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Introduction: In the clinical setting, it becomes increasingly important to detect

epileptic seizures automatically since it could significantly reduce the burden for

the care of patients su�ering from intractable epilepsy. Electroencephalography

(EEG) signals record the brain’s electrical activity and contain rich information

about brain dysfunction. As a non-invasive and inexpensive tool for detecting

epileptic seizures, visual evaluation of EEG recordings is labor-intensive and

subjective and requires significant improvement.

Methods: This study aims to develop a new approach to recognize seizures

automatically using EEG recordings. During feature extraction of EEG input from

raw data, we construct a new deep neural network (DNN) model. Deep feature

maps derived from layers placed hierarchically in a convolution neural network

are put into di�erent kinds of shallow classifiers to detect the anomaly. Feature

maps are reduced in dimensionality using Principal Component Analysis (PCA).

Results: By analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy,

we conclude that our proposed method is both e�ective and robust. These

datasets vary significantly in the acquisition of data, the formulation of clinical

protocols, and the storage of digital information, making processing and analysis

challenging.On both datasets, extensive experiments are performedusing a cross-

validation by 10 folds strategy to demonstrate approximately 100% accuracy for

binary and multi-category classification.

Discussion: In addition to demonstrating that our methodology outperforms

other up-to-date approaches, the results of this study also suggest that it can be

applied in clinical practice as well.

KEYWORDS

electroencephalogram (EEG), epileptic seizure detection, deep features, shallow

classifiers, deep neural network (DNN), convolution neural network

1. Introduction

Epileptic seizures are brain’s electrical activities that occurs suddenly and unexpectedly

(Arab et al., 2010). It affects the daily life of more than 50 million individuals in

the world due to the brain dysfunction (Solaija et al., 2018). The recurrent epileptic

seizure usually occurs without any obvious external symptoms (Zhou et al., 2020).

Currently, using metal electrodes fixed to the brain scalp in a standard configuration,

electroencephalogram (EEG) signals record neural activity. Physiologically, they offer

deep insight into the brain’s state and can be used to detect seizure onsets non-

invasively and economically. Traditionally, clinical diagnosis relies on the visual

screening and inspection of pronged EEG recordings by board-certified physicians,

which is cumbersome, subjective and error-prone (Martis et al., 2015). A reliable,
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efficient, and accurate EEG analysis and classification system is

therefore urgently needed to detect seizures in a timely manner.

To handle this problem, different tools have been developed and

applied rapidly in recent years, including signal processing and

artificial intelligence (Gupta et al., 2018; Li et al., 2019; Subasi et al.,

2019; Shoeibi et al., 2021; Tuncer et al., 2021a).

Detection of seizures using EEG generally involves two

phases: separating features and classifying them. In the first

phase, numerous features generated from four domains,

including time, frequency, time-frequency, and non-linear,

are incorporated. To analyse time-domain characteristics,

morphological parameters, including duration, amplitude,

kurtosis, and peak are representative (Wang et al., 2020). There

is widespread use of fast Fourier transform (Li and Chen, 2021),

as well as power spectral density in frequency domain analysis,

provided the EEG signal is static (Al Ghayab et al., 2018). The EEG

signal, however, does not display stationarity. Hence, methods

of time-frequency domain analysis are usually used for the

analysis o time-varying properties of the EEG signal (Sharma

et al., 2020), such as time-frequency distribution (Wu et al.,

2021) and wavelet transform (Tuncer et al., 2021b). In wavelet

transforms, relative frequency information, which is present at

low frequencies as well as relative time information, is captured

at high frequencies via multiresolution analysis (Sharmila and

Geethanjali, 2019). In addition to the wavelet transform, other

variations have been proposed, such as the empirical wavelet

transform, wavelet packet transform, and wavelet packet entropy.

Another popular approach to extracting features is the empirical

mode decomposition (EMD) in combination with its variants

(Li et al., 2021). Intrinsic mode functions (IMFs) are created

when the EEG signal is broken into subsignals. Nonetheless,

EMD cannot handle multi-channel signals. Cura and Akan (2021)

proposed a single- and multi-channel EEG-based dynamic pattern

decomposition (DMD) method to analyze epileptic signals. They

extracted high-order spectral moments and subband powers to

detect seizure. In non-linear domain, complexity metrics are

proposed to depict chaotic properties of the EEG signal, like

Hurst exponent, Lyapunov exponent, and various entropies. Other

kinds of non-linear metrics, such as Lempel-Ziv complexity,

have also been widely used. Rout et al. (2021) used variational

mode decomposition (VMD) to identify three band-limited

eigenmode functions (BLIMFs) in EEG raw data. In order to

derive information-rich spectral and temporal features from

BLIMFs, the Hilbert Transform was applied. In addition, the most

discriminatory compressed form of privileged information was

analyzed based on approximate entropy (ApEn). Anuragi et al.

(2022) employed EWT to break down the EEG recordings into

Fourier Bessel Series Expansion (FBSE) based subbands. These

subbands were then reconstructed as a three-dimensional (3D)

phase space representation (PSR). An Euclidean distance of the

3D PSR was used in order to calculate features like line length, log

energy entropy, and norm energy entropy. Shankar et al. (2021)

used a recurrence plot (RP) technique to analyze brain rhythms

with two-dimensional images generated from the EEG signal,

which could preserve the non-linear characteristics of EEG. As an

additional assessment of image quality, RP entropy and root mean

square skewness were used along with RP image criteria.

In the second phase, a variety of machine learning algorithms

were proposed to extract EEG signal features, such as artificial

neural networks and logistic regression (Abbasi and Goldenholz,

2019; Beniczky et al., 2021). EEG signals during seizures were

differentiated using DWT and arithmetic coding by Amin et al.

(2020). Various classifiers were then used to detect seizure activity,

including Naïve Bayes (NB), multi-layer perceptron (MLP), k

nearest neighbors (KNN), and support vector machine (SVM).

Anter et al. (2022) utilize a NB based hybrid genetic whale

optimization algorithm for feature selection. Afterwards, the ictal

and non-ictal EEG signals were classified using an adaptive ELM

based on a differential evolution algorithm. To separate EEG signals

into distinct bands, Shoeibi et al. (2022) used TQWT. Then, 13

different types of fuzzy entropies were calculated as features from

different subbands. Afterwards, EEG recordings were separated

using an adaptive neuro-fuzzy inference system.

Due to rapid development in deep learning (DL) over the

past few years, several emerging algorithms have been utilized

to handle seizure detection problems. While building a multi-

layer neural network, DL approaches can minimize the impact of

irrelevant features and alleviate computation costs. Acharya et al.

(2018) developed a multi-layer deep convolutional neural network

(CNN) to determine whether a patient was in a normal, preictal,

or seizure state. At present, the generalization and classification

abilities of existing DL models may be limited by the use of inter-

layer static connection weights. To overcome such problems, A

new network architecture called Variable Weight Convolutional

Neural Networks (VWCNN) was proposed by Jia et al. (2022).

In its convolutional and fully-connected layers, dynamic weights

were used instead of static weights to adapt to different EEG

characteristics. This model could handle a variety of situations.

Sahani et al. (2021) used modified particle swarm optimization

based on log energy entropy maxima to calculate optimized values.

Then, epileptic seizures were detected using a combination of

multiple complex deep neural networks.

Among machine learning systems, representative features have

often been hand-designed and empirically chosen. Such systems

are more likely to produce false positives and are prone to

misdiagnosis. By contrast, DL automatically generates features

instead of using any hard-crafted features, and have the potential

to provide superior classification performance (Murat et al., 2021).

These techniques automate feature extraction and no manual

feature extraction is required due to the end-to-end structure of DL

models. In this work, we build an efficient and reliable deep neural

network (DNN) to recognize epilepsy, utilizing features from CNN

layers without any preprocessing of input EEG signals. This study

makes a major contribution to the identification of presence and

developing stages of seizure using information from deep feature

maps of CNN together with shallow classifiers. An effective way

for reduction of the dimensionality of deep feature maps is the

employment of Principal Component Analysis (PCA) (Jolliffe and

Cadima, 2016).

Throughout the article, the following structures are followed.

The proposed method is described in detail in Section 2, which

includes description of EEG data, extraction of deep feature,

and EEG classification for seizure detection. Section 3 designs

comprehensive experiments and provides corresponding results.
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FIGURE 1

An illustration of the proposed method for classifying EEG recordings with deep features and shallow classifiers for the detection of epileptic seizures

(binary and multi-class classification).

Section 4 presents a comprehensive discussion about the results and

contribution. Section 5 gives a brief conclusion.

2. Materials and methods

This section briefly introduces a method for distinguishing

normal and abnormal EEG signals with information extracted

through deep features for detecting epileptic seizures. It consists

of a feature extraction phase and a classification phase, which

includes several steps. Firstly, EEG recordings are subjected to

DNN-based feature extraction without any preprocessing, followed

by PCA reduction of feature dimension. Secondly, features are put

into five traditional machine learning classifiers to detect epileptic

seizures. It includes binary classification (seizure vs. seizure-free

or preictal vs. interictal) and multi-class classification (preictal vs.

interictal vs. ictal). A flowchart showing our method is available in

Figure 1.

2.1. EEG database

2.1.1. Dataset-1
A part of the experimental data for this study comes from the

Bonn dataset, which is publicly available (Andrzejak et al., 2001).

Each subset of the dataset contains 100 artifact-free, single-channel

intracranial EEG clips of 23.6 s each, labeled A, B, C, D, and E

(also Z, O, N, F, and S, accordingly). An amplifier system with

128 channels and a band-pass filter between 0.53 and 40 Hz was

used to record the EEG signals at 173.61 Hz. Therefore, each signal

contains 4,097 records, that is, each signal has a data length of

4,097. These data are demonstrated in Figure 2. Table 1 summarizes

details about this dataset.

2.1.2. Dataset-2
In Dateset-2, segmented EEG recordings were obtained from

10 epilepsy patients (Swami et al., 2016). With a GrassTelefactor

Comet AS40 amplifier system and a 200 Hz sampling rate, all EEG

recordings were acquired. The duration of each EEG recording is

approximately 5.12 s (1,024 samples). These data are demonstrated

in Figure 2. The scalp electrodes for EEG recordings were gold-

plated and adhered to the 10-20 standard in compliance with

the recording procedure. First, an EEG signal was filtered with

a bandpass filter having a cutoff frequency of 0.5 and 70 Hz.

Afterwards, It was divided by clinical experts into ictal (group

F), interictal (group G), and preictal (group H) phases. Table 2

summarizes details about this dataset.

2.2. Deep feature extraction

DL techniques learn a set of empirical features at multiple

abstraction levels, capable of learning complex functions through

input data independent of hand-crafted features. It undergoes a

learning process by progressively extracting multiple features from

low layers to high layers (Murat et al., 2021). Therefore, we use

the DNN-based model to automatically generate features. Figure 3

demonstrates this DNN-based model.

Our DNNmodel outputs feature maps after we have connected

the convolutional layer. PCA is used to remove useless features

and reduce redundancy, which can alleviate the computational

cost and enhance the performance and generalization. Figure 3

demonstrates the feature extraction steps and details.

Table 3 summarizes a detailed parameter representation of the

DNN model. We add a Batch Normalization (BatchNorm) layer

after each convolutional layer, with axis 2 and momentum 0.9 to

speed up training. An activation function for rectified linear unit

(ReLU) follows each BatchNorm layer. We use L2 regularization

to alleviate overfitting with a dropout of 0.4 upon reaching the
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FIGURE 2

Samples of Dataset-1 Bonn dataset and Dataset-2 EEG Epilepsy dataset. (A) Dataset-1 Bonn dataset A, B, C, D, and E. (B) Dataset-2 EEG Epilepsy

dataset F, G, and H.
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TABLE 1 Overview of Dataset-1.

Items Set A Set B Set C Set D Set E

Participants 5 healthy controls 5 healthy controls 5 epileptic patients 5 epileptic patients 5 epileptic patients

Electrode types Scalp Scalp Intracranial Intracranial Intracranial

Participants’ states Awake with opened eyes Awake with closed eyes Interictal Interical Ictal

Total number of epochs 100 100 100 100 100

Sampling rate (Hz) 173.61 173.61 173.61 173.61 173.61

Duration of each epoch (second) 23.6 23.6 23.6 23.6 23.6

TABLE 2 Overview of Dataset-2.

Items Set F Set G Set H

Participants 10 epilepsy patients 10 epilepsy patients 10 epilepsy patients

Electrode types Scalp Scalp Scalp

Participants’ states Ictal Interictal Preictal (normal)

Total number of epochs 50 50 50

Sampling rate (Hz) 200 200 200

Duration of each epoch (second) 5.12 5.12 5.12

FIGURE 3

Deep neural network model and feature extraction used in this study. Conv, convolution.

first fully connected layer. Aggregate data are used for subject-level

assessments. Our neural network weights are updated by using

the cross-entropy loss function and Adam optimization. There

are three settings: 0.0001, 50, and 300, which are the learning

rate, batch size, and epochs. A 0.001 learning rate is applied

to the data, a batch size of 50, and 300 epochs are used when
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TABLE 3 Model summary of DNN.

No Layer name Layer parameters Output shape Number of params

1 1D Convolution Filters = 32, kernel_size = 3, input_shape = (4097,1), stride = 1, padding = “valid” (4095,32) 128

2 BatchNorm Axis = 2, momentum = 0.9 (4095,32) 128

3 Activation ReLU (4095,32) 0

4 1D MaxPooling Pool_size = 2 stride = 2 padding = “valid” (2047,32) 0

5 1D Convolution Filters = 64, kernel_size = 5, stride = 1, padding = “valid” (2043,64) 10,304

6 BatchNorm Axis = 2, momentum = 0.9 (2043,64) 256

7 Activation ReLU (2043,64) 0

8 1D MaxPooling Pool_size = 4, stride = 4, padding = “valid” (510,64) 0

9 1D Convolution Filters = 128, kernel_size=13, stride = 1, padding = “valid” (498,128) 106,624

10 BatchNorm Axis = 2, momentum = 0.9 (498,128) 512

11 Activation ReLU (498,128) 0

12 1D MaxPooling Pool_size = 4, stride = 4, padding = “valid” (124,128) 0

13 1D Convolution Filters = 256, kernel_size = 17, stride = 1, padding = “valid” (108,256) 557,312

14 BatchNorm Axis = 2, momentum = 0.9 (108,256) 1,024

15 Activation ReLU (108,256) 0

16 1D MaxPooling Pool_size = 2, stride = 2, padding = “valid” (54,256) 0

17 1D Convolution Filters = 128, kernel_size = 9, stride = 1, padding = “valid” (46,128) 295,040

18 BatchNorm Axis = 2, momentum = 0.9 (46,128) 512

19 Activation ReLU (46,128) 0

20 1D MaxPooling Pool_size = 2, stride = 2, padding = “valid” (23,128) 0

21 Flatten - 2,944 0

22 Dense Unit = 64, activation = “ReLU”, kernel_regularizer = L2 (0.03) 64 188,480

23 Dropout Rate = 0.4 64 0

24 Dense Unit = 5, activation = “softmax” 5 325

training the model. A feature map sized 23 × 128 is exported

from the MaxPooling layer ahead of the flatten layer. We split

the eigenvectors into 128 small eigenvectors of shape size 23 ×
1. PCA is then used to perform dimensionality reduction on

each of the small eigenvectors, resulting in 128 eigenvectors of

shape size 1 × 1. These feature vectors are concatenated with

1 × 128 shape size and fed into shallow classifiers below for

classification.

2.3. Machine learning classifiers

For epileptic seizure detection, in addition to support vector

classifier (SVC) (Lau and Wu, 2003), several classical machine

learning classifiers are employed, including k-nearest neighbors

(KNN) (Kramer, 2013), gradient boosting (GB) (Natekin andKnoll,

2013), random forest (RF) (Lau and Scornet, 2016), Gaussian Naïve

Bayes (GNB) (Griffis et al., 2016), decision tree (DT) (Safavian and

Landgrebe, 1991), and multi-layer perception (MLP) (Murtagh,

1991). Shallow classifiers are still the classifier of choice despite

deep learning approaches becoming increasingly overwhelming. To

solve supervised classification problems, discriminant analysis is

utilized to reduce the distance between each class and increase the

variability between different classes (Ye et al., 2004; Murat et al.,

2021).

3. Results

We design comprehensive experiments on two databases and

illustrate the results of classifying EEG categories into binary

and multi-class. The DNN model is implemented in TensorFlow

backend using a 10-core Intel Core i9 CPU and RTX3090 GPU on

a high-performance computer.

Cross-validation using a K-fold (K = 10) method verifies the

effectiveness of the classification. Each iteration will use K− 1 folds

to train and the remaining folds to test. In addition to accuracy

(ACC), specificity (SPF), and sensitivity (SEN), we use another four

classic performance indicators: negative predictive value (NPV),

positive predictive value (PPV), F1 score, andMatthews correlation

coefficient (MCC). Here is the calculation: a True Positive is equal

to TP, a False Negative is equal to FN, a True Negative is equal to
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TABLE 4 Di�erent experimental cases for Bonn and EEG Epilepsy datasets.

Dataset Case Groups Description

Type 1 Type 2 Type 3 Type 4 Type 5

Bonn 1 A vs. E Normal (eyes open) Ictal - - -

2 B vs. E Normal (eyes closed) Ictal - - -

3 AB vs. E Normal Ictal - - -

4 C vs. E Interictal Ictal - - -

5 D vs. E Interictal Ictal - - -

6 CD vs. E Interictal Ictal - - -

7 A vs. D Normal Interictal - - -

8 ABCD vs. E Non-seizure Seizure - - -

9 AB vs. CDE Normal Epileptic - - -

10 A vs. C vs. E Normal Interitcal Ictal - -

11 AB vs. CD vs. E Normal Interitcal Ictal - -

12 A vs. B vs. C vs. D vs. E Normal (eyes open) Normal (eyes closed) Interictal Interictal Ictal

EEG Epilepsy I F vs. G Ictal Interictal -

II F vs. H Ictal Preictal -

III G vs. H Interictal Preictal -

IV F vs. GH Seizure Seizure-free -

V F vs. G vs. H Ictal Interictal Preictal

TN, and a False Positive is equal to FP. For larger MCC value, the

classifier performs better.

SEN =
TP

TP+ FN
× 100(%) (1)

SPF =
TN

TN+ FP
× 100(%) (2)

ACC =
TP+ TN

TP+ TN+ FN+ FP
× 100(%) (3)

PPV =
TP

TP+ FP
× 100(%) (4)

NPV =
TN

TN+ FN
× 100(%) (5)

MCC =
TP× TN− FN× FP

√
(TP+ FN)(TP+ FP)(TN+ FN)(TN+ FP)

× 100(%)

(6)

F1 score =
2× TP

2× TP+ FN+ FP
× 100(%) (7)

Table 4 shows the comprehensive experiments setting. Using

the Bonn and EEG Epilepsy datasets, twelve and five different

classification problems are proposed, respectively. They focus on

differentiating between preictal (normal), interictal, and ictal EEG

signals, including binary and multi-class classification.

Figures 4, 5 show the overall accuracy and loss curves for the

model trained on two datasets. It is obvious that after almost 300

epochs the network converges.

Tables 5, 6 illustrate the classification results for different cases

on two datasets, respectively. To further illustrate the performance

of each shallow classifier, Figures 6, 7 show the ROC curves and

associated AUC for 12 cases of the Bonn dataset and 5 cases of the

EEG epilepsy dataset. Our study demonstrates improved accuracy

in discriminating between preictal, interictal, and ictal EEG signals.

As a whole, the proposed method performs well and yields good

results, demonstrating that it can distinguish various classes of EEG

signals effectively.

4. Discussion

The seizure detection literature shows that several methods

are currently available to handle binary and multi-category

classification issues. Experimental results for 17 epilepsy detection

cases have been presented and discussed in detail. A comparison

of our algorithm with other up-to-date solutions is provided in

Table 7.

For Bonn dataset, the first three cases handle binary

classification. Regarding Case 1 (A-E), when using the EEG

spectrum as input, Cetin et al. (2015) calculated autoregressive

coefficients, which were then fed into back propagation (BP) and

Elman neural networks. A 98.3% accuracy rate was reported as the

best. Jiang et al. (2020) used a symplectic geometric decomposition

method to derive features from EEG signals and put them into an

SVM for EEG classification. It was reported that the accuracy was
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FIGURE 4

CNN model training on Bonn dataset: (A) accuracy curve, (B) loss

curve.

100%. In an attempt to find the optimal parameters of an SVM

to classify epileptic EEG, a mixture model was constructed using

genetic algorithms (GA), as well as particle swarm optimization

(PSO) by Subasi et al. (2019). A 99.38% accuracy rate was reported

as the best. Using New Weighted Complex Networks (NWCNs),

Supriya et al. (2021) extracted three features from EEG data:

Modular Gain (MG), Average Weighted Degree (AWD), and Edge

Weight Fluctuation (EWF). Three features’ separation performance

was examined using an SVM model with three different kernels.

They obtained 100% classification accuracy. Prabhakar and Lee

FIGURE 5

CNN model training on EEG Epilepsy dataset: (A) accuracy curve, (B)

loss curve.

(2022) employed K-singular value decomposition (K-SVD) to

derive sparse descriptions from EEG signals and extracted features

using self-organizing maps (SOMs). The data was then fed into

ELM, deep learning, and transfer learning models for classification,

with an accuracy rate of 98.35%. Unlike previous methods, ours is

100% accurate.

According to Swami et al. (2016), a dual-tree complex wavelet

transform (DT-CWT) was employed to divide EEG recordings

into multiple subbands on a six-level scale in Case 2 (B-E).

These subbands acted as features and classified EEG signals with

a general regressive neural network (GRNN). A 98.9% accuracy

rate was reported as the best. Ahmedt-Aristizabal et al. (2018)
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TABLE 5 The evaluation of the performance of the proposed approach using 10-fold cross-validation style on Bonn dataset with 12 cases.

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case 1 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.50 100 99.00 100 99.00 99.00 99.49

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 2 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 99.50 99.00 100 99.00 100 99.00 99.50

MLP 100 100 100 100 100 100 100

Case 3 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 4 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.50 100 99.00 100 99.00 99.00 99.49

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 5 SVC 99.50 100 99.00 100 99.00 99.00 99.49

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.00 100 98.00 100 98.03 98.01 98.98

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case 6 SVC 99.66 100 99.50 100 99.00 99.25 99.74

KNN 100 100 100 100 100 100 100

RF 99.66 99.00 100 99.50 100 99.25 99.75

GNB 99.33 99.00 99.50 99.50 99.00 98.49 99.50

GB 99.33 98.00 100 99.00 100 98.50 99.50

DT 99.33 99.00 99.50 99.50 99.00 98.49 99.50

MLP 100 100 100 100 100 100 100
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TABLE 5 (Continued)

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case 7 SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 99.50 99.00 100 99.00 100 99.00 99.50

DT 99.00 99.00 99.00 99.00 99.00 98.00 99.00

MLP 100 100 100 100 100 100 100

Case 8 SVC 99.80 100 99.75 100 99.00 99.37 99.87

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 99.80 100 99.75 100 99.00 99.37 99.87

GB 99.80 99.00 100 99.75 100 99.37 99.87

DT 99.80 100 99.75 100 99.00 99.37 99.87

MLP 99.80 100 99.75 100 99.00 99.37 99.87

Case 9 SVC 99.60 99.66 99.50 99.50 99.66 99.16 99.50

KNN 99.60 99.66 99.50 99.50 99.66 99.16 99.50

RF 99.80 99.66 100 99.50 100 99.58 99.75

GNB 99.60 100 99.00 100 99.33 99.16 99.49

GB 99.80 99.66 100 99.50 100 99.58 99.75

DT 99.20 99.00 99.50 98.51 99.66 98.33 99.00

MLP 99.60 99.66 99.50 99.50 99.66 99.16 99.50

Case 10 SVC 99.66 99.83 99.66 99.66 99.83 99.49 99.66

KNN 99.66 99.83 99.66 99.66 99.83 99.49 99.66

RF 100 100 100 100 100 100 100

GNB 99.33 99.66 99.33 99.33 99.66 98.99 99.33

GB 100 100 100 100 100 100 100

DT 99.00 99.50 99.00 99.00 99.50 98.49 99.00

MLP 99.66 99.83 99.66 99.66 99.83 99.49 99.66

Case 11 SVC 99.80 99.90 99.80 99.80 99.90 99.70 99.80

KNN 99.80 99.90 99.80 99.80 99.90 99.70 99.80

RF 99.60 99.80 99.60 99.60 99.80 99.40 99.60

GNB 99.20 99.60 99.20 99.20 99.60 98.80 99.20

GB 99.20 99.60 99.20 99.20 99.60 98.80 99.20

DT 99.00 99.50 99.00 99.00 99.50 98.50 99.00

MLP 99.80 99.90 99.80 99.80 99.90 99.70 99.80

Case 12 SVC 99.80 99.95 99.80 99.80 99.95 99.74 99.80

KNN 98.80 99.70 98.80 98.80 99.70 98.49 98.80

RF 98.80 99.70 98.80 98.80 99.70 98.49 98.80

GNB 93.60 98.40 93.60 93.60 98.40 91.99 93.60

GB 99.60 99.90 99.60 99.60 99.90 99.49 99.60

DT 97.60 99.40 97.60 97.60 99.40 96.99 97.60

MLP 99.80 99.95 99.80 99.80 99.95 99.74 99.80
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TABLE 6 An evaluation of the performance of the proposed approach using 10-fold cross-validation with 5 cases of EEG epilepsy dataset.

Case Classifier ACC (%) SPF (%) SEN (%) PPV (%) NPV (%) MCC (%) F1 (%)

Case I SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case II SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 100 100 100 100 100 100 100

MLP 100 100 100 100 100 100 100

Case III SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 96.00 92.00 100 92.59 100 92.29 96.15

DT 98.00 100 96.00 100 96.15 96.07 97.95

MLP 100 100 100 100 100 100 100

Case IV SVC 100 100 100 100 100 100 100

KNN 100 100 100 100 100 100 100

RF 100 100 100 100 100 100 100

GNB 100 100 100 100 100 100 100

GB 100 100 100 100 100 100 100

DT 99.33 100 98.00 100 99.00 98.50 98.98

MLP 100 100 100 100 100 100 100

Case V SVC 100 100 100 100 100 100 100

KNN 99.33 99.66 99.33 99.33 99.66 98.99 99.33

RF 98.66 99.33 98.66 98.66 99.33 97.99 98.66

GNB 99.33 99.66 99.33 99.33 99.66 98.99 99.33

GB 97.33 98.66 97.33 97.33 98.66 95.99 97.33

DT 96.66 98.33 96.66 96.66 98.33 94.99 96.66

MLP 99.33 99.66 99.33 99.33 99.66 98.99 99.33

achieved 94.75% accuracy by using a recurrent neural network

(RNN) embedded an LSTM network. Jiang et al. (2020), Supriya

et al. (2021), and Prabhakar and Lee (2022) also studied on

this classification issue and reported 99.33, 100, and 97.57%

accuracies, respectively. Our method, on the other hand, achieves

100% accuracy.

Regarding Case 3 (AB-E), EEG clips are divided into two types:

non-ictal and ictal. It was reported that Swami et al. (2016) had

an accuracy rate of 99.2%. Sharma et al. (2017) used analytic

time-frequency flexible wavelet transform (ATFFWT) and fractal

dimensions to export features and put them into a least squares

support vector machine (LS-SVM). Afterwards, a 100% accuracy

rate was reported as the best. Jiang et al. (2020) and Prabhakar

and Lee (2022) also studied on this classification issue and reported

100 and 97.84% accuracies, respectively. Our method, on the other

hand, achieves 100% accuracy.
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FIGURE 6 (Continued)
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FIGURE 6 (Continued)

Seizure detection ROC curves and AUC from Bonn dataset. (A) Case 1: A-E. (B) Case 2: B-E. (C) Case 3: AB-E. (D) Case 4: C-E. (E) Case 5: D-E. (F)

Case 6: CD-E. (G) Case 7: A-D. (H) Case 8: ABCD-E. (I) Case 9: AB-CDE. (J) Case 10: A-C-E. (K) Case 11: AB-CD-E. (L) Case 12: A-B-C-D-E.
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FIGURE 7

Seizure detection ROC curves and AUC from EEG Epilepsy dataset. (A) Case I: F-G. (B) Case II: F-H. (C) Case III: G-H. (D) Case IV: F-G. (E) Case V:

F-G-H.
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TABLE 7 Summary of literature comparison results (10-fold cross-validation style).

References Methodology Cases ACC (%) Our ACC (%)

Cetin et al. (2015) Autoregressive coefficients with BP + Elman neural networks A-E 98.3 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM A-E 100 100

Subasi et al. (2019) GA, PSO and SVM A-E 99.38 100

Supriya et al. (2021) MG, EWF and AWD + SVM A-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning A-E 98.35 100

Swami et al. (2016) DT-CWT + GRNN B-E 98.9 100

Ahmedt-Aristizabal et al. (2018) End-to-end data and RNNs + LSTM B-E 94.75 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM B-E 99.33 100

Supriya et al. (2021) MG, EWF and AWD + SVM B-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning B-E 97.57 100

Swami et al. (2016) DT-CWT + GRNN AB-E 99.2 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM AB-E 100 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-E 100 100

Prabhakar and Lee (2022) K-SVD, SOM + ELM, deep learning, transfer learning AB-E 97.84 100

Swami et al. (2016) DT-CWT + GRNN C-E 98.7 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM C-E 99 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier C-E 97.60 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM C-E 99.33 100

Supriya et al. (2021) MG, EWF and AWD + SVM C-E 100 100

Swami et al. (2016) DT-CWT + GRNN D-E 93.3 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM D-E 98.5 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier D-E 97.60 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM D-E 100 100

Supriya et al. (2021) MG, EWF and AWD + SVM D-E 100 100

Swami et al. (2016) DT-CWT + GRNN CD-E 95.2 100

Sharma et al. (2017) ATFFWT + fractal dimension + LS-SVM CD-E 98.67 100

Raghu et al. (2019) Matrix determinant feature + MLP classifier CD-E 96.85 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM CD-E 99.28 100

Gupta et al. (2018) DCT, Hurst exponent and ARMA + SVM A-D 98.4 100

Tuncer et al. (2019) Local senary pattern + SVM A-D 99.5 100

Hassan et al. (2020) CEEMDAN + Adaptive Boosting ABCD-E 99.2 100

Mursalin et al. (2017) ICFS + RF classifier ABCD-E 97.4 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM ABCD-E 99.97 100

Peng et al. (2021) Stein kernel-based SR AB-CDE 98.2 99.80

Acharya et al. (2018) 13-layer CNN without performing feature extraction and

selection

AB-CDE 88.7 99.80

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-CDE 99.17 99.80

Jaiswal and Banka (2017) LNDP and 1D-LGP + ANN A-C-E 98.22 100

Gupta and Banka (2019) WMRPE, rhythms of FBE + LS-SVM A-C-E 97.3 100

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM A-C-E 99.22 100

Zhang et al. (2021) FSWT-based subbands and CSoS, FuzzyEn, HFD, t-SNE +

KNN

A-C-E 99.69 100

(Continued)
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TABLE 7 (Continued)

References Methodology Cases ACC (%) Our ACC (%)

Bhardwaj et al. (2016) EMD + Constructive Genetic Programming AB-CD-E 98.33 99.80

Peker et al. (2015) DT-CWT + CVANN AB-CD-E 97.79 99.80

Raghu et al. (2019) Matrix determinant feature + MLP classifier AB-CD-E 96.5 99.80

Jiang et al. (2020) Symplectic geometry eigenvalues + SVM AB-CD-E 99.80 99.80

Zarei and Asl (2021) DWT and OMP + SVM AB-CD-E 99.33 99.80

Sharma et al. (2020) ToC + deep neural network A-B-C-D-E 97.2 99.80

Zahra et al. (2017) MVEMD + ANN A-B-C-D-E 87.2 99.80

Zhang et al. (2021) FSWT-based subbands and CSoS, FuzzyEn, HFD, t-SNE +

KNN

A-B-C-D-E 93.62 99.80

Zhou et al. (2020) SSA + SVM, ELM and ANN F-G 94 100

Peng et al. (2021) Stein kernel-based SR F-G 98.00 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-G 98.18 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-G 96.38 100

Tajmirriahi and Amini (2021) SDE + SVM F-G 99.1 100

Zhou et al. (2020) SSA + SVM, ELM and ANN F-H 95 100

Peng et al. (2021) Stein kernel-based SR F-H 99 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-H 100 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-H 100 100

Tajmirriahi and Amini (2021) SDE + SVM F-H 96.8 100

Zhou et al. (2020) SSA + SVM, ELM and ANN G-H 93 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM G-H 88.95 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM G-H 97.15 100

Tajmirriahi and Amini (2021) SDE + SVM G-H 91.5 100

Zhou et al. (2020) SSA + SVM, ELM and ANN F-GH 91 100

Peng et al. (2021) Stein kernel-based SR F-GH 97.5 100

Wang et al. (2021) TVAR-MWBF-UROFR + SVM F-GH 98.08 100

Peng et al. (2021) Stein kernel-based SR F-G-H 97.21 100

Sukriti et al. (2021) EMD-MSPCA, RCMSE, RCMFE, RCMPE + SVM F-G-H 93.49 100

Regarding Cases 4 through 6, EEG signals are divided into

interictal and ictal types (C-E, D-E, and CD-E). It was reported that

Swami et al. (2016) had 98.7, 93.3, and 95.2% accuracies. Sharma

et al. (2017) indicated 99, 98.5, and 98.67% accuracy rates. In Raghu

et al. (2019), descriptive and bivariate histogram analysis, and polar

histogram were used to provide matrix determinant features. The

effectiveness was verified on three cases, using the MLP classifier to

achieve accuracies of 97.60, 97.60, and 96.85%, respectively. Jiang

et al. (2020) also studied on these issues and reported accuracies

of 99.33, 100, and 99.28%, respectively. In contrast, our proposed

method achieves 100, 100, and 100% accuracies, respectively.

Case 7 (A-D) addresses the classification of normal vs.

interictal. Gupta et al. (2018) utilized discrete cosine transform

(DCT) to build a multirate filterbank structure, which decomposed

EEG signals into their respective brain rhythms. Then, the

Hurst exponent together with the autoregressive moving average

(ARMA) parameters were derived from the statistical results of

the brain rhythms as features. The SVM classifier reported an

accuracy of 98.4%. Using Local Military Patterns (LSPs), Tuncer

et al. (2019) extracted binary features through EEG signals. A

standard deviation based strategy was used to deal with threshold

value problems of ternary functions. Then, extracted features were

put into SVM for classification with an accuracy rate of 99.5%.

Unlike previous methods, ours is 100% accurate.

In Case 8, the EEG is classified as seizure or non-seizure

(ABCD-E). An objective method of identifying intrinsic modes

was proposed in Hassan et al. (2020) by using complete

ensemble empirical mode decomposition with adaptive noise

(CEEMDAN). Modeling these mode functions with normal inverse

Gaussian (NIG) parameters follows. They employed Adaptive

Boosting to classify EEG signals and reported 99.2% accuracy.

For feature derivation, Mursalin et al. (2017) examined an

improved correlation-based feature selection method (ICFS). A

97.4% accuracy rate was reported for an RF classifier. Jiang et al.
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(2020) also focused on this issue and a 99.97% accuracy rate was

reported as the best. Our method, on the other hand, achieves

100% accuracy.

Regarding Case 9 (AB-CDE), EEG signals are divided into

normal and epileptic types. In Peng et al. (2021), EEG signals were

classified in symmetric positive definite (SPD) matrix spaces by

using Stein kernel-based sparse representations (SR). They reported

accuracy rate of 98.20%. Acharya et al. (2018) developed a multiple-

layer CNN algorithm to avoid feature extraction and selection.

They reported 88.7% accuracy. Jiang et al. (2020) studied on this

classification issue with an accuracy of 99.17%. Unlike previous

methods, ours is 99.8% accurate.

In Cases 10 and 11, ternary classification is addressed by both

A-C-E and AB-CD-E. We report 100% and 99.80% classification

accuracies, respectively. To deal with Case 10, in Jaiswal and Banka

(2017), the Local Neighborhood Description Pattern (LNDP)

together with the 1D Local Gradient Pattern (1D-LGP) was

utilized to export features. An adaptive neural network (ANN)

was designed for classification, reporting 98.22% accuracy. Gupta

and Banka (2019) achieved feature extraction of rhythms based

on a combination of Weighted Multiscale Renyi Permutation

Entropy (WMRPE) and Fourier-Bessel Series Expansion (FBSE).

To classify these features, LS-SVM was used, and the best accuracy

rate was 97.3%. Zhang et al. (2021) proposed a fusion method for

feature extraction based on Frequency Sliced Wavelet Transform

(FSWT). Then, these feature were fed into a KNN classifier with

a classification accuracy of 99.69%. Regarding Case 11, according

to Bhardwaj et al. (2016), EEG recordings were split into multiple

IMFs, each with a set of bandwidth parameters extracted. They

constructed genetic programming for classification and a 98.33%

accuracy rate was reported as the best. Peker et al. (2015) used DT-

CWT to extract features from EEG signals. EEG data was classified

using a complex-valued adaptive neural network (CVANN) and

a 97.79% accuracy rate was reported. In Raghu et al. (2019), a

96.5% accuracy rate was reported as the best. Jiang et al. (2020)

studied on these classification issues with reported accuracies of

99.22 and 99.80%, respectively. Zarei and Asl (2021) exported

different coefficients from EEG signals using DWT and Orthogonal

Matching Pursuit (OMP) techniques. Then, some non-linear

features and several statistical features were computed using DWT

and OMP coefficients. They were put into an SVM classifier, which

reported 99.33% accuracy.

In Case 12, the EEG is separated into five categories (A-B-C-

D-E). Sharma et al. (2020) used third-order cumulants (ToC) to

export features from EEG recording and put them into deep neural

networks for classification, reporting 97.2% accuracy. In Zahra et al.

(2017), using the MVEMD algorithm, the EEG recordings were

decomposed into multiple intrinsic scales. An ANN model was

created to classify valid IMFs with a reported accuracy of 87.2%.

Zhang et al. (2021) reported 93.62% accuracy. In contrast, our

proposed method achieves 99.80% accuracy.

For EEG Epilepsy dataset, Cases I to IV deal with binary

classification. Zhou et al. (2020) decomposed the EEG recordings

into singular values using singular spectrum analysis (SSA). Then,

the log-normalized function values are calculated, forming the

eigenvector. They were fed into shallow classifiers, including SVM,

ELM, and ANN, to perform with the highest accuracy of 94,

95, 93, and 91% in the four cases. Wang et al. (2021) proposed

an autoregressive (AR) model based time-varying (TV) modeling

framework to describe EEG recordings. The multiwavelet basis

function expansion (MWBF) method was used to approximate

the TV parameters of the AR model (TVAR). Afterwards, the

resulting extended model was reduced and refined using the Ultra-

regularized Orthogonal Regression (UROFR) algorithm. The SVM

achieved the highest accuracies of 98.18, 100, 88.95, and 98.08%

for the four cases, respectively. Peng et al. (2021) also dealt with

Cases I, II and IV and reported accuracies of 98.00, 99, and 97.5%,

respectively. The EMD-MSPCAmethod, developed by Sukriti et al.

(2021), combined empirical mode decomposition with multiscale

PCA, to denoise EEG recordings. Following that, three complexity

measures were used as features. DT, LDA, SVM, and KNN shallow

classifiers were used for classification of Cases I, II, and III. The

documented accuracy for each is 96.38, 100, and 97.15%. Due

to its inherent self-similarity, Tajmirriahi and Amini (2021) used

stochastic differential equations (SDEs) to model EEG signals with

self-similar fractional Levy stabilization processes. They Fit the

probability distribution to the derived EEG signal histogram, and

extracted the parameters of the fitted histogram. A SVM classifier

was used to classify them, with 99.1, 96.8, and 91.5% accuracies for

cases I, II, and III, respectively. In contrast, our approach reports

100, 100, 100, and 100% accuracies for the four cases, respectively.

Case V address ternary classification. Peng et al. (2021)

and Sukriti et al. (2021) reported accuracies of 97.21 and

93.49%, respectively. We report the accuracy of 100%, which also

outperforms other approaches.

Unlike the aforementioned algorithms, this study designs an

DNN model to automatically extract deep features from layer

outputs during raining. Afterwards, extracted features are filtered

by PCA for dimensionality reduction and directly put into seven

shallow classifiers to classify EEG signals. The process is simple,

high efficient along with high accuracy. Table 7 illustrates the

comparison results on the classification performance between our

approaches and other approaches recently proposed. Our method

illustrates superior performance and has potential for serving as an

adjunct to fMRI in epilepsy diagnosis.

Our experimental results have indicated that the proposed

method is highly accurate in detecting epilepsy for binary,

three-class, and five-class classification problems, illustrating the

suitability of our scheme for solving problems involving multiple

classes. The clinical potential of automated analysis of epileptic

seizure activity is significant. Additionally, once high-performance

computers are utilized, its computational simplicity is enhanced,

allowing it to be deployed in clinical applications. As a result,

this new approach is better equipped to satisfy clinical demands

in terms of efficiency, functionality, universality, and simplicity,

while providing satisfactory accuracy. These traits make it an

appealing alternative option for clinical diagnosis. Real-time

seizure detection for smart healthcare and Internet of Medical

Things (IoMT) applications is a potential use case for the

proposed method.

5. Conclusion

This study uses different kinds of machine learning classifiers

to detect seizure with features derived from the max pooling
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layers of a DNN model. The suggested algorithm separates EEG

recordings into two, three and five classes. The results show that

performance of the advised classifier is promising for seizure

detection. This model may provide neurologists with additional

assistance when diagnosing epilepsy. The work in the future will

incorporate a number of handcrafted features (such as intrinsic

fuzzy entropy, Lyapunov exponent, and Lempel-Ziv complexity)

as well as deep features to design deep learning models and

compare them with current model performance. In conclusion,

the proposed protocol will speed up epilepsy diagnosis, assist

clinicians to implement clinical epilepsy monitoring devices with

less burden.
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