrix R since there was no a 
priori assumption (e.g., from fMRI) on the spatial distribution of the 
source currents (Dale et al., 2000). The source covariance matrix R was 

than scaled such that 
trace ARA

trace C

T( )
( )

=1. The noise covariance matrix
 

C was estimated from the empty room noise data, which were 
collected on the same day before scanning the patients. The lead field 
matrix A was pre-whitened with the noise covariance matrix C. The 
regularization parameter λ2 was set to the suggested default value in 
the FieldTrip toolbox (i.e., λ2 = 3).

The calculated inverse operator W from the MNE solution was 
then used to compute the noise-normalized current density estimate, 
which is the dSPM solution (Dale et al., 2000):
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(6)

where qi(t) is the noise-normalized estimate of the local current 
dipole power (sum of squared dipole component strengths) at the ith 
location, Gi is the set of three dipole component indices for the ith 
location, and wj represents the row of the inverse operator W 
corresponding to the ith location and jth dipole component. Qi(t) has a 
F-distribution under the null hypothesis, with the numerator having 

three degrees of freedom and the denominator having degrees of 
freedom that are typically very large, depending on the number of 
time samples used for calculation of the noise covariance matrix C 
(Dale et al., 2000).

The power of the MNE and dSPM source activity (averaged within 
the time window of interest, which was 150 to 600 ms in this study) 
was used to calculate the laterality index (LI) based on the Destrieux 
standard atlas (Destrieux et al., 2010). The Destrieux atlas divides the 
cerebral cortex into 75 parcels per hemisphere, giving a total of 150 
parcels. 25 ROIs in each hemisphere were selected as the language-
specific ROIs (Supplementary Table S1b). The LI for MNE and dSPM 
was calculated based on Eq. (3) where L and R were the average power 
of source activity in the left and right language-specific ROIs, 
respectively. Considering that a null distribution (i.e., F-distribution) 
is known for the dSPM solution, the source activity resulting from this 
method was first thresholded using a value of p of 0.05 (Bonferroni 
corrected for multiple comparisons in 8196 source locations) before 
computation of the LI.

2.7. Language mapping using DICS 
beamformer

The DICS method, an adaptive spatial filtering (i.e., beamforming) 
technique in the frequency-domain, was initially introduced as a 
variant of the LCMV beamformer to facilitate analysis of oscillatory 
source activity and the connectivity between sources via coherence 
(Gross et  al., 2001). Although the LCMV method with properly 
filtered data should provide results similar to that of the DICS, the 
DICS beamformer is preferable when narrow band-limited power of 
source activity is investigated (Westner et al., 2022). In the current 
study, the DICS beamformer was used to localize and lateralize 
language based on band-limited power changes in neuronal 
oscillations in five canonical frequency bands (i.e., alpha [8–12 Hz], 
low beta [12–20 Hz], high beta [20–30 Hz], low gamma [30–50 Hz], 
and high gamma [50–110 Hz]).

A vector version of the DICS beamformer was used in this study. 
The estimated source activity S r f



,( ) at location 𝑟 and frequency of 
interest 𝑓 can be computed as follows:

 S W X


r f r f fT, ,( ) = ( ) ( ) (7)

where X(f) denotes the frequency domain sensor signals at a given 
frequency 𝑓 and the n-by-3 matrix W(r,f) is the DICS spatial filter at 
location 𝑟 and frequency 𝑓, with three columns referring to the 𝑥, 𝑦, 
and 𝑧 components of the dipole moment and n to the number of MEG 
channels. The spatial filter weight matrix W(r,f) can be computed 
as follows:

 
W A Q A A QT T Tr f r f r r f,( ) = ( ) ( ) ( )



 ( ) ( )− − −1
1

1

 
(8)

where the n-by-n matrix Q(f) describes the cross-spectral density 
(CSD) of the MEG sensors for frequency 𝑓 and A(r) denotes the 
n-by-3 forward lead field matrix at location 𝑟 for the three directions 
𝑥, 𝑦, and 𝑧 (Gross et  al., 2001). The complex-valued CSD matrix 
describes the shared power and phase shift between the signals of the 
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different sensors at a given frequency 𝑓 and can be  calculated 
as follows:

 Q X Xf f fH( ) = ( ) ( ).  (9)

where X H  refers to the Hermitian (i.e., complex conjugate) 
transpose of matrix X. As recommended in previous studies such as 
Westner et al. (2022), we only considered the real-valued part of the 
CSD matrix Q(f) in Eq. (8) to prevent having a complex-valued spatial 
filter, which does not have a valid biophysical interpretation.

The cleaned broad-band (bandpass filtered at 0.1–170 Hz) epochs 
of MEG sensor signals were used in the DICS beamformer to calculate 
the alteration of power in the five frequency bands from pre-stimulus 
(i.e., baseline) to post-stimulus (i.e., active) conditions. We selected a 
time window from −500 to −100 ms for pre-stimulus and from 250 ms 
to 650 ms for the post-stimulus based on the results of time-frequency 
analysis in the sensor space (see Figure  1). To compare the two 
conditions statistically, the sources were estimated based on an inverse 
filter [i.e., weight W(r,f)T] in Eq. (7) that was computed from 
combining the two conditions (called the common filter approach), 
and then the common filter was applied separately to each condition 
to estimate the source power. The CSD matrix Q(f) for the baseline, 
active, and combined conditions were calculated using the fast Fourier 
transform (FFT) and a conventional single taper (i.e., Hanning) 
approach. The regularization parameter for calculating Q(f)−1 in Eq. 
(8) was set to the suggested default value in the FieldTrip [i.e., 10% of 
the average of the eigenvalues of Q(f)]. We  conducted a DICS 
beamformer analysis for lambda values ranging from 1 to 15% and 
found that altering the value did not affect the laterality assignment. 
Additionally, we tested the DICS beamformer on MEG data without 
employing the tSSS filter, but observed no improvement in the results 
(refer to Supplementary Figure S3; Supplementary Table S2 in the 
Supplementary materials).

To calculate the source power in each condition, the source CSD 
was calculated as the 3-by-3 matrix W(r,f)TQ(f)W(r,f) and then 
projected along the dominant direction, corresponding to the largest 
eigenvalue of the matrix (Gross et al., 2001). For each condition, the 
average of the source power across frequencies in each of the five 
bands was calculated.

The statistical inference for the source power in each frequency 
band was performed using a non-parametric randomization test 
based on a Monte-Carlo estimate of the probability distribution of the 
change in the source power. The significance of a dependent sample 
t-statistic for the source power was evaluated by randomly permuting 
(n = 10,000) the baseline and active conditions in order to generate an 
empirical null distribution. Two statistical approaches were used to 
find significant language sources: (I) an uncorrected p < 0.05; and (II) 
a cluster-based correction for multiple comparisons with an alpha 
level of 0.05. The significantly active sources in each of the five 
frequency bands was used to calculate the LI. Similar to the sECD 
method, 50 ROIs in each hemisphere were selected from the 
Brainnetome atlas as the language-specific ROIs. The LI was calculated 
based on Eq. (3) where L and R were the number of statistically 
significant sources in the left and right language-specific ROIs, 
respectively.

ERD and ERS are typically investigated for band-limited power 
modulation in many cognitive tasks, including language 

(Pfurtscheller, 1997). ERD and ERS reflect decreases and increases 
in spectral power relative to a baseline, respectively. In the current 
study, the LI was calculated separately for ERD and ERS in each 
frequency band as previous studies suggest that the ERD and ERS 
may reflect different aspects of the language network (Sharma 
et al., 2021).

2.8. Simulation for sECD

The performance of the MNE, dSPM, and DICS for MEG source 
localization has been investigated in several studies using simulated 
MEG datasets (Gross et  al., 2001; Lin et  al., 2006; Schoffelen and 
Gross, 2009; Hauk et al., 2011; Hincapie et al., 2017). In this study, 
we evaluated the localization accuracy of the proposed AsECDa using 
synthetic MEG datasets. In particular, we  aimed to evaluate the 
localization accuracy for superficial sources as well as for deep sources 
(e.g., hippocampus), which are typically considered difficult to localize 
with MEG.

In the simulated MEG datasets, a single-sphere volume conductor 
model was used for calculation of the lead-fields. Computation of the 
lead-fields requires knowledge of the locations and orientations of the 
MEG sensors and possible sources. For this analysis, a source was 
simulated as a single dipole located at the centroid of one of the 246 
ROIs of the Brainnetome atlas. At each location, the simulation was 
performed separately for two current dipoles oriented in two 
orthogonal directions (corresponding to the directions of the two 
principal components of the lead-field matrix in the dipole’s location). 
We used the head model of a representative subject (i.e., Subject #1), 
which was generated in the pre-processing step (Section 2.4), for the 
locations and orientations of the MEG sensors in the 
simulated datasets.

The synthetic signals for the MEG sensors were computed for 
each of the 246 locations (i.e., ROIs) and two dipole orientations. This 
was repeated multiple times after adding random white noise (n = 100 
repetitions) with different signal-to-noise ratios (SNRs) from 1 to 10 
(in steps of 1) and at infinite SNR (i.e., without noise). The proposed 
AsECDa was then used to localize a dipole corresponding to the 
synthetic MEG data. Mean and standard deviation of the localization 
error across the 100 repetitions of the random noise (at a given SNR) 
were calculated.

2.9. Software implementation

The analysis was implemented using in-house software developed 
in MATLAB R2018b (MathWorks Inc., Natick, MA, USA) and 
adapted from the following open-source toolboxes. The FieldTrip 
toolbox v20180905 (Oostenveld et al., 2011) was used to preprocess 
the MEG data, co-register MEG and structural MRI, compute the 
head model and lead-fields, and perform source reconstruction using 
the sECD, MNE, dSPM, and DICS beamformer methods. For the 
MNE and dSPM methods, FreeSurfer (version 5.3.0, https://surfer.
nmr.mgh.harvard.edu) and MNE Suite (Version 2.7.4, M. Hämäläinen, 
Martinos Center for Biomedical Imaging, Massachusetts General 
Hospital, MA) were used to generate the cortical surface for each 
patient and to find sources within the language-specific ROIs based 
on the Destrieux standard atlas.
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3. Results

3.1. sECD simulation

Figure  3 shows the performance of the proposed automatic 
algorithm for localization of simulated dipoles. As expected and 
shown in Figure  3, the localization error was increased (a) by 
increasing noise level (and decreasing SNR) and (b) for the deep 
sources compared to the superficial sources [e.g., hippocampus vs. the 
superior temporal gyrus (Figure 3A)]. Considering a typical SNR = 5 
for EMF data (Lin et al., 2004), the average localization error of the 
proposed algorithm across all superficial and deep sources (Figure 3B) 
was less than 2 mm (1.6 ± 0.6). Even in a very noisy condition (i.e., 
SNR = 1), the proposed algorithm performed well with an average 
localization error of less than 8 mm (7.8 ± 3.6).

3.2. DICS beamformer statistical analyses

The DICS beamformer was used to lateralize and localize 
language, based on suppression (DICS-ERD) and augmentation 
(DICS-ERS) of power in the five frequency bands. A summary of the 
results for the two sessions in all patients using the two statistical 
approaches (i.e., using an uncorrected value of p and a cluster-based 
correction for multiple comparisons) are listed in Table 2. Using the 
cluster-based correction with a false alarm rate of 0.05, the results in 
Table 2B indicate the following: (I) on average, more than 76% of the 
sessions in all patients across the five frequency bands and two DICS 
approaches (i.e., DICS-ERD and DICS-ERS) did not result in any 
significant source within the language cortex; (II) DICS-ERS did not 
result in any significant language source in the five frequency bands 
in more than 95% of the sessions; and (III) for DICS-ERS in all 
frequency bands and DICS-ERD in the high gamma band, only a 
small portion of the language cortex (< 1.5%) survived after applying 
statistical thresholding. Referring to these results, the cluster-based 
statistics for the DICS beamformer did not provide reliable results for 

language lateralization, and, thus, we did not report results based on 
this statistical thresholding approach hereafter.

As expected and depicted in Table 2, the statistical analysis based 
on an uncorrected p-value (Table 2A) resulted in more significant DICS 
sources compared to that obtained when using the cluster-based 
correction (Table 2B). It is notable that some of the significant sources 
identified by the uncorrected p-value approach could be false positives. 
The results based on an uncorrected p < 0.05 in Table 2A indicate the 
following: (I) more than 38% of the sessions did not result in any 
significant language source for DICS-ERD in the high gamma band and 
for DICS-ERS in the alpha, low beta, and high beta bands; and (II) 
DICS-ERD in the high gamma band and DICS-ERS in all five frequency 
bands resulted in significant sources located in a small portion of the 
language cortex (≤5%) and non-language cortex (≤3%). The small 
percentage of sources in the language and non-language cortices are 
comparable to the expected 5% false positives based on the p < 0.05. 
Referring to these observations, the results of DICS-ERD in the high 
gamma band and DICS-ERS in the five frequency bands should 
be considered with caution as they may reflect false positive effects.

The results based on an uncorrected p < 0.05 in Table 2A revealed 
that approximately 36 and 37% of the language cortex and 25 and 27% 
of the non-language cortex, on average across all session, had 
significant suppression (DICS-ERD) of power in the alpha and low 
beta bands, respectively. This observation indicates that suppression 
of power in alpha and low beta bands may be sensitive but not specific 
for identification of the language cortex.

3.3. Language laterality using sECD, MNE, 
dSPM, and DICS

The LI was calculated for each of the two sessions in all patients 
(total of 2×21 = 42 sessions) based on the AsECDa, MNE, dSPM, and 
DICS beamformer approaches (Table 3; Figure 4). EMFs based on the 
0.1–20 Hz bandpass filter were used for AsECDa, MNE, and 
dSPM. The AsECDa provided a strong and significant correlation 

FIGURE 3

Simulation results for evaluation of accuracy of the proposed AsECDa for localization of a single dipole with different SNRs from 1 to 10 (in steps of 1) 
and a SNR of infinity (“Inf”; i.e., without noise). (A) Dipole localization errors for a deep source (i.e., hippocampus) and a superficial source (i.e., superior 
temporal gyrus) are compared. The error bars represent standard deviation of the localization error across n = 100 repetitions of adding random white 
noise with a specific SNR. (B) Localization errors across all 246 dipoles located in the centroid of 246 ROIs of the Brainnetome atlas. AsECDa, 
automatic single equivalent current dipole algorithm; ROIs, regions of interest; SNR, signal-to-noise ratio.
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between the calculated LIs of Session 1 and Session 2 across all 
patients (Pearson’s correlation coefficient [Cor] = 0.80; p < 0.00002), 
which shows an excellent test–retest reliability of this approach for 
determination of language laterality. The intersession correlation of 
the LI was lower but still good for the MNE (Cor = 0.71; p < 0.0004) 
and dSPM (Cor = 0.64; p < 0.002). The LI for the DICS-ERD in the 
alpha and low beta bands had a significant (p < 0.05) but much lower 
intersession correlation (Cor = 0.64 and 0.48, respectively). These 
results show a fair to good test–retest reliability for determination of 
language laterality based on MNE/dSPM and DICS-ERD in the alpha 
and low beta bands. The intersession correlation of the LI for 
DICS-ERD in the high beta and gamma bands and for DICS-ERS in 
all the frequency bands was not significant (p  > 0.1). In general, 
compared to the AsECDa and MNE/dSPM methods, the DICS 
beamformer provided an inferior test–retest reliability for the LI.

In order to investigate the similarity of the results of the different 
source reconstruction methods, we calculated the correlation between 
the calculated LIs of all pairs of AsECDa, MNE, dSPM, and DICS 
approaches in all patients (Table 4). Results in Table 4 showed that the 
LIs calculated with the MNE and dSPM had a close to perfect 
correlation (Cor = 0.92; p < 10−16), which is expected considering the 
similarity of their inverse solution methods. Our results also revealed 
a fair to good correlation between the calculated LIs of AsECDa with 

MNE (Cor = 0.56; p < 0.001) and dSPM (Cor = 0.66; p < 0.001). We, 
however, found that there was a poor correlation (Cor < 0.32; p > 0.04) 
between DICS beamformer and the other three approaches (i.e., 
AsECDa, MNE, and dSPM). The overall similarity of the language 
laterality calculated using the AsECDa, MNE, and dSPM methods 
may be  in part because the source activities estimated by these 
approaches are all derived from the EMF signals. The dissimilarity 
between the EMF-based approaches (i.e., AsECDa, MNE, and dSPM) 
and the DICS-ERD/ERS beamformer may indicate that the EMFs and 
ERD/ERS are related to different spatiotemporal neural mechanisms 
(Pfurtscheller, 1997). In fact, each externally or internally-paced event 
results in a phase-locked response in the MEG data as an EMF and in 
a non-phase-locked response in the MEG data as an ERD/ERS.

Results in Table 4 show a significant positive correlation between 
the LIs calculated with the DICS-ERD in the alpha and low beta bands 
(Cor = 0.56; p < 0.001). These findings are in line with the similarity in 
performance of the DICS-ERD in the alpha and low beta bands 
regarding the test–retest reliability and the percentage of atypical 
language representation (Table 3). We also found significant negative 
correlations between the DICS-ERD and DICS-ERS in the alpha band 
(Cor = −0.74; p < 0.01) and between the DICS-ERD in the high beta 
and the DICS-ERS in the low gamma band (Cor = −0.57; p < 0.001). 
These significant negative correlations should be  considered with 

TABLE 2 Average language laterality index (LI) and percentage of active sources in different frequency bands for DICS beamformer using (A) 
uncorrected p-value <0.05 and (B) cluster corrected p-value <0.05 statistical thresholding methods.

LI Percentage of volume with significantly active 
sources

Percentage of 
sessions without 

significant 
language sourceLanguage areas Non-language 

areas
All cortical 

areas

(A)

DICS-ERD

Alpha 0.01 ± 0.50 36.4 ± 27.0 25.0 ± 23.4 29.2 ± 23.7 2.4

Low beta −0.01 ± 0.48 36.8 ± 28.9 26.8 ± 24.8 30.5 ± 25.6 2.4

High beta 0.06 ± 0.64 22.6 ± 24.2 22.4 ± 21.0 22.5 ± 21.4 4.8

Low gamma 0.08 ± 0.84 5.8 ± 8.7 7.7 ± 10.7 7.0 ± 9.6 9.5

High gamma 0.04 ± 0.90 1.9 ± 2.8 2.5 ± 4.0 2.3 ± 3.3 38.1

DICS-ERS

Alpha 0.06 ± 0.93 0.5 ± 1.3 1.8 ± 4.5 1.3 ± 3.2 59.5

Low beta 0.07 ± 0.95 0.9 ± 2.2 1.4 ± 2.7 1.2 ± 2.3 50

High beta 0.12 ± 0.85 3.3 ± 7.7 2.1 ± 6.2 2.5 ± 6.3 38.1

Low gamma −0.05 ± 0.85 5.3 ± 9.7 2.3 ± 3.8 3.4 ± 5.8 16.7

High gamma −0.04 ± 0.86 3.5 ± 5.3 3.4 ± 5.0 3.4 ± 4.3 11.9

(B)

DICS-ERD

Alpha −0.11 ± 0.50 32.2 ± 29.7 23.4 ± 24.5 26.6 ± 25.4 28.6

Low beta −0.02 ± 0.47 32.8 ± 31.5 24.3 ± 26.5 27.4 ± 27.8 35.7

High beta 0.23 ± 0.56 20.4 ± 25.0 20.2 ± 22.1 20.2 ± 22.4 38.1

Low gamma 0.52 ± 0.39 3.4 ± 8.5 4.0 ± 10.4 3.7 ± 9.5 83.3

High gamma 0.03 ± 0 0.2 ± 1.6 0.5 ± 3.2 0.4 ± 2.6 97.6

DICS-ERS

Alpha 0.67 ± 0 0.1 ± 0.6 0.4 ± 2.7 0.3 ± 1.9 97.6

Low beta - - - - 100

High beta 0.63 ± 0.52 1.2 ± 5.8 1.0 ± 5.9 1.1 ± 5.8 95.2

Low gamma 0.10 ± 0.75 1.5 ± 6.6 0.7 ± 3.1 1.0 ± 4.4 95.2

High gamma −1.00 ± 0.00 0.6 ± 2.9 0.2 ± 1.1 0.4 ± 1.7 95.2

DICS, dynamic imaging of coherent sources; ERD, event-related desynchronization; ERS, event-related synchronization.
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TABLE 3 Language laterality results for AsECDa, MNE, dSPM, DICS-ERD, and DICS-ERS.

AsECDa MNE dSPM DICS-ERD DICS-ERS

Alpha Low Beta High 
beta

Low 
gamma

High 
gamma

Alpha Low beta High 
beta

Low 
gamma

High 
gamma

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Number of 

Sessions w Left 

Laterality

15 11 9 10 11 10 5 8 5 6 9 8 10 10 8 5 5 4 5 6 9 5 8 7 9 7

Number of 

Sessions w 

Right Laterality

4 6 2 3 2 4 6 5 7 5 7 5 7 8 5 6 2 6 5 5 5 6 6 10 8 9

Number of 

Bilateral 

Sessions

2 4 10 8 8 7 9 8 9 9 4 7 1 2 1 1 0 0 0 0 0 1 2 2 1 3

Percentage of 

Sessions w Left 

Laterality

62% 45% 50% 32% 27% 43% 53% 50% 53% 52% 54% 43% 43%

Percentage of 

Sessions w 

Right 

Laterality

24% 12% 14% 27% 29% 30% 39% 42% 47% 48% 42% 46% 46%

Percentage of 

Bilateral 

Sessions

14% 43% 36% 41% 44% 28% 8% 8% 0% 0% 4% 11% 11%

Percentage of 

sessions w/o 

Language 

Source

0% 0% 0% 2% 2% 5% 10% 38% 60% 50% 38% 17% 12%

Correlation of 

LI between 

Sessions 1 and 2

0.80 0.71 0.64 0.54 0.48 0.36 0.19 −0.08 0.00 −0.14 −0.10 0.13 −0.14

p-value of 

Correlation of 

LI between 

Sessions 1 and 2

< 0.00002 < 0.0004 < 0.002 0.015 0.033 0.117 0.458 0.844 0.995 0.734 0.787 0.638 0.615

LI 

[Mean ± STD]
0.26 ± 0.58 0.15 ± 0.35 0.16 ± 0.32 0.01 ± 0.50 −0.01 ± 0.48 0.06 ± 0.64 0.08 ± 0.84 0.04 ± 0.90 0.06 ± 0.93 0.07 ± 0.95 0.12 ± 0.85 −0.05 ± 0.85 −0.04 ± 0.86

AsECDa, automatic single equivalent current dipole algorithm; dSPM, dynamic statistical parametric mapping; DICS, dynamic imaging of coherent sources; ERD, event-related desynchronization; ERS, event-related synchronization; LI, laterality index; S1, session 1; 
S2, session 2.
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FIGURE 4

Language mapping using sECD, MNE, dSPM, and DICS beamformer in a representative patient. For AsECDa, locations of all fitted language dipoles 
within 150 to 650 ms time window are shown in the MNI standard atlas. For MNE and dSPM, the average source activity from 150 to 650 ms is shown in 
the subject’s native space. For DICS beamformer, the average suppression (blueish color) and enhancement (reddish color) of source activity from 
baseline (−500 to −100 ms) to the post-stimulus (250 to 650 ms) in five frequency bands are shown in the inflated MNI space. AsECDa, automatic single 
equivalent current dipole algorithm; dSPM, dynamic statistical parametric mapping; DICS, dynamic imaging of coherent sources; MNE, minimum norm 
estimation; MNI, Montreal Neurological Institute; sECD, single equivalent current dipole.

https://doi.org/10.3389/fnins.2023.1151885
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Babajani-Feremi et al. 10.3389/fnins.2023.1151885

Frontiers in Neuroscience 12 frontiersin.org

caution as results in Table 3 indicate a poor and non-significant test–
retest reliability for the LIs calculated with the DICS-ERS in the alpha 
and low gamma bands.

Based on the LIs calculated using the AsECDa, MNE, dSPM, and 
DICS beamformer for the two sessions in all patients, the percentage 
of sessions with left laterality, right laterality, or bilateral representation 
and the average and standard deviation of the LI across all sessions 
were computed and reported in Table 3. The DICS-ERD and ERS were 
biased toward atypical language representation (LI ≈ 0). In particular, 
the DICS-ERD in the alpha and low beta bands (which provided the 
most reliable results for the DICS beamformer) were biased toward an 
atypical language representation as: (a) more sessions were estimated 
as bilateral language representation rather than left laterality, (b) 
approximately the same numbers of sessions were estimated as left or 
right laterality, and (c) approximately two thirds of the sessions were 
estimated as right laterality or bilateral language representation. These 
results for DICS are in disagreement with previous studies showing 
right laterality and bilateral language representation in only 20–30% 
of epilepsy patients (Gaillard et al., 2007; Moddel et al., 2009).

A mild bias toward atypical language representation was also 
observed in MNE, for which more sessions were assigned to right 
laterality or bilateral language representation (≈ 55%) compared to left 
laterality (≈ 45%). The bias toward atypical language representation 
was reduced in dSPM, which assigned 50% of the sessions to left 
laterality. The AsECDa was the least biased toward atypical 
representation with an LI ≈ 0.26 and 62, 14, and 24% of the sessions 
assigned to left laterality, bilateral representation, and right laterality, 
respectively. This more closely agrees with the expected laterality of 
epilepsy patients as reported in previous studies.

4. Discussion

Discrete source models based on sECD have been the primary 
method used in clinical MEG applications such as language 
lateralization (Papanicolaou et al., 1999). Distributed solutions are 
more commonly used in research applications in language and have 
not yet been fully embraced by the clinical MEG community for 
language localization and lateralization. MNE (Dikker and Pylkkanen, 
2013), dSPM (Tanaka et al., 2013), and MR-FOCUSS (Bowyer et al., 
2005) are the main imaging distributed source models and LCMV 
(Sharma et al., 2021), DICS (Foley et al., 2019), and SAM (Hirata et al., 
2010) are the main beamforming methods that have previously been 
used to investigate language. We  selected MNE and dSPM as 
representative methods for the distributed source models and 
compared the performance of these methods and the developed 
AsECDa in the current study for language mapping.

While the AsECDa and other distributed source models, such as 
MR-FOCUSS and standardized low-resolution brain electromagnetic 
tomography (sLORETA; Pascual-Marqui, 2002), can be compared in 
the future, the selection of MNE and dSPM was motivated by their 
popularity in the MEG community and by the availability of their 
implementation in commonly used MEG toolboxes (such as 
FieldTrip). Likewise, we selected DICS as a representative method for 
the beamforming approach. While the DICS and LCMV methods 
should provide similar results in investigating narrow band-limited 
power of source activity, DICS is considered to be preferable (Westner 
et  al., 2022). The SAM beamformer was originally proposed to 
determine an optimal orientation at each location that corresponds to 
the largest power of the estimated source (Robinson and Vrba, 1999). 

TABLE 4 Correlation between language laterality index (LI) of all pairs of AsECDa, MNE, dSPM, DICS-ERD, and DICS-ERS methods across both sessions 
in all patients (i.e., across 42 sessions).

MNE dSPM DICS-ERD DICS-ERS

Alpha Low 
beta

High 
beta

Low 
gamma

High 
gamma

Alpha Low 
beta

High 
beta

Low 
gamma

High 
gamma

AsECDa 0.56† 0.66† 0.23 0.26 −0.22 0.02 −0.01 −0.03 −0.02 0.04 0.25 0.19

MNE 0.92‡ 0.32 0.32 −0.06 0.10 −0.18 −0.17 0.16 0.10 0.22 0.28

dSPM 0.27 0.26 0.08 0.25 −0.18 −0.14 0.21 0.10 0.14 0.21

DICS-

ERD

Alpha 0.56† −0.18 −0.02 0.00 −0.74* −0.27 0.27 0.27 0.23

Low beta 0.11 0.15 0.13 −0.06 −0.26 −0.08 0.22 0.01

High 

beta
0.54 0.05 0.17 0.00 −0.22 −0.57† −0.26

Low 

gamma
−0.14 −0.07 −0.03 −0.30 −0.28 −0.15

High 

gamma
−0.02 −0.67 −0.03 0.12 −0.11

DICS-

ERS

Alpha 0.06 −0.35 0.19 −0.21

Low beta 0.57 −0.15 −0.09

High 

beta
0.26 0.39

Low 

gamma
0.23

AsECDa, automatic single equivalent current dipole algorithm; dSPM, dynamic statistical parametric mapping; DICS, dynamic imaging of coherent sources; ERD, event-related 
desynchronization; ERS, event-related synchronization. 
‡p < 10−16 ; †p < 0.001; *p < 0.01.
Bold values indicate a significant correlation (p < 0.01).
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Although SAM and DICS/LCMV use slightly different algorithmic 
approaches, they will provide similar results if an optimal orientation 
at each location is used to convert the DICS/LCMV beamformer from 
a vector form to a scaler (Westner et al., 2022).

The utility and accuracy of the sECD approach for language 
mapping using MEG were demonstrated in a series of studies by 
Papanicolaou and colleagues (Simos et al., 1998; Zouridakis et al., 1998; 
Papanicolaou et  al., 1999; Breier et  al., 2000). In a MEG study 
incorporating a relatively large number (n  = 100) of patients with 
epilepsy, they found that LI based on the number of consecutive sECD 
sources in perisylvian brain areas had a high degree of concordance 
(87%) with the Wada test (as the clinical gold standard) for language 
laterality (Papanicolaou et al., 2004). They reported that the LI based on 
the MEG sECD approach (with respect to the Wada test) provided 
excellent sensitivity (98%), positive (91%) and negative (96%) predictive 
value, and a good specificity (83%). In addition to these studies, several 
other groups have successfully investigated the language laterality based 
on the MEG sECD approach and reported very high concordance with 
the Wada test [Merrifield et al., 2007; Doss et al., 2009; Ota et al., 2011; 
see Bowyer et al. (2020b) for a comprehensive review].

While the results of previous studies have demonstrated the capability 
and accuracy of the sECD approach for language mapping, its main 
limitation, namely its dependence on subjective judgments, has prevented 
its general adoption. To address the limitations and difficulties in 
implementing the method consistently and optimally across investigators 
and centers, we developed the AsECDa which has the following main 
advantages over the manual sECD approach. (1) The AsECDa is objective 
as it is based on predefined parameters and is not influenced by a user’s 
subjective impressions or judgement. (2) An optimal subset of sensors 
(separately for the left and right hemispheres) at each millisecond is 
selected by the automatic sECD algorithm as opposed to the manual 
approach where the selection is based on subjective judgments. (3) 
Typically, in the manual implementation of the sECD for language 
mapping, a single dipole is fit in each hemisphere at a given time point. 
The AsECDa will fit multiple dipoles (up to five) at a given time point if 
a single dipole is not enough to model the measured MEG field pattern. 
This extends the number of dipoles that can modeled simultaneously, 
given the difficulty in visually identifying multiple isofield maps, and can 
fit more than two dipoles at a given latency. (4) The AsECDa utilizes an 
atlas in MNI space for selection of dipoles in language-specific ROIs 
while the manual sECD approach relies on subjective visual judgement 
on whether a dipole is within the language areas (based on the locations 
of the dipoles in the patient’s structural MRI in the native space). (5) 
Modifying key parameters (e.g., selected language ROIs, time window, 
and the rejection criteria for fitted dipoles) in the AsECDa can be easily 
and quickly performed, which may allow for a more comprehensive 
clinical evaluation of the language map of individual patients.

We found that the AsECDa outperformed MNE and dSPM, and 
particularly the DICS beamformer, regarding test–retest reliability of 
the language LI. Our results revealed an excellent test–retest reliability 
(Cor = 0.80) for calculation of LI using the AsECDa while MNE/dSPM 
and DICS-ERD in the alpha and low beta bands provided a fair to 
good test–retest reliability. On the other hand, DICS-ERD in the high 
beta and gamma bands and DICS-ERD in all the frequency bands 
failed to provide any significant (p > 0.1) correlation between the LIs 
of the two MEG sessions. In agreement with our findings for the high 
test–retest reliability of the LI using the sECD method, a previous 
study in 21 patients with epilepsy (who underwent two consecutive 

sessions of MEG recordings during the same WRT utilized in the 
current study) reported a good TRT for the manual sECD approach 
by two independent expert raters [CorRater1 = 0.6 and CorRater2 = 0.69] 
(Lee et al., 2006). Another MEG study had investigated the test–retest 
reliability of the dSPM and LCMV beamformer for localization of 
source activity in 20 healthy participants (Ala-Salomaki et al., 2021) 
using a different language task (i.e., picture naming). In agreement 
with our DICS beamformer findings, their LCMV beamformer results 
for the object naming task showed non-significant or poor test–retest 
reliability in modulations of oscillatory activity in the language-
specific areas while this activity was consistent in the posterior cortical 
regions that are not typically associated with language processing. 
Additionally, they reported that dSPM for the picture naming task 
provided more consistent results compared to the LCMV beamformer 
in localization of source activity in the language-specific areas, which 
is similar to our results. Furthermore, the test–retest reliability of 
dSPM for the picture naming task was reported to be mostly fair to 
good in the left perisylvian language regions.

In comparison with the other methods, the AsECDa’s results were 
more consistent with prior studies regarding the expected atypical 
language representation in the epilepsy population. The DICS 
beamformer was biased toward atypical language representation 
(LI ≈ 0). In particular, the DICS-ERD in the alpha and low beta bands 
(which provided the most reliable results compared to the DICS-ERD 
in the other bands and DICS-ERS in all the frequency bands) showed 
a biased LI where more than 68% of the sessions were assigned an 
atypical language lateralization (i.e., a right lateralization or a bilateral 
language representation). Compared to DICS, the bias toward atypical 
representation was reduced for dSPM and MNE, where 50 and 55% of 
sessions showed atypical language representation, respectively. Similar 
to our dSPM results, a previous MEG study investigated language 
laterality using dSPM in 45 patients with epilepsy, during the same task 
(i.e., WRT) utilized in the current study, and reported an atypical 
language lateralization in 28.9–62.2% of patients based on different 
selections of ROIs (Raghavan et al., 2017). These results for DICS, 
MNE, and dSPM are in conflict with previous studies showing atypical 
language representation in 20–30% of epilepsy patients (Gaillard et al., 
2007; Moddel et al., 2009; Moser et al., 2011; Dijkstra and Ferrier, 
2013). For example, Moser et al. (2011) estimated rates of (a)typical 
language dominance in 296 patients with epilepsy based on Wada 
testing scores and reported that approximately 25% of patients had 
atypical language laterality. Another study reported a slightly larger 
atypical language dominance in 30 out of 102 (29%) patients with 
epilepsy (Gaillard et al., 2007). In our current study, the AsECDa had 
the least bias toward atypical language representation (only 38% of the 
sessions) compared to the other methods. As argued previously in 
Papanicolaou et al. (2004), a slightly higher rate of atypical language 
representation obtained by the sECD approach compared to the Wada 
test may indicate lower specificity of the sECD approach such that 
more active sources in the nondominant hemisphere are detected.

Potential improvement in the results of dSPM using different 
methods for calculation of language LI was investigated by Tanaka 
et  al. (2013). Using MEG recordings in 35 patients with epilepsy 
during a visual semantic decision task, they used dSPM and calculated 
language LI based on the following two approaches: (I) dSPM 
amplitude method, which is based on the sum of amplitudes of 
sources within language ROIs (similar to the method used in our 
current study); and (II) dSPM counting method, which involves 
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counting the number of dipoles within language ROIs after applying 
a threshold set to half of the maximum amplitude of sources across 
the ROIs. Their results show that the dSPM counting method 
outperformed the dSPM amplitude method regarding concordance 
with the Wada test (91.4% vs. 51.4%). In addition, the dSPM counting 
and the dSPM amplitude method identified approximately 17 and 
50%, respectively, of patients with atypical language lateralization. 
We  implemented the dSPM counting and the dSPM amplitude 
method for calculation of the language LI in the current study and 
found no meaningful difference between the two methods. The 
counting method provided slightly better results regarding atypical 
language representation (48% vs. 50%) but worse test–retest reliability 
(Cor = 0.58 [p < 0.0059] vs. Cor = 0.64 [p < 0.0017]).

Use of the Wada test has declined in recent decades (Baxendale et al., 
2008; Gross et al., 2022), and this test was only obtained in three out of 
the 21 patients in our study. The results of the AsECDa test matched with 
those of the Wada test for two patients, both of whom showed left 
language lateralization. For the third patient, the AsECDa results 
indicated bilateral representation for language, and the Wada test showed 
left lateralization. Although the Wada test results showed left 
lateralization for language in all three patients, the MNE and DICS 
beamformer results in the alpha band did not reveal left lateralization in 
any patient, resulting in a 0% concordance with the Wada test. 
Furthermore, the dSPM and DICS beamformer results in the beta band 
showed left laterality in one patient and bilateral or right laterality in two 
patients, resulting in a 33% concordance with the Wada test. Moreover, 
the laterality estimates of the AsECDa in this study closely match those 
of previous studies where Wada comparisons were made [see 
Papanicolaou et al. (2004) for example], indicating that the AsECDa is 
likely to have a comparable degree of concordance with the Wada 
procedure. Our findings for the advantage of AsECDa over MNE/dSPM 
and DICS beamformer (regarding test–retest reliability and the expected 
atypical language lateralization) are based on a receptive language task 
(i.e., WRT), which has been routinely used in our clinical practice and 
was shown to provide a high concordance between MEG and the Wada 
test language laterality (Papanicolaou et al., 2004).

The AsECDa was implemented for planar gradiometers of the 
MEGIN/Elekta system. As mentioned in Section 2.5, the AsECDa 
relies on identification of the local maxima of the planar gradients of 
the magnetic field. For the MEGIN/Elekta system, we combined the 
magnetic fields of two planar gradiometer channels to generate a 
single positive value per sensor location using the “ft_combineplanar” 
function in the Fieldtrip toolbox. However, this method can 
be adapted for other MEG systems. For example, the planar gradient 
can be approximated using the MEG signals in axial gradiometer 
sensors, such as in the CTF MEG system, with the help of the “ft_
megplanar” function in the Fieldtrip toolbox. Nonetheless, we want to 
emphasize that the parameters of the AsECDa algorithm, such as the 
sigma factor and minimum and maximum radius in Eq. (1), are 
optimized based on the planar gradiometers of the MEGIN/Elekta 
system and may need adjustment for other MEG systems.

5. Conclusion

In this study, we developed a completely objective and automatic 
sECD algorithm (AsECDa) for language mapping using MEG that has 
several advantages over the manual sECD approach. Results obtained 

using synthetic MEG data (based on single dipoles located at the centroid 
of the 246 ROIs of the Brainnetome atlas) revealed a good localization 
accuracy for the AsECDa in both superficial and deep sources, with an 
average localization error at a typical noise level (SNR = 5) of less than 
2 mm. Our results based on MEG data collected in patients with epilepsy 
during a receptive language task (i.e., WRT) in two consecutive sessions 
showed that the AsECDa outperformed MNE, dSPM, and DICS 
beamformer regarding test–retest reliability of the LI. We also found that 
the results of the AsECDa were in greater agreement with previous studies 
on the prevalence of atypical language lateralization in epilepsy patients, 
as opposed to the other source localization methods. Considering these 
results, we believe that the AsECDa is a reliable method that can be easily 
and confidently implemented in clinical evaluations or in 
research investigations.
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Glossary

AsECDa Automatic sECD algorithm

CSD Cross-spectral density

Cor Correlation

DICS Dynamic imaging of coherent sources

DPSS Discrete prolate spheroidal sequences

dSPM Dynamic statistical parametric mapping

EMFs Evoked magnetic fields

ERD Event-related desynchronization

ERS Event-related synchronization

FFT Fast Fourier transform

FOI Frequency of interest

ISI Interstimulus interval

HPI Head position indicator

LCMV Linearly constrained minimum variance

LI Laterality index

LM Language mapping

MEG Magnetoencephalography

MNE Minimum norm estimation

MNI Montreal Neurological Institute

ROI Regions of interest

SAM Synthetic aperture magnetometry

SD Standard deviation

sECD Single equivalent current dipole

SNR Signal-to-noise ratio

sLORETA Standardized low-resolution brain electromagnetic tomography

TRR Test–retest reliability

tSSS Temporal extension of signal space separation

WRT Word recognition task
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