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The use of medicinal plants has grown in popularity in recent decades because,

as natural ingredients, they have fewer adverse effects and are more effective

than synthetic alternatives. As a small perennial herb, Glycyrrhiza glabra L.

(Licorice) has been investigated for its therapeutic efficacy against neural

disorders mainly ischemic stroke as well as the neurodegenerative diseases

such as dementia and Alzheimer’s disease, and Parkinson’s disease which has

been attributed to its HMGB inhibitory function, reactive oxygen scavenging

and anti-inflammatory activity. The objective of current review is to review

the evidence for the pharmacological effects of licorice and its vital active

components on neurological disorders and the underlying signaling networks. We

reviewed Papers published from 2000.1.1 up to 2 January 2023 in web of science,

Google Scholar and PubMed data bases using key words including “Licorice,”

“Glycyrrhiza glabra L.,” “Glycyrrhizic acid,” “brain,” “neurodegenerative disease,”

“Alzheimer’s,” and “Parkinson” were used to search in title/abstracts. Licorice

extract and/or its active components can be used safely in therapeutic doses

for optimizing the management of a multiple neurodegenerative disorders, and

hampering the extent of neural tissue injury and neurologic deficits subsequent

to cerebrovascular accidents.
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1. Introduction

Licorice root is commonly used in the preparation of commercial products for the
food industry, tobacco flavoring, and herbal medicine (Fu et al., 2013). Since ancient
eras, licorice has been utilized as a medicinal plant for a variety of human diseases,
including infections, neural disorders, peptic ulcers, and asthma (Ayeka et al., 2016). Recent
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investigations have shown many more medicinal properties.
Flavonoids [isoliquiritigenin (ISL), liquiritigenin, LQapioside, and
liquiritin (LQ)], isoflavonoids [Dehydroglyasperin C (DGC)],
and triterpenes [glycyrrhizic acid (GA) and glycyrrhetinic acid
monoglucuronide (GM)] are the active components of licorice
root. The sugary flavor of licorice is due to GA (Jiao et al.,
2013; Ton et al., 2013; Hosseinzadeh and Nassiri-Asl, 2015; Han
et al., 2017). Flavonoids derived from licorice have antimicrobial,
anti-inflammatory, antioxidant, and antispasmodic attributes (Guo
et al., 2016). Besides, DGC has recently been shown to have anti-
cancer properties (Shi et al., 2015). Licorice and its constituents
have been shown to mediate several signaling pathways involved
in acute and chronic neurodegeneration. Ischemic stroke, which
causes a burst of infarctions in the center of a hypoperfusion zone,
is an acute neurotoxic process. Neurodegenerative diseases like
Parkinson’s and Alzheimer’s are examples of chronic neurotoxicity
(AD) (Gaur et al., 2014; Abduljawad et al., 2022; Hassan et al.,
2022a). Recent studies showed that plant based active ingredients
are effective in neurodegenerative disease (Wei et al., 2021; Hassan
et al., 2022b; Mahnashi et al., 2022). Both active components
and the entire extract of licorice have been shown to have
neuroprotective properties (Hopkins, 2008; Dai et al., 2013;
Huang et al., 2016). The licorice root contains several active
ingredients with biological functions. Using High-performance
liquid chromatography techniques, multiple chemical compounds,
including flavonoids and triterpene saponins, have been identified
(Hopkins, 2007; Zhu et al., 2018; Heidari et al., 2021). Other minor
components identified include DGC, glycerol, glycerin, licoflavone,
and glycycoumarin (Gao et al., 2016).

Acetylcholinesterase, nitric oxide synthase, cholinesterase,
monoamine oxidase A (MAOA), monoamine oxidase B
(MAOB), and are among the afferent nervous system targets
that licorice influences. Both MAOA and MAOB belong to
the monoamine oxidase (MAO) family and play a crucial
role in maintaining mental health by catalyzing the oxidative
deamination of neurotransmitters and xenobiotic amines (Ramsay
and Tipton, 2017). The proper regulation of MAO activity
is required for the effective treatment of neurodegenerative
diseases. MAO-B inhibition is a well-known treatment strategy
for Alzheimer’s disease and Parkinson’s disease (Dezsi and
Vecsei, 2017). Various constituents of licorice including
licocoumarone, licopyranocoumarin and glycyrrhisoflavone
inhibit MAO activity (Hatano et al., 1991; Ramalingam et al.,
2018). Most of the inhibitory mechanism of licorice is dependent
to the presence of glicoricone and structure of MAO (Hatano
et al., 1991). Furthermore, licorice can mediate the function of
acetylcholinesterase, a key enzyme in the hydrolysis of acetylcholine
(Coloviæ et al., 2013). Licorice contains 52 compounds that have
been shown to inhibit acetylcholinesterase activity (Chen et al.,
2019). The current review concentrated on the available evidence
regarding the pharmacologic effects of active compounds of
licorice on neural disorders and the underlying signaling pathways
(Figure 1).

2. Method of searching

Papers had published from 2000.1.1 up to 2 January 2023 in
web of science, Google scholar and pubmed were investigated.

65 papers from web of science database, 73 from Google
scholar and 318 in pubmed were find with including criteria
(key words) “Licorice.” “Glycyrrhiza glabra L.,” “glycyrrhizic
acid,” “brain,” “neurodegenerative disease,” “Alzheimer’s,” and
“Parkinson” in title/abstracts. Paper without the keywords, review
articles, abstracts of congress, and non-English papers were
excluded from this review.

3. Licorice in ischemic brain stroke

Ischemic stroke is one of the important causes of death
worldwide, causing irreversible brain tissue damage. Current
ischemic stroke mainstay therapy includes blood supply recovery,
however, blood supply reestablishment is not obtained during the
golden time due to the patient’s late arrival or contraindications
related to the use of endovascular and thrombolytic agents
(Roaldsen et al., 2021). Various agents have been proposed
to reduce ischemia-related neural tissue injury by inhibiting
inflammatory and neurotoxic pathways (DeLong et al., 2022).
Licorice-derived glabridin has substantially modulated the middle
cerebral artery occlusion (MCAO)- induced cerebral injuries in rats
and also in staurosporine-treated cultured rat cortical neurons. The
results indicated that glabridin escalated the levels of endogenous
antioxidants and prevents cellular apoptosis (Yu et al., 2008). It has
been shown that post-treatment of the ischemic stroke mice with
125 mg/kg Glycyrrhizae Radix et Rhizoma was effective in cerebral
infarction and inflammatory response by regulating the activation
of microglia and astrocytes (Figure 2; Choi et al., 2022).

In animal models, licorice effectively blocked neuroexcitatory
damage cascades (Wei et al., 2021). It has also significantly
reduced lactate dehydrogenase release in hypoxia-induced cultured
gerbil hippocampus (Hwang et al., 2006). In vivo, licorice
treatment has increased superoxide dismutase activity in a carotid
artery occlusion model (Sathyamoorthy et al., 2020). In another
study, intravenous administration of GA after ischemia induction
significantly reduced infarction size, microglia activation, and the
production of pro-inflammatory cytokines (Kim et al., 2012). GA
in combination with candesartan have significantly ameliorated
the expression of toll like receptor (TLR) (TLR-2 and TLR-
4) and subsequent downstream inflammatory markers (Barakat
et al., 2014). The activity of HMGB is linked to post-ischemia
inflammation of neural tissue (Ramalingam et al., 2018). GA, a
known HMGB inhibitor, has reduced the inflammatory response
in mice with MCAO (Lim et al., 2018). The mechanism of
this inhibition has been attributed to the HMGB1-TLR4-IL-17A
signaling pathway (Zhang et al., 2014). In another study GA has
exerted protective effects on ischemia-reperfusion injury in rat
brains through the prohibition of oxidative stress, inflammation,
and apoptotic injury by inhibiting the cytokine activity of HMGB
(Gong et al., 2014). Also, the HMGB1 inhibitory role of GA
has been shown to be connected with ferroptosis and the
related signaling network. Ferroptosis is a caspase-independent
type of cell death triggered by lipid peroxidation and could be
caused as a result of glutathione peroxidase impairment (Wang
et al., 2018). GL can prevent neuronal ferroptosis, suppress
oxidative stress, diminish mitochondrial injury, and decrease
neuro-inflammation in HIBD via the HMGB1/GPX4 pathway
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FIGURE 1

Schematic illustration of the effects of licorice on neural disorders.

(Zhu et al., 2022). Furthermore, GA treatment can significantly
reduce CD68+ macrophage infiltration, indicating a role in T-cell-
mediated cytotoxicity (Xiong et al., 2016). ISL derived from licorice
has been shown to reduce the expression of apoptotic factors and
the formation of reactive oxygen species (ROS) in neural tissues
(Hwang and Chun, 2012). The first clinical trial of licorice extract in
dried powder capsules found that it effectively improved neurologic
function after the onset of ischemic stroke symptoms (Ravanfar
et al., 2016). In this study 450 and 900 mg licorice extract was orally
prescribed for 7 days and National institute of Health stroke scale
(NIHSS) and Modified Rankin Scale (MRS) scores were evaluated
prior to licorice intake and 90 days after treatment.

FIGURE 2

Mechanism of the neuroprotective effect of Glycyrrhizae Radix et
Rhizoma in the alleviation of inflammation in
ischemia/reperfusion-induced brain damage (Choi et al., 2022).

4. Licorice in Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative condition
defined by the gradual death of brain cells through many signaling
pathways, including glutamate, PI3K/Akt, extracellular signal-
regulated kinase (ERK), HMGB, and Necrotic factor kappa B
(NFkB) (Kao et al., 2009; Srinivasan and Lahiri, 2015; Miculas
et al., 2022). Studies showed that GA blocked the activity of NF-
kB as a key element of neurodegenerative disease pathogenesis
(Wang et al., 2011). GA has been shown to inhibit the activity of
NFkB, which is essential in the pathogenesis of neurodegenerative
diseases (Hwang et al., 2006). Following activation, NFkB sends
several downstream signals that terminate in inflammation (Shih
et al., 2015). Glutamate has been shown to induce apoptosis
in cultured hippocampal cells, which has been confirmed by
microscopic analysis of the morphological properties of apoptosis.
At the same time, GA treatment may impair apoptotic machinery
function in a concentration-dependent manner. In this study,
GA significantly reduced glutamate-mediated NMDA receptor
signaling and prevented the activation of NFkB as a downstream
signal in the mentioned pathway (Cherng et al., 2006). Another
study found that GA and GM inhibited NFkB and other
inflammatory pathways in an LPS-induced inflammation model
(Wang et al., 2011). Furthermore, GA and GM have been shown to
lower Bcl-2 levels and increase PI3K signaling activity, resulting in
the inhibition of cytotoxic mechanisms. Also, DGC administration
has been shown to reduce the inflammatory response to LPS
and NFkB activity in microglial cells (Kim et al., 2013). ERK
signaling is another important pathway involved in the potential
neuroprotective effects of GA. GA has been shown to increase ERK
activity in neural cultures (Wang et al., 2014). Licorice-derived
ISL inhibits glutamate-related neurotoxicity by decreasing stress
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mediators such as ROS, membrane lipid peroxidation, calcium
influx, decreasing apoptosis signaling markers, and increasing
cell survival factors. In addition, by suppressing ROS formation
and blocking the release of apoptotic factors (Bcl2, Bax, and
AIF) from mitochondria into the cytosol, ISL has attenuated
glutamate-induced mitochondrial injury and further hippocampal
neural loss (Peng et al., 2015). It has been reported, licorice
reduced microglial cell activation and inflammation in LPS-
induced neurotoxicity by inhibiting activator protein 1 (AP1)
and NFkB. This suppression can prevent neurotoxic processes
in inflammatory-related neural disorders such as Alzheimer’s
(Zhu et al., 2022). Indeed, ILS has been shown to significantly
reduce amyloid peptide (2535) [A(2535)]-induced neurotoxicity
by modulating downstream signaling mediators (Ahn et al., 2010;
Lee et al., 2012). Interestingly, licorice has been shown to improve
cognitive markers of Alzheimer’s disease in vivo. Licorice has been
shown to have anticholinesterase activity in reversing scopolamine
and diazepam-induced amnesia. Anticholinesterase agents are well-
known medications used in the treatment of Alzheimer’s disease
(Dhingra et al., 2004). Three consecutive recipients of licorice-
derived glabridin were able to effectively reduce cholinesterase
activity comparable to standard medication (Cui et al., 2008).
Glabridin decreases MDA levels in rat brains while raising
superoxide dismutase and glutathione levels (Yu et al., 2008).
A research demonstrated that feeding hypoxic rats with G. glabra
restored low levels of brain neurotransmitters such as glutamate
and dopamine and decreased AChE activity.

Another study tested the neuroprotective properties of an
aqueous root extract of G. glabra in Wistar albino rats. The dosages
of 150 and 225 mg/kg showed a considerable neuroprotective effect.
The neuroprotective action is linked to the presence of the active
isoflavone “Glabridin” in G. glabra (Hasanein, 2011). Furthermore,
when used for 30 days, higher concentrations reversed diabetes-
induced memory and learning dysfunction in vivo (Hasanein,
2011).

Recent research has found that HMGB1 plays a pathogenic
role in memory impairment, primarily via the TLR4 and RAGE
signaling pathways (Rong et al., 2021; Miculas et al., 2022).
Furthermore, HMGB1 neutralization has been shown to reduce
cognitive dysfunction and post-TBI cognitive impairment (Hei
et al., 2018; Okuma et al., 2019). TLR4 and NF-B phosphorylation,
followed by activation of the NLRP3 inflammasome, is one
proposed mechanism by which HMGB1 affects cognition (Costello
et al., 2011). Previous research has found that NLRP3 contributes
to the worsening of cognitive dysfunction (Li et al., 2017). In LPS-
treated animal models, GA has been shown to slow memory decline
(Song et al., 2013). GA protects by lowering the expression of
inflammatory markers such as TNF- and IL-1, as well as the protein
expression of COX-2 and iNOS (Song et al., 2013). In addition, by
inhibiting HMGB1/NF-B signaling-mediated neuroinflammation,
GA treatment improved spatial memory in isoflurane-exposed
animals (Wang et al., 2016). By preventing brain inflammation and
AD-like pathology through HMGB1 neutralization, GA has been
found to protect mice from surgery-induced cognitive impairments
(short swimming latency and distance in the MWM test) (Kong
et al., 2017). GA also can significantly decrease inflammatory
markers, NF-B, and hippocampal A levels (Kong et al., 2017). GA
has been shown to reduce cell death in AD experimental models by
inhibiting HMGB1 (Jang et al., 2013).

5. Licorice in Parkinson’s disease

Another significant neurodegenerative disorder is Parkinson’s
disease, which is characterized by neural loss and gliosis in the
substantia nigra. In Hwang and Chun (2012), the first study
using licorice to treat Parkinson’s disease was conducted, in which
6hydroxydopamine (6OHDA)-induced neurotoxicity was used to
mimic PD-like dysfunction in dopaminergic neurons in vivo.
It was discovered that ISL, by mediating intracellular signals,
could significantly reduce ROS formation and inhibit the release
of apoptotic factors. ISL and liquiritigenin have been shown to
significantly reduce synuclein fibril deposition (the pathologic
hallmark of Parkinson’s disease) in neural tissues. Furthermore, ISL
has the potential to disaggregate previously formed deposits (Liao
et al., 2016).

The pathophysiology of Parkinson’s disease is linked to several
signaling axes that are involved in cell survival, protein aggregation,
inflammation, oxidative stress, apoptosis, mitochondrial damage,
and autophagy (Angelopoulou et al., 2019; Paudel et al., 2020). The
aggregation of -synuclein-containing Lewy bodies causes cognitive
and motor dysfunction (Angelopoulou et al., 2018; Kirkeby and
Barker, 2019). Furthermore, HMGB1 signaling appears to be
tightly linked with inflammatory response and degeneration in
Parkinson’s disease, as increased levels of HMGB1 have been
detected in PD patients (Yang et al., 2018; Baran et al., 2019).
Therefore, HMGB1 targeting has great potential as a treatment
for PD (Song et al., 2013; Wang et al., 2016). Lower levels
of HMGB1 and RAGE in the midbrains of MPTP-treated rats
were associated with this protective effect (Kong et al., 2017).
Increasing antioxidant protein levels and lowering MDA and
carbonyl production, another research found that GA and 18-
glycyrrhetinic acid (a metabolite of GA) prevented cell death
in differentiated PC12 cells treated with MPTP and 1-methyl-4-
phenylpyridinium (MPP+) (Kim and Lee, 2008). Furthermore, the
combination of GA and 18-glycyrrhetinic acid has been shown to
improve caspase 3 activity GA and 18-glycyrrhetinic acid was found
to inhibit mitochondrial permeability transition in MPP+-induced
neurotoxicity (Yim et al., 2007). GA has also been shown to have
neuroprotective effects in the rotenone-induced Parkinson’s disease
model by increasing intracellular glutathione levels, decreasing
MDA, increasing cellular antioxidant capacity, and decreasing pro-
inflammatory cytokine release (Ojha et al., 2016).

Rotenone induces Parkinson’s disease-associated cell cycle re-
entry-mediated G2/M arrest, mitochondria-related oxidative stress,
and triggering of the caspase-3 apoptotic pathway through MEK-
ERK-1/2 hyperactivation (Karthikkeyan et al., 2021). Glycyrrhiza
glabra L, when used in combination with other therapies, has been
shown to decrease cellular ROS and improve mitochondrial health
(Karthikkeyan et al., 2021). By downregulating the MEK-ERK-1/2
axis, it stops the cell cycle from restarting after a mitotic catastrophe
and stops caspase activation. Findings suggest that G. glabra L
protects cells against neurotoxic stress (Figure 3; Karthikkeyan
et al., 2021).

These results indicate that licorice and its compounds may
possess neuroprotective capabilities against Parkinson’s disease.
However, further study is required to determine the therapeutic
effectiveness and safety of different formulations.
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FIGURE 3

Mechanism of licorice’s neuroprotective action against rotenone-induced toxicity. Reproduction authorized. Elsevierl’ 2021 Elsevier B.V.
(Karthikkeyan et al., 2021).

6. Licorice in traumatic brain injury

Traumatic Brain Injury (TBI) is a brain injury caused by an
external mechanical force, such as a blow to the head (Webster et al.,
2017). There are two types of traumatic brain injury depending on
the underlying mechanism: closed and penetrating. The severity
of a traumatic brain injury is measured by structural damage
and the Glasgow coma scale (GCS) (Maas et al., 2008). TBI
encompasses both primary and secondary damage. The primary
damage consists of an external force disrupting the blood-brain
barrier (BBB), which is followed by an increase in inflammatory
markers, ROS formation, excitotoxicity, and neural cell death
(Woodcock and Morganti-Kossmann, 2013; Parker et al., 2017).
Intracranial pressure (ICP), seizures, infection, and hematomas are
all caused by the inflammatory response. The secondary injury
occurs next, which can be reversed to improve (Parker et al.,
2017). Untreated brain injuries can cause behavioral and cognitive
disruption, seizures, chronic encephalopathy, and Alzheimer’s
disease (Barman et al., 2016; Hay et al., 2016). Despite recent
advances in basic and clinical research, treatment options with
favorable outcomes following TBI remain limited (Hasanein,
2011). Though, numerous strategies have been proposed for TBI
treatment, with inflammation targeting by pharmaceutical agents
being a particularly prominent option (Kochanek et al., 2015).
Necrotic neurons release HMGB1 during TBI via an N-methyl
D-aspartate receptor subtype 2B (NR2B)-mediated mechanism
(Richard et al., 2017). When HMGB1 is produced, it binds to
TLR2, TLR4, and RAGE, initiating the HMGB1/TLR4/RAGE/NF-
B cascade, which leads to the release of inflammatory cytokines and
further aggregation of the secondary damage (Yang et al., 2005;
Gu et al., 2014). GA has been shown to have promising results
in animal models of TBI. For example, in the fluid percussion
injury (FPI)-induced model of TBI, GA could, in a concentration-
dependent manner, block the translocation of HMGB1 from the

nucleus to the cytosol and thus protect BBB permeability (Cai
et al., 2016). Furthermore, GA has been shown to improve cognitive
function and locomotor activity (Parker et al., 2017). Another pre-
clinical study found that GA treatment improved walking balance
while decreasing brain edema and apoptosis (Gu et al., 2014). GA
significantly lowered cytoplasmic expression of HMGB1 and the
number of TLR4 and RAGE positive cells. GA’s neuroprotective
benefits were ascribed mostly to its anti-inflammatory action
through HMGB1 inhibition (Figure 3).

The pre-treatment of C57Bl/6 mice with GA before the
imitation of TBI had a significant impact on the reduction of
HMGB1 levels in the brain. However, administering GA 1 h
after TBI did not produce the same results, whereas chronic
use of GA may improve memory and spatial learning. GA
administration in TBI-induced animals may also mediate the
polarization of microglia associated with secondary injury (Gao
et al., 2018). In a focal contusion animal model, GA has been
shown to reduce neurological function recovery, lesion volume,
and HMGB1 expression. Notably, GA inhibited post-TBI M1
phenotype activation, increased M2 phenotype activation, and
reduced TBI consequences, most likely by blocking an M1-like
pro-inflammatory phenotype in microglia and, in part, inhibiting
HMGB1 (Gao et al., 2018). These findings suggest that targeting
HMGB1 to mediate microglia polarization could be a promising
therapeutic option for TBI.

Glycyrrhizic acid treatment has also been shown to suppress
apoptosis, reduce axonal damage, inhibit the release of pro-
inflammatory cytokines, and improve cognitive impairments in
patients with diffuse axonal injury (Pang et al., 2016). As a result,
GA treatment may be an effective therapy for various brain injuries.
However, the precise underlying mechanisms of neuroprotection
must be determined (Figure 4).

The pre-treatment of C57Bl/6 mice with GA before the
imitation of TBI had a significant impact on the reduction of
HMGB1 levels in the brain. However, administering GA 1 h
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FIGURE 4

The function of glycyrrhizin in the inflammatory cascade of the neural system. Glycyrrhizin binds to HMGB1 and prevents HMGB1/RAGE and
HMGB1/TLR4 interaction. Therefore, NF-B signaling is suppressed and pro-inflammatory cytokines such as TNF-, IL-6, and IL-1 are reduced.
Furthermore, glycyrrhizin prevents nuclear translocation of HMGB1 to the cytoplasm and consequent extracellular release, thus also reducing
HMGB1’s extracellular pro-inflammatory actions. Tumor necrosis factor (TNF), receptor for advanced glycation end products (RAGE), interleukin (IL),
nuclear factor light chain enhancer of activated B cells (NF-B), toll-like receptor 4 (TLR4).

after TBI did not produce the same results, whereas chronic
use of GA may improve memory and spatial learning. GA
administration in TBI-induced animals may also mediate the
polarization of microglia associated with secondary injury (Gao
et al., 2018). In a focal contusion animal model, GA has been
shown to reduce neurological function recovery, lesion volume,
and HMGB1 expression. Notably, GA inhibited post-TBI M1
phenotype activation, increased M2 phenotype activation, and
reduced TBI consequences, most likely by blocking an M1-like
pro-inflammatory phenotype in microglia and, in part, inhibiting
HMGB1 (Gao et al., 2018). These findings suggest that targeting
HMGB1 to mediate microglia polarization could be a promising
therapeutic option for TBI.

Glycyrrhizic acid treatment has also been shown to suppress
apoptosis, reduce axonal damage, inhibit the release of pro-
inflammatory cytokines, and improve cognitive impairments in
patients with diffuse axonal injury (Pang et al., 2016). As a result,
GA treatment may be an effective therapy for various brain injuries.
However, the precise underlying mechanisms of neuroprotection
must be determined (Figure 5).

7. Possible toxicity of licorice

Some worries have been expressed concerning prolonged high-
dosage ingestion of licorice and its compounds, notwithstanding
the apparent therapeutic potential. A large amount of licorice
may have adverse consequences, and GA and GM are to blame.
Renal 11-hydroxysteroid dehydrogenase2, an enzyme involved in
the breakdown of cortisol, is inhibited by GA. Forbidden foods
may trigger hypermineralocorticoid states, which in turn can
lead to moderate hypertension because of elevated potassium and
sodium/water retention excretion. Safe human dosing ranges for
GA are between 0.015 and 0.229 mg/kg body weight per day
(Isbrucker and Burdock, 2006; Asl and Hosseinzadeh, 2008).

It should be noted that different licorice preparations
contain varying levels of GA and glycyrrhizin. As a result, the
precise concentration of the manufactured preparations should
be measured to adjust the dosage within safe limits. The
toxicological test results show that licorice has no carcinogenic
and/or teratogenic effect in vivo. In addition, therapeutic doses of
licorice are considered safe for humans based on toxicological assay
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FIGURE 5

The cellular processes behind the neuroprotective properties of
glycyrrhizin. Glycyrrhizin may enhance the integrity of the
blood-brain barrier by preventing astrogliosis, neuronal apoptosis,
microglia activation, oxidative-induced cellular damage, and
mitochondrial dysfunction. These methods enable glycyrrhizin to
boost anti-excitotoxicity (for epilepsy treatment), decreasing axonal
damage and brain edema (TBI improvement), cognitive and motor
function improving (AD and PD treatment), and reducing
demyelination (MS treatment). MS, multiple sclerosis; TBI, traumatic
brain injury; PD, Parkinson; AD, Alzheimer’s disease.

recommendations and without developmental or reproductive
harm (Cosmetic Ingredient Review Expert Panel, 2007). Doses of
900 mg whole extract three times per day for 1 week did not affect
human blood pressure or electrolyte hemostasis (Ravanfar et al.,
2016). For an additional 8 weeks, healthy volunteers were given 0,
1, 2, and 4 mg/kg/day doses of GA. A six-gr daily licorice intake
for a 60 kg individual was found to have no known side effects (van
Gelderen et al., 2000).

8. Future perspective

Currently the treatment of certain neural disorders is not
possible. For instance, medications for ischemic stroke should be
prescribed within a short duration after the ischemic attack. On
the other hand, current therapeutic option for specific molecular
targeting of neurodegenerative disorders are few and costly. Recent
studies have been devoted on enlightening novel pharmacologic
specifications of the well-known herbal remedy, licorice extract,
and its active constituents such as GA, GL, ISL, and glabridin. The
newly discovered neuroprotective effects of licorice has provided a
new shift in paradigm of neural disease treatment plausible for both
acute and chronic brain damages. The active substances of licorice
can effectively inhibit cytotoxic pathways in brain. Whole licorice
extract and/or purified ingredient can hamper the volume of
infarction after ischemic injuries in vivo. HMGB has been revealed
to be one of the major cellular pathways in the neuroprotective
effects of licorice. Combining separated phytochemical elements
from licorice and their biological significance in battling multiple
neurological disorders and their secondary metabolites may lead to
the creation of potential pharmacological formulations.

9. Conclusion

To summarize the present review, licorice extracts and
flavonoids have been employed to reduce neuro-inflammatory
processes after acute ischemia injury to brain cells, TBI, and
neurodegenerative diseases. Licorice is safe for human intake at
therapeutic doses that have been researched. These results can
lead to the discovery and manufacture of novel medications for
neurodegenerative illnesses and acute brain tissue injury. However,
further in vivo and clinical studies are needed to extrapolate their
action method into other neuro-therapeutic actions.
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