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Neurogenesis is a complex process by which neural progenitor cells

(NPCs)/neural stem cells (NSCs) proliferate and differentiate into new neurons

and other brain cells. In adulthood, the hippocampus is one of the areas with

more neurogenesis activity, which is involved in the modulation of both emotional

and cognitive hippocampal functions. This complex process is affected by many

intrinsic and extrinsic factors, including nutrition. In this regard, preclinical studies

performed in rats and mice demonstrate that high fats and/or sugars diets have

a negative effect on adult hippocampal neurogenesis (AHN). In contrast, diets

enriched with bioactive compounds, such as polyunsaturated fatty acids and

polyphenols, as well as intermittent fasting or caloric restriction, can induce

AHN. Interestingly, there is also growing evidence demonstrating that offspring

AHN can be affected by maternal nutrition in the perinatal period. Therefore,

nutritional interventions from early stages and throughout life are a promising

perspective to alleviate neurodegenerative diseases by stimulating neurogenesis.

The underlying mechanisms by which nutrients and dietary factors affect AHN

are still being studied. Interestingly, recent evidence suggests that additional

peripheral mediators may be involved. In this sense, the microbiota-gut-brain axis

mediates bidirectional communication between the gut and the brain and could

act as a link between nutritional factors and AHN. The aim of this mini-review

is to summarize, the most recent findings related to the influence of nutrition

and diet in the modulation of AHN. The importance of maternal nutrition in

the AHN of the offspring and the role of the microbiota-gut-brain axis in the

nutrition-neurogenesis relationship have also been included.
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1. Introduction

Hippocampus, a region extensively known to regulate learning,
memory, and mood can be found among the highly sensitive,
environment-responsive structures of the brain (Squire, 1992;
Clelland et al., 2009; Castilla-Ortega et al., 2011; Murphy et al.,
2014). The hippocampus is one of the main structures in the adult
brain where the formation of new-born neurons, or neurogenesis,
persists all lifelong (Eriksson et al., 1998). In this regard, the
birth and maturation of neurons in the dentate gyrus of the adult
hippocampus, known as adult hippocampal neurogenesis (AHN),
is one of the most studied neuroplastic phenomena. Research in
rodents supports a relevant role of AHN in the adaptation to
environmental demands. For example, AHN facilitates a variety
of cognitive functions including the long-term consolidation of
new hippocampal memories -as well as the forgetting of previously
acquired ones- and it is also involved in emotional regulation such
as in providing stress resilience [reviewed in Wu et al. (2021)].
Accordingly, manipulations of AHN have functional consequences
as they usually correlate with changes in memory and mood
(Castilla-Ortega et al., 2011; Yau et al., 2015).

The plasticity of these new hippocampal neurons is greater
than those of adult neurons. They exhibit a lower threshold for
induction of long-term potentiation (LTP), possibly because new
neurons can depolarize using currents of very small amplitude
(Wang et al., 2000; Schmidt-Hieber et al., 2004). In addition,
they are able to more rapidly form branches and synapses
(Gould and Gross, 2002), so the plasticity of these new neurons
is greater than those of more adult neurons. From 3-4 weeks
of age the new neurons show similar properties to the older
granular neurons that compose the cell layer of the dentate gyrus.
This plasticity and excitability exhibited by new hippocampal
neurons seem to contribute to explain the important role of the
NHA in hippocampal-dependent learning and memory, such as
spatial learning or complex associative learning (Leuner et al.,
2006; Kee et al., 2007; Koehl and Abrous, 2011). Therefore, the
processes of proliferation, survival, maturation, and functional
integration of the new hippocampal neurons critically depend on
intrinsic and extrinsic factors. Thus, aging, neuroinflammation,
oxidative stress and brain injury, as well as exposure to drugs
of abuse such as alcohol and opiates, negatively affect adult
neurogenesis [as reviewed in Poulose et al. (2017)]. On the contrary,
voluntary running or enriched environment are associated with
enhanced AHN and with improvement of learning and memory
(Fabel et al., 2009; Zainuddin and Thuret, 2012; Poulose et al.,
2017; Kempermann, 2019). At the molecular level, modulation
of AHN is mediated trough several signaling factors, including
neurotrophic factors, transcriptional programs, inflammatory
cytokines, neurotransmitters and hormones (Shohayeb et al., 2018),
that are triggered by environmental demands. Many neurotrophic
factors stimulate the activation of tropomyosin-related kinase (Trk)
receptors, in turn activating intracellular signaling cascades that
regulate NSC proliferation and fate. The role of neurotrophins
and, in particular, of brain-derived neurotrophic factor (BDNF)
in adult neurogenesis has been the subject of numerous studies;
thus, BDNF-TrkB signaling positively regulates AHN and its
dysregulation is associated with psychiatric and neurodegenerative
disorders (Reichardt, 2006; Shohayeb et al., 2018).

Along with all these factors, over the last years emerged studies
linking nutrition to AHN and mental health. Current literature
suggests that dietary modifications can influence learning and
memory as well as cognition and mood; so nutritional changes
may be an inexpensive and relevant adjuvant intervention to boost
mental and brain function (Zainuddin and Thuret, 2012; Murphy
et al., 2014). Since neurogenesis can potentially regulate brain
cognition and neuronal plasticity, nutritional factors that enhance
neurogenesis may be attractive therapeutic targets for improving
cognitive function and regulating different neurodegenerative and
neuropsychiatric disorders [reviewed in Lim et al. (2021)].

In this mini-review, we summarize the existing scientific
literature on the influence of nutrition and diet on AHN (Figure 1),
as a possible mechanism by which nutrition impacts on cognition
and mental health. It is important to consider that, while studies
in humans have demonstrated that certain nutrients and diets
modulate cognition and behavior, researching AHN in human
samples is elusive due to current methodological limitations
(Moreno-Jiménez et al., 2021). Therefore, the evidence linking
nutrition and AHN that composes this review comes mainly from
preclinical studies performed in rats and mice.

2. Nutrition as a regulatory factor in
AHN

2.1. High-calorie diets and bioactive
compounds

Learning and memory, closely related to AHN, can be
influenced by diet during development and into adulthood; there
is an inverse correlation between the quality of the diet and the
disorders associated with these hippocampal abilities (Zainuddin
and Thuret, 2012; Murphy et al., 2014). In this context, high-
calorie diets (HCD), characterized in rodents by high levels of
saturated fats (40–60% fat) and/or refined sugars for at least
4 weeks, strongly impairs in a sex specific manner AHN decreasing
proliferating cells, differentiated neuroblasts/immature neurons
and mature neurons; and has been associated with disfunctions
in hippocampal-dependent memory and neuroinflammation, (Park
et al., 2010; van der Borght et al., 2011; Hsu et al., 2015; Pérez-Garciá
et al., 2016; Robison et al., 2020; Kim et al., 2021; Paulo et al., 2021;
Fierros-Campuzano et al., 2022). Most of these studies affirm that
the downregulation of the neurotrophin BDNF and its signaling
through cAMP response element-binding (CREB) and TrkB as the
main mechanism involved in HCD-induced AHN injury (Molteni
et al., 2002; Hwang et al., 2008; White et al., 2009; Kim et al., 2021;
Paulo et al., 2021). Other authors highlight the increase of serum
corticosterone, malondialdehyde (MDA) and tumor necrosis factor
alpha (TNFα) as responsible for this decrease in AHN induced by
HFD (Lindqvist et al., 2006; Park et al., 2010; van der Borght et al.,
2011).

Diets enriched with bioactive compounds, such as omega-3
fatty acids, vitamins and polyphenols (presents on blueberries,
olive oil, coffee, cocoa, tea and curcumin, among others) enhance
AHN (Sarubbo et al., 2018; Rajaram et al., 2019; Dias et al., 2021).
Omega-3 fatty acids (ω-3 FAs) -present in fish, vegetable oils,
nuts, flaxseed and leafy vegetables- can potentiate AHN through at
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FIGURE 1

Impact of nutrition on adult hippocampal neurogenesis.

least two distinct mechanisms; i.e., affecting the membrane fluidity
and improving the serotonin binding (a neurotransmitter that
stimulates neurogenesis) or by regulating neurotrophins levels like
BDNF (Wu et al., 2004; Beltz et al., 2007) since they are part of
the structural neuronal membranes. Additionally, ω-3 FAs improve
spatial learning abilities in mice, which is associated with enhanced
neurogenesis (Petursdottir et al., 2008; He et al., 2009; Valente et al.,
2009).

Folates—an important regulator of central nervous system
(CNS) development present in dark green leafy vegetables,
beans, peas and nuts- could plays a critical role in the
maintenance of AHN by its DNA methylation and epigenetic
functions (Kronenberg et al., 2008). Its deficiency diminishes the
concentration of neurotransmitters in the hippocampus, affecting
AHN (Kronenberg et al., 2008; Zhang et al., 2012). Another
vitamin, cobalamin—found in meat, fish, poultry, eggs and dairy
products- also plays an essential role in proper brain development
and function, impairing its lack of AHN due to its action on DNA
replication and methylation (Smith, 2016).

Polyphenols, the biggest group of phytochemicals found in
plant-based foods, are known for their biological antioxidative,
neuroprotective, and cognitive properties, considered as exogenous
molecules able to modulate adult neurogenesis (Valente et al.,
2009). Several studies suggest that polyphenols induce AHN
by increasing synaptic plasticity and promoting long-term
hippocampal potentiation (Xu et al., 2007; An et al., 2008; Valente
et al., 2009; Wang et al., 2011) as well as enhance learning and
memory (Van Praag et al., 2007; Duffy et al., 2008; Rendeiro et al.,
2012). Flavonoids-enriched diets, a class of polyphenol present
in plants and plant-based foods, demonstrated an increase in the
number of newly generated cells expressing the immature neuron

marker doublecortin and mature neuron markers (Valente et al.,
2009; Lee et al., 2010; Dias et al., 2012) and in the expression of
two essential factors closely related to hippocampal neurogenesis:
BDNF and the phosphorylated cyclic AMP-response element DNA-
binding protein (pCREB) (An et al., 2008; Zainuddin and Thuret,
2012; Tan et al., 2017).

All the aforementioned emphasizes the importance of
informing the population about the possible implications of HCD
on cognitive effects, promoting the consumption of diets rich
in bioactive compounds. In addition, it would be convenient to
encourage the study of new natural compounds that may increase
the AHN in humans, thus being able to improve memory and
learning in people with cognitive deficits.

There are few studies focused on describing sex differences in
relation to the influence of diet on AHN; however, there seems
to be a strong sexual dimorphism. Since the differences between
male and female physiologies are greatly influenced by hormonal
differences and these in turn influence adult neurogenesis, studies
are needed that relate sex hormone levels to nutrition and their
influence on AHN.

2.2. Role of the microbiota in the impact
of diet on AHN

Recently, gut microbiota has been revealed as a key factor
to regulate both AHN and signaling molecules relevant to
neuroplasticity that are altered by diet. There is a close bidirectional
communication between the brain and the gut through the
brain-gut-microbiota axis, formed by the central nervous system,
the hypothalamus-pituitary-adrenal axis, the endocrine-immune
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system, the autonomic nervous system, and the gut microbiota
(Carabotti et al., 2015; Cryan, 2018). Due to this two-way
communication, signaling from the gut can alter brain function
and vice versa. In this sense, a contribution of the intestinal
microbiota to neurogenesis has been demonstrated in recent
years. Probiotic administration can ameliorate hippocampal
neurogenesis decline (Corpuz et al., 2018). Diet supplementation
with Lactobacillus strains in an animal mouse model of accelerated
aging improves cognitive performance in some behavioral test.
Moreover, this supplementation in old female mice showed
augmented BDNF, CREB and p-CREB in the hippocampus
(Corpuz et al., 2018). Conversely, antibiotic administration
decreased hippocampal neurogenesis and induced changes in
the molecular signaling related to this process. For example,
animals exposed to antimicrobials show a general inflammatory
state (Guida et al., 2018), reduced hippocampal BDNF, increased
TrkB receptor expression, depressive-like behavior in male mice,
and impaired novel object recognition (hippocampus-dependent
memory) (Fröhlich et al., 2016; Guida et al., 2018). Nevertheless,
prebiotics and probiotics administration reversed the negative
influence of antibiotics in neurogenesis in female and male mice
(Möhle et al., 2016; Guida et al., 2018).

Several factors such as antibiotics, stress and diet can
alter the gut microbiota composition, changing AHN (Cryan,
2018; Ribeiro et al., 2020; Guzzetta et al., 2022). Regarding
diet, one study reported that mice on a HFD evidenced
significant changes in the gut microbiota composition, decreasing
principally bacteria of phylum Bacterioidetes, which are correlated
with lower neuroinflammation and higher BDNF levels and
memory performance (Jørgensen et al., 2014). Other authors
showed that a high-fat diet (choline-deficient diet) induced gut
dysbiosis, increasing the production of short-chain fatty acids
(propionate and butyrate) by gut microbiota. This change evocate
neuroinflammation, oxidative stress, synaptic loss, cell death in
different brain regions, and premature increased neurogenesis
(Ribeiro et al., 2020). Moreover, an obesogenic diet (high fat
and sucrose) showed altered hippocampus-dependent learning
measured by the Morris water maze test and alteration in the
gut microbial community in male mice (Sun et al., 2022). This
obesogenic diet also increased the expression of proinflammatory
cytokines that evocate neuroinflammation and altered AHN.
However, the polysaccharides administration with prebiotic
function could reverse the effect of this obesogenic diet, confirming
that the modulation of gut microbiota is a therapeutic target for
some neurodevelopmental disorders (Sun et al., 2022).

Altogether, these recent results demonstrate that microbial
signaling can control neurogenesis and synaptic plasticity.
Moreover, regulating the gut microbiota could be a therapeutic
target for many disorders that evocate changes in AHN, since the
modulation of the microbiome will regulate AHN. It is necessary
to explore in depth the effects of the administration of prebiotics,
probiotics and symbiotics on pathological conditions, in different
clinical and preclinical studies. This will corroborate the positive
effect of these food products, and the potential role of AHN
as a mediator of these effects. Specially, these treatments may
be relevant when there is the coexistence of other pathology
or environmental factor that increases the vulnerability to a
psychiatric disorder o neurodegenerative disease.

2.3. Caloric restriction and intermittent
fasting

Different preclinical models reported increased AHN in
intermittent fasting (IF) or caloric restriction (CR). Caloric
restriction models generally refer to a 30–40% decrease in daily
caloric intake whereas animal IF models are defined as ad libitum
feeding/no access 8 h/16 h or 12 h/12 h paradigms without
caloric restriction.

There is a strong consensus in that IF and CR promote AHN;
for example by increasing the number of immature neuroblasts
(Dias et al., 2021), increasing the survival of neuronal precursor
cells and their differentiation into mature neurons (Lee et al.,
2002; Levenson and Rich, 2007; Kaptan et al., 2015; Baik et al.,
2020); boost the number of shuttle shaped cells in the subgranular
zone, the cell density in CA3 and the number of neurons and
glia (Bondolfi et al., 2004; Liu et al., 2017; Mana et al., 2017; Cao
et al., 2022; Xu et al., 2022). Only one study evidenced a decreased
number of new hippocampal neurons in response to IF (Setel et al.,
2022).

Several authors suggest different mechanisms underlying IF-
and CR-induced AHN. Both paradigms have been related to an
overall increment of the expression of neurotrophins (Elesawy
et al., 2021), such as neurotrophin-3 (Park et al., 2008, 2013; Pani,
2015), ciliary neurotrophic factor (Park et al., 2008) and BDNF
(Park et al., 2008; Treccani et al., 2014; van Praag et al., 2014; Kaptan
et al., 2015; Kim et al., 2015; Morgan et al., 2017; Li et al., 2020;
Brocchi et al., 2022; Setel et al., 2022) especially in newly generated
neurons of the dentate gyrus (Lee et al., 2002; Elesawy et al.,
2021). Caloric restricted animals displayed increased expression of
genes of neuronal protection and differentiation, such as NeuroD1
(Brandhorst et al., 2015; Li et al., 2020), Notch (Baik et al., 2020),
Klotho (Dias et al., 2021), Egr1 (Hornsby et al., 2016).

Dietary restriction was also associated with epigenetic
changes. Animals exposed to CR displayed attenuation of
age-related CG/CH methylation and prevention of age-related
hypermethylation (Hadad et al., 2018) while IF stimulated the
inhibition of histone deacetylase (van Praag et al., 2014) and
simultaneously the deacetylation of genes delaying processes
of cellular aging (Landry and Huang, 2021). Additionally, CR
was associated with dampened expression of versican; an age-
related protein with an essential role in neuronal development,
maturation and survival (Setel et al., 2022). Animals who followed a
restricted diet presented an increase of microRNA MMV-MIR-713:
CR increases gene ontology of predicted microRNA targets of
generation of neurons, neuron differentiation, and development
(Cicekdal et al., 2022). CR also raised the expression of the
gene PARP, which is associated with DNA repair and chromatin
remodeling (Setel et al., 2022).

Several studies highlighted that IF and CR dependent
neurogenesis is linked with increased expression of hippocampal
NPY (Singh et al., 2015; Cao et al., 2022; Xu et al., 2022) and
depends on increased quantities of hippocampal acyl-ghrelin (Kim
et al., 2015; Hornsby et al., 2016) and ghrelin receptor (Hornsby
et al., 2016). Notably, IF and CR also induced a CREB-dependent
increase in SIRT1 and SIRT3 (Pani, 2015; Liu et al., 2019; Baik et al.,
2020; Landry and Huang, 2021). Little evidence also showed a role
for GSK3β (Li et al., 2020).
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CR activates gene Foxo3, which improves adult neurogenesis
through the reduction of neuroinflammation (Pani, 2015; Kim
et al., 2020). In this context, animals displayed a decrease of
proinflammatory hormones and cytokines (van Praag et al., 2014),
reduced activation of glia (Liu et al., 2017; Li et al., 2020) and
increased IFN-γ (promoting neural differentiation and neurite
outgrowth in neural adult stem cells) (Park and Lee, 2011).

Finally, IF and CR reduced hippocampal oxidative stress and
total protein oxidation content by increasing catalase reactivity and
superoxide dismutase activity (Singh et al., 2015; Ahn et al., 2019)
along with the expression of heat shock protein 70 and glucose-
related protein 78 (involved in oxidative stress protection) (Landry
and Huang, 2021).

To sum up, current literature demonstrates that both CR and IF
can promote AHN. Of course, this finding has pivotal importance
because of its high translational value in clinical practice: it could
be an intervention of simple implementation in clinical protocols
and has little to none adverse effects. However, further studies
aimed to discover the exact mechanisms by which CR and IF
promote AHN and what mediators/pathways are directly involved
are needed. Moreover, most of the studies were done in healthy
adult male subjects: more research is needed to underline the role of
CR and IF in AHN in models of neurodegenerative pathologies (i.e.,
Alzheimer’s disease), in females (to evaluate the effect of gender)
and at different age points (childhood, adolescence, elderly) and in
female individuals.

3. Effect of maternal diet on
offspring AHN

The perinatal environment, from pre-conception to lactation,
is especially vulnerable to adverse conditions such as malnutrition
or overnutrition, being able to permanently alter brain structure
and function in the offspring. Thus, nutritional programming is
partly responsible for cognition-related diseases in the offspring,
even though clinical signs may only first arise in adulthood
(Murray et al., 1991; Bolton and Bilbo, 2014; Rivera et al.,
2020).

Adult hippocampal neurogenesis is sensitive to diet-related
damage from direct consumption as we mentioned above (section
2.1) or from maternal exposure (Niculescu and Lupu, 2009;
Mendes-da-Silva et al., 2014; Poulose et al., 2017). Maternal
overfeeding during pregnancy and/or lactation greatly impacts
adult neurogenesis in offspring (Niculescu and Lupu, 2009; Tozuka
et al., 2009; Lépinay et al., 2015; Xavier et al., 2021). In this
sense, consumption of a HFD during pregnancy leads to long-
term effects in the central nervous system of the offspring,
affecting neurogenesis-related pathways (Mash1 and BDNF) which
correlated with the development of anhedonic-like behavior in the
adulthood (Curi et al., 2021). Furthermore, perinatal exposure to
HFD sensitizes the offspring to the adverse effects of postnatal high-
fat intake on hippocampal function. This sensitization decreases
AHN and reduces the expression of genes involved in hippocampal
plasticity (Lépinay et al., 2015). Interestingly, it has been shown that
the metabolic stress caused by the maternal consumption of HFD
has a persistent influence, exerting multigenerational effects (up to
the second and third generations) in the adult neurogenesis of their

descendants; through an epigenetic disorder of pro-neurogenic
genes in neural stem/progenitor cells (NSPC) (Natale et al., 2022).

Maternal consumption of a high-fructose diet during
pregnancy and lactation decreased BDNF and suppressed
hippocampal expression of Ki67 and DCX. These markers are
related to NSPC division and neuronal differentiation; impairing
hippocampal learning and memory in adult female offspring
(Wu et al., 2016; Liu et al., 2020). These findings add to evidence
suggesting that increased nuclear histone deacetylase 4 (HDAC4)
activity induced by high-fructose maternal diets suppresses
hippocampal neurogenesis in adult offspring.

Interestingly, few studies describe the impact of perinatal
caloric restriction on offspring neurogenesis. Cell proliferation in
the DG was significantly reduced in the offspring of mothers with
50% caloric restriction during pregnancy and/or lactation (Matos
et al., 2011). Another study establishes an indirect relationship,
demonstrating that the total and specific expression of the Igf2
allele (which regulates development, memory, and AHN) of the
hippocampus is affected by maternal and grandmaternal moderate
caloric restriction in a sex-specific manner (Harper et al., 2014).

In relation to this, prenatal protein restriction (8% protein diet
during gestation and lactation) also reduces neuronal proliferation
and BDNF expression in adult offspring, and is also associated with
problems with memory encoding and consolidation (Pérez-Garciá
et al., 2016).

It is well known that there are beneficial bioactive compounds
during pregnancy and lactation for both the mother and the
developing fetus; thus, many nutrients such as iron, zinc, selenium,
iodine, folic acid, vitamin A, vitamin B6, vitamin B12 and
choline are essential for neurodevelopment. Interestingly, some
studies indicate that some of these compounds also improve the
neurogenesis of offspring in adulthood; for example, prenatal
iron deficiency results in long-term memory deficits (Lucassen
et al., 2013); postnatal zinc supplementation improves cognitive
impairment induced by zinc deficiency in early life, associated with
abnormal expression of genes involved in DNA methylation and
neurogenesis (Jiang et al., 2022).

Thus, maternal choline supplementation has been shown to
improve cognitive function by increasing AHN in the offspring
in both normal animals and animal models of neuropathologies
such as Down syndrome and Alzheimer’s disease (Glenn et al.,
2007; Cheng et al., 2008; Wong-Goodrich et al., 2008; Moon
et al., 2010; Velazquez et al., 2013). Maternal supplementation with
nicotinamide riboside (RN) during lactation also increase AHN
in the offspring in rodents, which may be responsible for the
neurobehavioral improvement, through enhanced nicotinamide
adenine dinucleotide (NAD+) metabolism (Ear et al., 2019; Yang
and Wan, 2019).

Maternal folic acid supplementation also promotes
hippocampal neurogenesis and improves learning and memory
in offspring, implicating mechanisms associated with DNA
methylation in glucocorticoid receptor promoters and activation
of BDNF/AKT/ERK1/2 signaling (Yang et al., 2019).

Preclinical studies have improved the understanding of the
underlying mechanisms linking maternal intake and offspring
neurodevelopment. In this sense, and in relation to what was
previously described in section 2.2, the microbiota-gut-brain axis
acts as a fundamental regulator of neurodevelopment (Dinan
and Cryan, 2017; Ratsika et al., 2021). Maternal diet affects
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the composition of the maternal and neonatal gut microbiome
in rodents, associated with abnormalities in brain function and
behavior of the offspring (Paul et al., 2016; Vuong et al., 2020).
Intake of a probiotic supplement during pregnancy and lactation
has a long-lasting influence on behavior and neuroplasticity,
mitigating anxiety-like behavior associated with maternal obesity
(prolonged high-fat diet) in adult offspring. These improvements
are associated with an increase in the expression of BDNF and
other genes related to plasticity in adulthood of the offspring
(Radford-Smith et al., 2022).

The findings summarized here confirm the importance of
nutrition in neuronal plasticity from the perinatal stage. The
mental health of an individual depends not only on himself but
also in part on his progeny. However, this knowledge is not
yet entrenched in society as there is still no great evidence at
the clinical level. Thus, more studies in humans where maternal,
and probably paternal, nutritional states are correlated with long-
term cognitive alterations in offspring are necessaries. Those data
has been difficult to collect up to now due to the absence of
computerized records of the perinatal stage. Another limitation at
the clinical level compared to animal models is the difficulty of
studying AHN directly. For this reason, the gut-brain connection
through the study of the microbiota opens an interesting topic
of study, not only in adult individuals but also from their
gestation. The analysis of the microbiota in relation to nutrition
and its correlation with genes related to neuronal plasticity and
plasmatic neurogenic markers will provide great information on
the mechanisms involved in neuroplasticity and will open both
preventive and therapeutic action pathways against cognitive
disorders and neurodegenerative diseases.

4. Conclusion

The current literature provides solid evidence about the
fundamental role of dietary factors in hippocampal plasticity.
Malnutrition from the fetal stage and/or throughout life
contributes to the acceleration of age-related deterioration,
positioning diet as an important factor in the risk, progression,
and severity of the mental diseases. It can be concluded that an
adequate dietary intake from the perinatal stage to adulthood,
considering quantity, frequency and content of food or bioactive
compounds, should be considered and promoted as a public
health initiative for the prevention and improvement of
neuropsychiatric disorders.

Modulation of AHN by diet could emerge as a possible
mechanism by which nutrition impacts on mental health. Despite
the knowledge of the large implication of factors such as BDNF,
and the promising role of factors such as gut microbiota, further
investigation of the mechanisms by which prenatal and early
postnatal life nutritional factors influence AHN -and consequently
cognitive function- would contribute to understanding this
relationship and would have important implications for dietary
modification of brain’s response to injury and disease. Nevertheless,
research on AHN in humans is still at an early stage and more
translational research is needed to confirm a functional role of AHN
in the human brain as well as its modulation by diet.

Most of the studies reviewed here do not contemplate
the possible differentiating effect of diet on the AHN of male
and female animals. In general, studies based on nutritional
programming on offspring AHN include both male and
female offspring, but even so, some of them do not focus on
possible sexual dimorphism. However, studies on the nutrition-
AHN relationship that include male and female animals
show sex-specific dietary effects, with females generally being
more susceptible.
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