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Objective: Motor recovery is crucial in stroke rehabilitation, and acupuncture can 
influence recovery. Neuroimaging and machine learning approaches provide new 
research directions to explore the brain functional reorganization and acupuncture 
mechanisms after stroke. We applied machine learning to predict the classification 
of the minimal clinically important differences (MCID) for motor improvement 
and identify the neuroimaging features, in order to explore brain functional 
reorganization and acupuncture mechanisms for motor recovery after stroke.

Methods: In this study, 49 patients with unilateral motor pathway injury (basal 
ganglia and/or corona radiata) after ischemic stroke were included and evaluated 
the motor function by Fugl–Meyer Assessment scores (FMA) at baseline and at 
2-week follow-up sessions. Patients were divided by the difference between the 
twice FMA scores into one group showing minimal clinically important difference 
(MCID group, n = 28) and the other group with no minimal clinically important 
difference (N-MCID, n = 21). Machine learning was performed by PRoNTo software 
to predict the classification of the patients and identify the feature brain regions of 
interest (ROIs). In addition, a matched group of healthy controls (HC, n = 26) was 
enrolled. Patients and HC underwent magnetic resonance imaging examination 
in the resting state and in the acupuncture state (acupuncture at the Yanglingquan 
point on one side) to compare the differences in brain functional connectivity 
(FC) and acupuncture effects.

Results: Through machine learning, we  obtained a balance accuracy rate of 
75.51% and eight feature ROIs. Compared to HC, we found that the stroke patients 
with lower FC between these feature ROIs with other brain regions, while patients 
in the MCID group exhibited a wider range of lower FC. When acupuncture was 
applied to Yanglingquan (GB 34), the abnormal FC of patients was decreased, with 
different targets of effects in different groups.
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Conclusion: Feature ROIs identified by machine learning can predict the 
classification of stroke patients with different motor improvements, and the FC 
between these ROIs with other brain regions is decreased. Acupuncture can 
modulate the bilateral cerebral hemispheres to restore abnormal FC via different 
targets, thereby promoting motor recovery after stroke.

Clinical trial registration:  https://www.chictr.org.cn/showproj.html?proj=37359, 
ChiCTR1900022220.
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1. Introduction

Stroke is the third-leading cause of death and disability worldwide, 
with ischemic stroke accounting for 62.4% (Collaborators, 
G. B. D. Stroke, 2021). Motor impairment is one of the main disabilities 
associated with stroke, causing a substantial social and psychological 
burden, and the concern about motor function recovery after stroke 
is growing (Stinear et al., 2020). The Fugl–Meyer Upper and Lower 
Extremity scales are recommended to be used as primary indicators 
of motor deficits and outcomes in stroke populations (Bushnell et al., 
2015). A minimal clinically important difference (MCID) is the 
smallest improvement in an outcome measure that would be noticed 
as beneficial to a patient and be  of clinical relevance, which is 
important to patient-centered care and evidence-based research 
(Embry and Piccirillo, 2020). The MCID may also be  useful in 
advancing personalized medicine by characterizing those who are 
most likely to benefit from a treatment (Malec and Ketchum, 2020). 
Thus, the MCID for the Fugl–Meyer Assessment (FMA) is perceived 
as a meaningful recovery of motor function by post-stroke patients, 
deserving increasing interest and importance in medical practice 
and research.

Plasticity changes and functional reorganization occur 
spontaneously in post-stroke brains, and these alternations may 
contribute to the restoration of motor function following stroke 
(Murphy and Corbett, 2009; Wang et al., 2010; Dimyan and Cohen, 
2011). Recent developments in functional magnetic resonance 
imaging (fMRI) have enabled the visualization of functional 
abnormalities and reorganization between brain regions or networks 
(Cramer et al., 2011). Degree centrality (DC) is a voxel-based analysis 
that can identify neural hubs associated with functional reorganization, 
reflecting the centrality or functional importance of the voxel or brain 
regions in whole-brain networks (Zuo et al., 2012; Zhang et al., 2017). 
One study found that DC was correlated with motor recovery after 
cerebral infarction (Liu et al., 2019). Moreover, functional connectivity 
(FC) is a seed-based analysis that demonstrates the temporal 
correlation across regions of interest (ROIs) (Carter et al., 2010) and 
is commonly used in neuroimaging studies. The joint application of 
DC and FC can better identify functional hubs associated with motor 
recovery and reveal local and global neurological remodeling after 
stroke. Both the recovery of motor function and neurological 
remodeling after stroke are crucial for the patient’s rehabilitation and 

may help to explore potential neural biomarkers. Clinical assessment 
of motor impairment combined with neuroimaging biomarkers of 
motor function can help to predict both motor recovery and motor 
outcomes, and stratify patients in clinical trials after stroke (Stinear, 
2017). Thus, machine learning (ML) can help to implement and 
increasingly be  used for diagnosis, prognosis prediction, and 
biomarkers selection for diseases (Zeng et al., 2018; Tu et al., 2021; 
Lian et  al., 2022). Compared to a priori empirical or statistical 
comparisons, applying ML to select brain regions associated with 
motor recovery after stroke is more characteristic, personalized, 
and predictive.

Acupuncture is one of the traditional Chinese medical therapies 
that provides a positive effect in improving post-stroke symptoms 
and stroke rehabilitation (Wu et al., 2010). Studies have shown that 
acupuncture can improve motor dysfunction after stroke (Birch and 
Robinson, 2022) and has a certain safety profile (Zhang et al., 2005). 
However, the mechanisms of acupuncture remain elusive. 
Neuroimaging may be able to provide some evidence for the central 
nervous system effects of acupuncture in the treatment of stroke (Qi 
et al., 2014; Wu et al., 2016). Our previous studies have shown that 
acupuncture was able to modulate the disrupted patterns of the 
whole-brain network following the subcortical ischemic stroke 
(Han et al., 2020). Acupuncture triggered unique responses in the 
sensorimotor cortex in post-stroke hemiplegia patients, related to 
the neurological functional damage and the stage of stroke (Wang 
et al., 2022). Nowadays, ML studies of neuroimaging biomarkers 
exploration are increasing, especially in stroke recovery 
and acupuncture.

In the present study, we included stroke patients with impaired 
unilateral motor pathways, grouped them according to their MCID of 
the FMA over 2 weeks, and analyzed the DC of the whole brain. The 
L1-multi kernel learning machine (L1-MKL) in PRoNTo was used to 
select feature brain regions that could distinguish between these two 
groups of patients. Our primary aim of the present work was to search 
for differential ROIs between stroke patients with different 
manifestations of motor function recovery. Then we analyzed the FC 
between these selected ROIs and the whole brain, comparing 
abnormal functional connectivity between patients and healthy 
controls in the resting and acupuncture states. We hypothesized that 
(1) functional hubs with prediction-related features exist between 
patients with different motor recovery profiles, (2) these feature brain 
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regions have different responses to the whole brain after stroke, and 
(3) acupuncture has its unique neuroimaging mechanisms.

2. Materials and methods

2.1. Participants

The present study included 69 stroke hemiplegia patients due to 
unilateral motor pathway (basal ganglia and/or corona radiata) injury. 
Patients were evaluated for motor function on the day of enrolment 
and 2 weeks later, and grouped according to the changes in motor 
function. In addition, a total of 26 healthy subjects were recruited as 
healthy controls (HC). Participants were enrolled at Dongzhimen 
Hospital Affiliated to Beijing University of Chinese Medicine and 
received clinical routine treatment during the follow-up period. All 
participants underwent MRI scans on the day of enrollment. The 
study was approved by Dongzhimen Hospital Affiliated to Beijing 
University of Chinese Medicine Institutional Review Boards (NO: 
DZMEC-KY-2018-58). All participants provided written informed 
consent. Figure 1A shows the study protocol.

The included patients met the following criteria: (1) patients with 
cerebral infarction whose course of the disease is 3 months and 
conform to the diagnostic criteria of cerebral infarction; (2) right-
handed patients; (3) between 40 and 80 years of age, both men and 
women are eligible; (4) patients in whom the infarct was located in the 
unilateral basal ganglia and/or the radiation coronal region; (5) the 
patient with unconscious disorder and the condition is relatively 
stable; (6) The patient himself or his immediate family members sign 
the informed consent.

The exclusion criteria of patients were as following: (1) the patient 
had ever taken psychotropic drugs in the past months; (2) the patient 
being pregnant or lactation; (3) the patient had a history of neurologic 
or psychiatric disorders; (4) the patient had any other health problems 
or poor physical conditions that may influence participation; (5) the 
patient had any other brain structure damage or abnormalities identified 
by MRI examinations; (6) the patient had any history of alcohol or drug 
dependency; (7) the patient had any MRI contraindications.

The included healthy controls met the following criteria: (1) right-
handed people; (2) between 40 and 80 years of age, both men and 
women are eligible; (3) people proved to be healthy by a medical 
examination; (4) people signed the informed consent and volunteered 
to participate in the experiment.

The exclusion criteria of healthy controls were as following: (1) the 
person had ever taken psychotropic drugs in the past months or had a 
family genetic history of the mental and nervous system; (2) the person 
being pregnant or lactation; (3) the person had a history of neurologic 
or psychiatric disorders; (4) the person had any other health problems 
or poor physical conditions that may influence participation; (5) the 
person had any other brain structure damage or abnormalities identified 
by MRI examinations; (6) the person had any history of alcohol or drug 
dependency; (7) the person had any MRI contraindications; (8) the 
person was conducted to other similar research.

2.2. Clinical evaluation and grouping

We evaluated the motor impairment of patients by the Fugl–Meyer 
Assessment (FMA). FMA includes assessments of the upper extremity 

(FMA-UE) and lower extremity (FMA-LE) (Sullivan et al., 2011). Two 
professional neurologists evaluated their motor function at baseline and 
2-week follow-up. We grouped patients according to the changes of FMA 
scores (∆FMA = FMAfollow-up - FMAbaseline). We divided patients with an 
∆FMA-UE ≥ 5 or ∆FMA-LE ≥ 6 (Bushnell et al., 2015; Pandian et al., 
2016) into the MCID group (n = 28, 17 male), and those with an 
∆FMA-UE < 5 or ∆FMA-LE < 6 (Page et al., 2012) into the N-MCID 
(Non-MCID) group (n = 21, 15 male). To avoid the ceiling effects, patients 
with less severe motor impairment (FMA-UE > 61 or FMA-LE > 28) were 
not included in the analysis (Gladstone et al., 2002).

2.3. Image data acquisition

MRI data were acquired using a 3.0 Tesla Siemens scanner 
(MAGNETOM Verio Siemens Medical Systems, Erlangen, Germany) 
with a 32-channel head coil. For resting-state and acupuncture-state fMRI 
scans, participants were instructed to keep their eyes closed and stay 
awake without performing any cognitive tasks. The imaging parameters 
of the EPI sequence were as follows: repetition time (TR) = 2000 ms, echo 
time (TE) = 30 ms, slice number = 31, thickness = 3.5 mm, flip angle = 90°, 
and matrix size = 64 × 64. High-resolution structural images (T1) were 
acquired through a magnetization-prepared rapid acquisition with 
gradient-echo (MPRAGE) sequence with the following parameters: TR/
TE = 1900/2.53 ms, field of view (FOV) = 250 × 250 mm2, matrix 
size = 256 × 256, flip angle = 9°, slice number = 176, and slice 
thickness = 1 mm.

2.4. Details of acupuncture operations

The acupuncture operations were on the affected side in patients, 
or the left side in HC during the acupuncture state fMRI scans. The 
needles were disposable sterile silver needles (specification parameter: 
φ0.40 × 40 mm, purchased from Beijing Zhongyantaihe Medical 
Instrument Co., LTD., manufactured by Suzhou Shenlong Medical 
Instrument Co., LTD). Yanglingquan (GB 34) is located on the outside 
of the lower leg, in the middle of the concavity of the anterior and 
inferior parts of the fibula head. Acupoint selection is performed 
according to the National standard GB/T 12346–2006 Name and 
Location of Acupoints. The position of GB 34 is shown in 
Figure 1B. After the routine skin disinfection, the needle was vertically 
inserted for 1–1.5 Cun (about 15–25 mm depending on the height and 
weight of a participant) at GB 34. There was a 10 s post-onset phase of 
the resting state with the needle inserted, followed by a 1-min manual 
stimulation phase by using the mild reinforcing-reducing method at 
the frequency of 1 Hz. Then, an 8-min post-stimulation phase 
occurred with the needle remaining inside the leg. The needle was 
removed and disposed of after the acupuncture scanning.

2.5. Preprocessing of fMRI data

The structural and functional MRI images were preprocessed 
using Data Processing & Analysis for Brain Imaging (DPABI1) (Yan 

1 http://rfmri.org/DPABI
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et al., 2016), which is based on Statistical Parametric Mapping (SPM 
122). These toolboxes were based on Matlab 2017a (Mathworks, 
Sherborn, MA).

All images were flipped to constrain the lesion’s location to the 
right brain hemisphere (i.e., all patients’ lesions were constrained to 

2 http://www.fil.ion.ucl.ac.uk/spm

be on the positive MNI x-coordinates by simply inverting the signal 
of the voxels along the x-axis when the lesion was located on the 
left hemisphere).

2.5.1. Preprocessing of resting state fMRI data
The first 10 volumes of each participant were discarded as usual. 

Slice timing and head motion correction were conducted for the 
remaining time points. Participant data were excluded if they met the 
head motion criteria, which included head motion >3 mm translation 

Yanglingquan 
(GB 34) 

Res�ng-state
6min10s

Acupuncture-state
9min10s

T1
5min10s

6min10s 

5min10s 

8min 1min 

Needle 
insert

Manual 
s�mula�on Post-s�mula�on 

A

B C

FIGURE 1

Study design. (A) The flowchart of the study protocol. (B) The location of Yanglingquan (GB 34). (C) The scanning protocol. FMA-UE, Fugl–Meyer 
assessment upper extremity scores; FMA-LE, Fugl–Meyer assessment lower extremity scores; HC, healthy controls; MCID, minimal clinically important 
difference; N-MCID, non-minimal clinically important difference; DC, degree centrality; FC, functional connectivity; ROI, regions of interest; L1-MKL, 
L1-multi kernel learning machine; LOOCV, leave-one-out cross-validation.
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or a 3° rotation in any direction. In order to achieve better registration, 
functional and anatomical images were manually reoriented to the 
anterior commissure. A linear transformation was used to co-register 
anatomical images to the functional images for each subject. 
Subsequently, the transformed anatomical images were segmented into 
gray matter, white matter, and cerebrospinal fluid by using the new 
segmentation tool in SPM 12 (Ashburner and Friston, 2005). The 
transformation from individual space to Montreal Neurological 
Institute (MNI) space was computed and resampled at a resolution of 
3 mm × 3 mm × 3 mm voxels. Next, a Friston 24-parameter model was 
used to regress out the effects of head motion (Friston et al., 1996). 
Other nuisance variables, including white matter signal, cerebrospinal 
fluid signal, and global signal were regressed out from the time series 
of all voxels via linear regression. Then, the images were smoothed 
using a 6 mm full-width-at-half-maximum Gaussian kernel. After, a 
temporal filter (0.01–0.08 Hz) was applied to reduce physiological noise 
at other frequency bands. Finally, we manually checked each subject’s 
structural and functional images to promise the quality of data.

2.5.2. Preprocessing of acupuncture state fMRI 
data

The first 45 volumes of each participant were discarded (during 
this period of time, we inserted the needle and stimulated). The other 
steps of preprocessing were the same to resting state fMRI data, and 
we also checked the data manually.

2.6. Degree centrality measurement

Weighted DC measures were calculated using DPABI. To obtain 
each subject’s graph, we computed the Pearson correlation coefficients 
between any pairs of voxels. Each voxel acted as a node in the graph, 
and each significant Pearson correlation between any pair of voxels 
represented an edge. An n × n matrix of Pearson correlation 
coefficients between any pair of voxels was obtained for each subject 
by thresholding each correlation at r > 0.2 to eliminate possible 
spurious connectivity. Then, the weighted DC strength of a voxel was 
computed as the sum of the connectivity between a given brain voxel 
and all other voxels. Finally, the individual-level voxel-wise DC value 
for each subject was converted into a Z-score map by the Fisher-Z 
transformation to improve normality.

2.7. PRoNTo analyses

To classify two groups, we  used L1-MKL from the PRoNTo 
toolbox3 (Schrouff et al., 2013). Classification based on L1-MKL is 
viewed as a supervised learning algorithm because it facilitates 
learning a model from training data whose class label was previously 
defined and assigns class labels to test data. Support Vector Machines 
(SVM) transformed low dimensional data into a higher dimension 
and generated support vector classifiers that separated higher 
dimensional data into two groups via kernel functions (Lanckriet 
et al., 2004; You et al., 2021).

3 http://www.mlnl.cs.ucl.ac.uk/pronto/

2.7.1. Regions of interest-based machine kernel 
learning

Degree centrality maps were served as inputs to classify two 
groups in machine learning. The ROIs are defined on the basis of 
Craddock’s work, which generated an ROI atlas by parcellating whole 
brain resting-state fMRI data into spatially coherent regions of 
homogeneous FC (Craddock et al., 2012). For each participant, 200 
features were extracted from 200 ROIs as an machine kernel learning 
(MKL) source (ROI-MKL). Features were selected to form a kernel 
matrix through a multi-kernel strategy. A nested cross-validation 
(CV) scheme was used to obtain unbiased estimates of 
classification performance.

2.7.2. Performance evaluation of classification 
methods

Machine learning applications apply a leave-one-out cross-
validation (LOOCV) strategy with an optimized nested hyper-
parameter meter range of 2.^[−5:5] to evaluate the generalizability of 
classifiers (Wen et al., 2017). Overall classification accuracy, sensitivity 
(i.e., the proportion of MCID patients correctly classified), and 
specificity (i.e., the proportion of N-MCID patients correctly 
classified) can be defined from CV results quantifying the performance 
of classifiers. Value of ps were calculated using permutation tests 
(1,000 permutations).

2.7.3. Weights map
Next, anatomical atlas weights were computed to visualize the 

relative importance of each region in the multivariate pattern analysis 
decision function displaying regional patterns of the DC maps. The 
weight of each feature in ROIs can also be  obtained because the 
coefficient is learned as a single optimization problem in equations 
and weights relevant to each kernel. In this study, each kernel was 
known as an “ROI-weight” that reflected “voxel-weight.” Higher 
absolute indicator weight values discriminated corresponding features. 
Because there is no conventional threshold for the optimal number of 
ROIs to be retained, in this exploratory study we presented the ROIs 
that weight vector value more than 5%, called feature ROIs, number 
of eight.

2.8. Functional connectivity measurement

The voxel-wise functional connectivity analyses between each 
ROI (the feature ROIs) and each voxel in the brain areas were 
performed to generate seed-based FC maps at baseline and at 2 weeks 
after stroke. For group analyses, the correlation coefficients were 
transformed to Z values using Fisher’s Z-transformation to improve 
the normality of the correlation coefficient.

2.9. Statistical analysis

All data were analyzed using the statistical program SPSS 25.0 for 
intergroup comparisons of demographic data and FMA scores, and 
the Shapiro–Wilk test was used to verify the normality of the data. 
Subject characteristics were compared among three groups using 
ANOVA or the Mann–Whitney U test depending on their 
distributions, and two groups using a two-sample t-test or the 
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Mann–Whitney U test depending on their distributions. The 
proportions of sex and lesion side were examined using the chi-square 
test. p < 0.05 indicated statistical significance.

The statistical analysis was conducted by DPABI software. The 
mean framewise displacement (i.e., Mean FD_Jenkinson) was taken as 
the covariate to control the impact of unnecessary head motion in the 
statistical analysis. One-way ANOVA (p < 0.05, Bonferroni corrected) 
in the statistical analysis module of DPABI software was performed to 
compare variables among the three groups (HC, MCID, and N-MCID). 
A mask was built according to the results of ANOVA. Based on the 
mask, the inter-group differences were obtained by using the post hoc 
t-test. Two-tailed Gaussian random field (GRF) correction (voxel 
threshold of p < 0.01 and cluster threshold of p < 0.05) was performed 
during the two-sample t-test (the post hoc test).

3. Results

3.1. Demographic and clinical data

A total of 69 patients were registered for this study period. After 
excluding 7 patients with unavailable 2-week FMA scores, 12 patients 
with ceiling effects, and 1 patient with major structural brain 
abnormalities, 49 patients were finally included. The drop-out rate was 
10.14%. The included patients were divided into the MCID group 
(n = 28, 17 male) and the N-MCID group (n = 21, 15 male). There was 
no significant difference between the MCID and N-MCID in sex 
(χ2 = 0.608, p = 0.436), age (Z = −0.101, p = 0.919), lesion side 
(χ2 = 1.612, p = 0.204), course of disease (Z = −0.192, p = 0.848), and 
FMA scores at baseline. Table 1 and Supplementary Table S1 show the 
demographic and clinical information of both groups of patients. 
Figure 2 shows the distributions of motor function between the two 
groups of patients at baseline.

In the acupuncture state scanning, 7 patients failed to complete 
this fMRI state scanning and 2 patients were excluded for poor 
image quality. Finally, 26 patients in the MCID group, 15 patients 
in the N-MCID group, and 26 age (χ2 = 0.131, p = 0.937) and sex 
(χ2 = 1.363, p = 0.506) matched healthy controls (16 male) were 
included. Table 2 shows the demographic and clinical information 
of all the participants who completed the acupuncture-
state scanning.

3.2. Results of feature ROIs identified by 
machine learning classification

The ML analysis was able to classify the MCID and N-MCID 
groups with 75.51% balanced accuracy (BA, p = 0.018 during 1,000 
permutation testing), based on DC of whole brain functional 
regions maps. Specifically, class accuracy was 82.14% (23/28) for the 
MCID group and 66.67% (14/21) for the N-MCID group. In 
addition, the class predictive value was 76.67% for the MCID group 
and 73.68% for the N-MCID group. The AUC was 0.800. 
Figures  3A,B illustrate the performance of machine learning 
classification. The PRoNTo identified several functional regions 
with weights used by the decision function of the machine to 
predict group classification. Figure 3C shows the weight maps of all 
the regions with prediction weights.

We remained 8 feature ROIs with relatively high predictive 
weights for the group classification, including the bilateral 
supplementary motor areas (SMA), precentral gyrus (PreCG), 
postcentral gyrus (PoCG), paracentral lobule (PCL), etc.; the 
contralesional caudate nucleus (CAU), putamen (PUT), middle 
occipital gyrus (MOG), superior occipital gyrus (SOG), angular 
gyrus (ANG), etc.; and the ipsilesional dorsolateral superior frontal 
gyrus (SFG), inferior frontal gyrus (IFG), orbital gyrus, middle 
cingulate and paracingulate gyri (MCC), precuneus (PCUN), etc. 
Table  3 lists the regions with weights >5% and the intergroup 
comparisons of DC. Moreover, we compared DCs of these feature 
ROIs between groups. Compared to N-MCID, MCID exhibited 
significantly higher DC in ROI 1 (i.e., the left caudate nucleus and 
the left putamen, t = −2.016, p = 0.049) and ROI 2 (i.e., the right 
SMA and the right SFG, t = −3.042, p = 0.004), indicating that 
MCID had stronger nodal centralities in these brain regions. 
However, there were no significant differences between the other 
ROIs, indicating that group comparisons of DC cannot classify 
two groups.

3.3. Functional connectivity and 
acupuncture effects of feature ROIs

Eight feature ROIs were used as seed-points to analyze the FC 
with the whole brain and the immediate effects of acupuncture 

TABLE 1 Demographic and clinical data.

Characteristics Group

MCID (n = 28) N-MCID (n = 21) χ2/Z Value of p

Sex (male/female) 17/11 15/6 0.608 0.436a

Age (years) 62.00(57.00–67.75) 62.00(53.50–69.00) −0.101 0.919b

Lesion side (left/right) 13/15 6/15 1.612 0.204a

Course of disease (days) 18.50(9.50–30.75) 21.00(6.50–31.00) −0.192 0.848b

FMA-UE 22.00(7.00–54.75) 33.00(11.00–53.50) −0.354 0.723b

FMA-LE 27.00(21.00–32.00) 20.00(13.00–30.00) −1.600 0.110b

FMA-total 48.00(27.00–84.50) 55.00(25.00–79.50) −0.455 0.649b

The data are presented as the median (interquartile range) for non-normally distributed data. aThe value of p was obtained by a chi-square test; bThe value of p was obtained by a two-sample 
nonparametric test. MCID, minimal clinically important difference; N-MCID, non-minimal clinically important difference; FMA-UE, Fugl–Meyer assessment upper extremity scores; FMA-
LE, Fugl–Meyer assessment lower extremity scores; FMA-Total, Fugl–Meyer assessment total scores.
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among MCID, N-MCID, and HC. Table  4; Figure  4; 
Supplementary Figure S1 show the results of FC from ANOVA 
among three groups in the resting state and acupuncture state (GRF 
correction, voxel-p < 0.01, cluster-p < 0.05). In the resting state, the 
MCID group exhibited significantly lower FCs between almost all 
the ROIs (no significant difference in ROI 6) with other brain 
regions compared to HC (e.g., ROI 1 with the bilateral cerebellum, 
bilateral MCC, bilateral PCL, and right SMA), but higher FC only 
between ROI 8 (i.e., the right MCC, right precuneus, right PCL, and 
right SMA) with the left middle temporal gyrus (MTG) and left 
inferior temporal gyrus (ITG). Compared to HC, the N-MCID 

group similarly exhibited significantly lower FCs between the ROIs 
(i.e., ROI 1–3, ROI 5, and ROI 7–8) with other brain regions (e.g., 
ROI 2 with the bilateral anterior cingulate, left supramarginal gyrus, 
and left superior temporal gyrus), but higher FC between ROI 4 
(i.e., the left MOG, left SOG, and left ANG) with the bilateral 
posterior cingulate gyrus (PCC). The FC between ROI 5 (i.e., the 
right IFG opercular part, right PreCG, right middle frontal gyrus, 
and right IFG triangular part) with the left cerebellar, left lingual 
gyrus (LING), left inferior occipital (IOG), and left MOG were 
lower in the MCID group than in the N-MCID group. There were 
no significant differences in FC between the other ROIs in the 
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FIGURE 2

Fugl–Meyer assessment (FMA) scores at baseline for each group of stroke patients. (A) The median, upper and lower quartile distribution of FMA at 
baseline for each group. (B) The distribution of FMA-TOTAL for the two groups. (C) The distribution of FMA-UE for the two groups. (D) The distribution 
of FMA-LE for the two groups. (E) The distribution of FMA-Change for the two groups. The blue dots represent patients in the MCID group; the orange 
squares represent patients in the N-MCID group. FMA-UE, Fugl–Meyer assessment upper extremity scores; FMA-LE, Fugl–Meyer assessment lower 
extremity scores; patients. FMA-TOTAL, Fugl–Meyer assessment total extremity scores; MCID, minimal clinically important difference; N-MCID, non-
minimal clinically important difference.
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MCID group and the N-MCID group, but MCID revealed a wider 
range of lower FC, implying more generalized abnormal FC.

In the acupuncture state, the MCID group generally exhibited 
significantly lower FC between the feature ROIs and other brain 
regions compared to HC (e.g., ROI 1 with the bilateral cerebellum, left 
MOG, left MTG, and left ANG), but only a small proportion of higher 
FC between ROI 7 (i.e., the right PoCG, right PreCG, right rolandic 
operculum, and right IFG opercular part) with the right supramarginal 
gyrus (SMG), and right ANG; ROI 8 with the left ANG, left MTG and 
left MOG. There were two ROIs that exhibited stronger FC with other 
brain regions in the N-MCID group than in HC, mainly including 
ROI 5 with the left precuneus, bilateral LING, left cerebellum, left 
PCC, bilateral MFG orbital part, and ROI 8 with the left ANG, left 
MTG, left MOG, and left inferior parietal gyrus (IPG). There were no 
significant differences in FC between the other ROIs and the whole 
brain regions compared to HC. ROI 1, ROI 4, ROI 5, and ROI 6 
presented lower FC with other brain regions in the MCID group than 
the N-MCID group. There were no significant differences in all FCs 
between the three groups of participants in the resting and 
acupuncture states, but patients exhibited fewer brain regions with 
abnormal FC in the acupuncture state than in the resting state.

4. Discussion

In this study, we applied a machine learning analysis method to 
screen functional brain regions that can classify clinical differences 
of motor recovery in patients with unilateral motor pathway injury 
(basal ganglia and/or corona radiata) after ischemic stroke. 
We identified eight regions with predicted weights>5% as regions of 
interest (ROIs) and found that these ROIs were located bilaterally in 
the cerebral hemispheres (Figure  3C). The weights of the 
contralesional brain regions accounted for approximately 35.16% 
(ROI 1, ROI 3, and ROI 4; Table 3) and the ipsilesional brain regions 
accounted for approximately 40.75% (ROI 2, and ROI 5–8; Table 3), 
suggesting that motor recovery after unilateral motor pathway injury 
is closely related to the regulation of bilateral brain regions. This was 
consistent with the point that the pattern of bilateral actions may 
contribute to engaging ipsilateral motor pathways in a motor 
behavior (Tazoe and Perez, 2014).

Motor rehabilitation can be affected by many factors. Because of 
this, we chose the MCID as a basis for our grouping, since it is the 
smallest improvement that patients can perceive as beneficial and 
focuses on the patient’s self-perception. The feature brain regions 
we obtained, mainly including the contralesional CAU (Graff-Radford 
et al., 2017), the bilateral SMA (Liu et al., 2022), PreCG (Park et al., 
2011), PoCG (Ward et al., 2003), and PCL (Kang and Kim, 2008), were 
observed to be  associated with motor behavior and outcomes in 
previous studies. There is bilateral interaction effect between the 
cerebral hemispheres. The balance between the bilateral hemispheres 
is disrupted after stroke and there is spontaneous functional regulation 
between the bilateral hemispheres to facilitate recovery. We found that 
the feature ROIs mainly involved the basal ganglia area (i.e., the 
location of the lesion corresponding to the contralesional hemisphere) 
and distal motor-related regions (e.g., SMA, PreCG, etc.) in the 
constralesional hemisphere, whereas mainly involved the distal 
motor-related regions in the ipsilesional hemisphere. This indicates 
that: (1) the distal regions of the ipsilesional hemisphere is important 
in predicting recovery after stroke, performed the intra-hemisphere 
adjustment; (2) the basal ganglia area of the contralesional hemisphere 
may compensate for the ipsilesional hemisphere, which may perform 
the compensate ability between two hemispheres; (3) functional 
synergistic changes in the distal motion-related regions of the bilateral 
hemispheres affected motor recovery through bilateral modulation, 
which may perform the interaction between two hemispheres.

Beside of these, we also found some brain regions with predictive 
weights related to mental and psychological aspects, such as the 
contralesional putamen (Klingbeil et al., 2022), the contralesional 
occipital lobe (Park et  al., 2011), the ipsilesional frontal lobe 
(Stangeland et  al., 2018), the ipsilesional orbital gyrus (Pan et  al., 
2022), etc. Some studies have also reported that psychosocial factors 
and non-motor brain regions have an impact on stroke rehabilitation 
(Ward et  al., 2003; Qian et  al., 2019). As can be  seen, the ROIs 
we extracted involved motor and mental brain regions, and could 
be used as features to more comprehensively predict the classification 
of motor recovery after stroke.

Furthermore, we also extracted and compared the DC values of the 
ROIs, and found a statistically significant difference in DC values for 
only two ROIs (i.e., ROI 1, ROI 2) between the two groups. It is 
illustrated that machine learning can identify unexpected informative 

TABLE 2 Demographic and clinical data of acupuncture state.

Characteristics Group

MCID (n = 26) N-MCID (n = 15) HC (n = 26) χ2/Z Value of p

Sex (male/female) 16/10 10/5 16/10 0.131 0.937a

Age (years) 62.00(56.50–66.25) 61.00(50.00–66.00) 59.50(53.75–62.25) 1.363 0.506b

Lesion side (left/right) 13/13 4/11 2.134 0.195a

Course of disease (days) 20.50(12.50–35.00) 28.00(18.00–42.00) −1.300 0.194b

Motor assessment

FMA-UE 35.50(13.50–51.25) 12.00(5.00–55.00) −1.070 0.285b

FMA-LE 28.00(17.00–31.00) 21.00(15.00–32.00) −0.976 0.329b

FMA-Total 54.00(34.00–79.00) 30.00(21.00–87.00) −0.921 0.357b

The data are presented as the median (interquartile range) for non-normally distributed data. aThe value of p was obtained by a chi-square test; bThe value of p was obtained by a nonparametric 
test. MCID, minimal clinically important difference; N-MCID, non-minimal clinically important difference; HC, healthy controls; FMA-UE, Fugl–Meyer assessment upper extremity scores; 
FMA-LE, Fugl–Meyer assessment lower extremity scores; FMA-Total, Fugl–Meyer assessment total scores.
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variables by traditional statistics and capture new potential features 
(Deo, 2015). Herein, the ML classifier achieved a balance accuracy of 
75.51% and an AUC of 80.00%, indicating a relatively good performance. 
Therefore, we applied machine learning algorithms to classify patients 
with clinical differences in motor outcomes, identifying more 
personalized features of predicting motor outcomes in order to provide 
novel and referable neuroimaging evidence toward precision medicine 
for motor recovery after stroke (Deo, 2015; Handelman et al., 2018).

Subsequently, we compared the differences in FC among MCID, 
N-MCID, and HC in the resting and acupuncture states, 

respectively, to discover the brain functional effects of motor 
impairment and recovery after stroke. We  demonstrated the 
response patterns of these characteristic ROIs in motor recovery 
and under acupuncture intervention and explored possible central 
neural mechanisms of acupuncture (Table  4; Figure  4; 
Supplementary Figure S1). In the resting state, compared to HC, 
abnormal FCs were found in patients and most of them exhibited 
lower FC, indicating that the synergy of different brain regions was 
reduced after stroke. Previous studies reported decreased functional 
connectivity between hemispheric brain regions in the early stages 

BA =7 5.51%
p = 0.0180
AUC = 0.80

A B

C

FIGURE 3

Results of machine learning. (A) The confusion matrix output by this classification. (1) i.e., N-MCID; (2) i.e., MCID. (B) Receiver operating characteristic 
curve and area under curve for the classification developed with two groups as inputs. The value of p was obtained during 1,000 permutation testing. 
(C) Weights map of all feature ROIs. The color of the clusters from red to yellow represents that the weight becomes larger. AUC, area under curve; BA, 
balanced accuracy; ROI, regions of interest.
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of stroke (Fan et al., 2015; Tang et al., 2016; Hensel et al., 2022) and 
concluded that hemispheric interactions in stroke patients were 
frequently characterized by abnormalities, in terms of balance and 
competition (Casula et al., 2021). Our results demonstrated that the 
abnormal form of FC exhibited was not entirely consistent between 
the different groups. In the MCID group, there were decreased FCs 

between the ipsilesional ROIs and the bilateral cerebral 
hemispheres, whereas the contralesional ROIs mainly presented 
decreased FCs between the ipsilesional hemisphere. In the N-MCID 
group, the decreased FCs were generally either between the 
ipsilateral or contralateral hemispheres of the ROIs. The lower FCs 
were found to be restored and can reach or even exceed the level of 

TABLE 3 Weights of feature ROIs and comparison of DC.

Feature 
ROIs

ROI weight (%) Brain regions in AAL Hemi-sphere DC

t Value of p

ROI 1 17.67 Caudate nucleus (CAU) L −2.016 0.049

Lenticular nucleus, putamen (PUT)

ROI 2 12.02 Supplementary motor area (SMA) R −3.042 0.004

Superior frontal gyrus, dorsolateral (SFG)

ROI 3 8.86 Precentral gyrus (PreCG) L 1.972 0.054

Paracentral lobule (PCL)

Supplementary motor area (SMA)

Superior frontal gyrus, dorsolateral (SFG)

Postcentral gyrus (PoCG)

ROI 4 8.63 Middle occipital gyrus (MOG) L 2.337 0.024

Superior occipital gyrus (SOG)

Angular gyrus (ANG)

ROI 5 8.42 Inferior frontal gyrus, opercular part 

(IFGoperc)

R 0.742 0.462

Precentral gyrus (PreCG)

Middle frontal gyrus (MFG)

Inferior frontal gyrus, triangular part 

(IFGtriang)

ROI 6 7.53 Inferior frontal gyrus, orbital part 

(IFGorb)

R 1.823 0.075

Posterior orbital gyrus (OFCpost)

Lateral orbital gyrus (OFClat)

Insula (INS)

Temporal pole: superior temporal gyrus 

(TPOsup)

Inferior frontal gyrus, triangular part 

(IFGtriang)

Anterior orbital gyrus (OFCant)

ROI 7 6.75 Postcentral gyrus (PoCG) R 0.575 0.568

Precentral gyrus (PreCG)

Rolandic operculum (ROL)

Inferior frontal gyrus, opercular part 

(IFGoperc)

ROI 8 6.03 Middle cingulate and paracingulate gyri 

(MCC)

R −1.228 0.226

Precuneus (PCUN)

Paracentral lobule (PCL)

Supplementary motor area (SMA)

Regions were identified by setting the threshold to ≥5% of the maximum ROI-weight rank. Negative t-test values reflect significantly more DC in identified regions of interest for the MCID 
group. The value of p was based on two-sample t-tests. ROI, regions of interest; DC, degree centrality; L, left, i.e., contralesional hemisphere; R, right, i.e., ipsilesional hemisphere.
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(Continued)

TABLE 4 Functional connectivity (FC) of feature ROIs in the resting state and acupuncture state.

Feature 
ROIs

Groups Resting state Acupuncture state

Clusters Brain regions F-value 
(peak)

Clusters Brain regions F-value 
(peak)

ROI 1 MCID vs. 

HC

1 Bilateral

Cerebellum

−2.576 1 Left

Middle occipital gyrus

Middle temporal gyrus

Angular gyrus

−2.577

2 Bilateral

Medial cingulate gyrus

Paracentral lobule

Right

Supplementary motor area

−2.578 2 Bilateral

Cerebellum

−2.579

N-MCID 

vs. HC

1 Left

Inferior frontal gyrus, 

triangular part

Inferior frontal gyrus pars 

orbitalis

−2.586 NA

2 Left

Cerebellum

−2.577

MCID vs. 

N-MCID

NA 1 Right

Lingual gyrus

Cerebellum

Calcarine fissure and surrounding 

cortex

Cuneate

Inferior occipital gyrus

−2.576

ROI 2 MCID vs. 

HC

1 Bilateral

Thalamus

Caudate nucleus

−2.582 1 Right

Pallidus

Putamen

Insula

Hippocampus

Amygdala

Caudate nucleus

−2.576

2 Bilateral

Medial cingulate gyrus

Supplementary motor area

−2.605 2 Bilateral

Anterior cingulate and 

paracingulate gyri Medial 

cingulate and paracingulate gyri

Right

Supplementary motor area

−2.580

3 Right

Precentral gyrus

Postcentral gyrus

Supplementary motor area

−2.578

4 Right

Rolandic operculum

Inferior frontal gyrus, opercular 

part

Temporal pole: Superior 

temporal gyrus

Superior temporal gyrus

−2.589

5 Left

Insula

Rolandic operculum

−2.578
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Feature 
ROIs

Groups Resting state Acupuncture state

Clusters Brain regions F-value 
(peak)

Clusters Brain regions F-value 
(peak)

N-MCID 

vs. HC

1 Bilateral

Anterior cingulate and 

paracingulate gyri

Medial cingulate and 

paracingulate gyri

−2.593 NA

2 Left

Supramarginal gyrus

Middle temporal gyrus

−2.577

MCID vs. 

N-MCID

NA NA

ROI 3 MCID vs. 

HC

1 Right

Superior parietal gyrus

Postcentral gyrus

Precuneus

−2.576 1 Right

Precentral gyrus

Postcentral gyrus

−2.579

2 Right

Precentral gyrus

Middle frontal gyrus

−2.584 2 Left

Middle occipital gyrus

Inferior occipital gyrus

−2.578

3 Right

Caudate nucleus

Thalamus

−2.594

4 Right

Rolandic operculum

Inferior frontal gyrus, opercular 

part

−2.580

N-MCID 

vs. HC

1 Right

Caudate nucleus

Thalamus

−2.583 NA

MCID vs. 

N-MCID

NA NA

ROI 4 MCID vs. 

HC

1 Right

Middle occipital gyrus

Superior occipital gyrus

Precuneus

−2.578 1 Right

Middle temporal gyrus

Middle occipital gyrus

Superior occipital gyrus

−2.578

2 Right

Precuneus

Calcarine fissure and 

surrounding cortex

Lingual gyrus

−2.586 2 Right

Calcarine fissure and surrounding 

cortex

Lingual gyrus

−2.577

3 Right

Superior parietal gyrus

Precuneus

posterior central gyrus

−2.580 3 Bilateral

Precuneus

−2.577

N-MCID 

vs. HC

1 Bilateral

Posterior cingulate gyrus

4.595 NA

MCID vs. 

N-MCID

NA 1 Left

Middle temporal gyrus

Supramarginal gyrus

Angular gyrus

−2.584

TABLE 4 (Continued)

(Continued)
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Feature 
ROIs

Groups Resting state Acupuncture state

Clusters Brain regions F-value 
(peak)

Clusters Brain regions F-value 
(peak)

ROI 5 MCID vs. 

HC

NA 1 Left

Inferior parietal gyrus

Superior temporal gyrus

Superior parietal gyrus

Supramarginal gyrus

Middle temporal gyrus

Precuneus

Posterior central gyrus

−2.577

2 Bilateral

Cingulate gyrus

Left

Supplementary motor area

−2.577

3 Left

Insula

Inferior frontal gyrus, opercular 

part

Precentral gyrus

Rolandic operculum

−2.578

N-MCID 

vs. HC

1 Right

Caudate nucleus

Thalamus

−2.581 1 Left

Precuneus

Cerebellum

Posterior cingulate gyrus

Bilateral

Lingual gyrus

4.324

2 Bilateral

Middle frontal gyrus pars orbitalis

Gyrus rectus

3.941

MCID vs. 

N-MCID

1 Left

Cerebellum

Lingual gyrus

Middle occipital gyrus

Inferior occipital gyrus

−2.577 1 Bilateral

Cerebellum

−2.576

2 Left

Middle temporal gyrus

Inferior temporal gyrus

Heschl’s gyrus

−2.577

ROI 6 MCID vs. 

HC

NA 1 Left

Inferior frontal gyrus pars orbitalis

Middle frontal gyrus

Insula

Inferior frontal gyrus, triangular 

part

Temporal pole: superior temporal 

gyrus

Anterior cingulate and 

paracingulate gyri

Inferior frontal gyrus, opercular 

part

Superior frontal gyrus, medial

Superior frontal gyrus

Superior temporal gyrus

−2.577

2 Bilateral

Cerebellum

−2.578

TABLE 4 (Continued)

(Continued)
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(Continued)

Feature 
ROIs

Groups Resting state Acupuncture state

Clusters Brain regions F-value 
(peak)

Clusters Brain regions F-value 
(peak)

3 Left

Inferior temporal gyrus

Middle temporal gyrus

−2.579

4 Left

Inferior parietal gyrus

Angular gyrus

Middle temporal gyrus

supramarginal gyrus

−2.577

N-MCID 

vs. HC

NA NA

MCID vs. 

N-MCID

NA 1 Bilateral

Cerebellum

−2.578

2 Left

Precuneus

Superior parietal gyrus

Inferior parietal gyrus

Posterior central gyrus

−2.577

3 Left

Inferior temporal gyrus

Middle temporal gyrus

Inferior occipital gyrus

−2.576

ROI 7 MCID vs. 

HC

1 Bilateral

Posterior central gyrus

Precuneus

Left

Precentral gyrus

Right

Superior parietal gyrus

−2.578 1 Left

Posterior central gyrus

Precentral gyrus

Paracentral lobule

Supramarginal gyrus

Inferior parietal gyrus

Right

Supplementary motor area

Paracentral lobule

−2.576

2 Left

Middle temporal gyrus

Superior temporal gyrus

Insula

−2.576 2 Right

Supramarginal gyrus

Inferior parietal gyrus

Angular gyrus

3.771

3 Bilateral

Supplementary motor area

Left

Superior frontal gyrus

Paracentral lobule

−2.580 3 Left

Middle temporal gyrus

Superior temporal gyrus

Middle occipital gyrus

Inferior occipital gyrus

Insula

−2.577

N-MCID 

vs. HC

1 Bilateral

Anterior cingulate and 

paracingulate gyri Medial 

cingulate and paracingulate gyri

−2.584 NA

2 Right

Insula

Caudate nucleus

Putamen

−2.578

MCID vs. 

N-MCID

NA NA

TABLE 4 (Continued)
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healthy controls (Park et al., 2011; Chen et al., 2020; Hensel et al., 
2022) during motor recovery. Thus, the regulation and balance of 
interhemispheric inhibition can enhance post-stroke motor 
recovery (Boddington and Reynolds, 2017).

In the acupuncture state, we found that the MCID group still 
exhibited decreased FCs, but the range of brain regions with lower 
FC was reduced compared to the resting state. These results showed 
that acupuncture eliminated abnormal FCs between the 
contralesional ROIs with the ipsilesional brain regions, and between 
the ipsilesional ROIs within the ipsilesional brain regions. While in 
the N-MCID group, acupuncture restored the decreased FCs and 
even increased FCs between a part of the ipsilesional ROIs (ROI 5, 
ROI 8) with the contralesional brain regions. It could be speculated 

that acupuncture may have potential and specific targets of effects 
between different groups. Previous research considered that 
acupuncture can selectively adjust brain regions thought to 
be involved in mediating stroke recovery via functional plasticity 
(Li et al., 2006) and modulate functional connectivity between brain 
regions, brain networks, and hemispheres, which may be  a 
beneficial effect of acupuncture to promote motor recovery from 
stroke (Qi et  al., 2014; Li et  al., 2015; Han et  al., 2020). These 
findings above have similarities to our results, we suggested that 
acupuncture can modulate the bilateral hemispheres through 
feature ROIs to restore brain functional connectivity in stroke 
patients toward healthy controls and has its unique pattern 
of effects.

Feature 
ROIs

Groups Resting state Acupuncture state

Clusters Brain regions F-value 
(peak)

Clusters Brain regions F-value 
(peak)

ROI 8 MCID vs. 

HC

1 Left

Middle temporal gyrus

Inferior temporal gyrus

4.207 1 Left

Angular gyrus

Middle temporal gyrus

Middle occipital gyrus

4.495

2 Right

Precuneus

Superior parietal gyrus

Superior occipital gyrus

Cuneate

−2.583 2 Right

Superior temporal gyrus

supramarginal gyrus

Rolandic operculum

Heschl’s gyrus

Precentral gyrus

−2.576

3 Right

Precentral gyrus

Postcentral gyrus

Supramarginal gyrus

−2.576 3 Left

Middle occipital gyrus

Middle temporal gyrus

Inferior occipital gyrus

Inferior temporal gyrus

−2.581

4 Right

Superior parietal gyrus

Postcentral gyrus

Precuneus

−2.579

5 Right

Caudate nucleus

Thalamus

−2.582

6 Right

Middle frontal gyrus

Superior frontal gyrus

−2.579

7 Left

Superior parietal gyrus

Precuneus

−2.596

N-MCID 

vs. HC

1 Bilateral

Precuneus

−2.578 1 Left

Angular gyrus

Middle temporal gyrus

Middle occipital gyrus

Inferior parietal gyrus

4.066

MCID vs. 

N-MCID

NA NA

TABLE 4 (Continued)
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Notably, we noticed that the MCID group exhibited a wider 
range of brain regions with abnormal FCs than the N-MCID group, 
both in the resting and acupuncture states, although there was no 
statistically significant difference between the two groups. There 
are two possible reasons for this result, the first is that the MCID 
group has a higher class accuracy (82.14%) in machine learning. 
Therefore, the feature ROIs we  extracted may be  more 
representative for the MCID group. The second is that the basis of 
the grouping caused a more discrete distribution of the degree of 
motor impairment among the patients in the N-MCID group, most 
patients with limited recovery from severe impairments or littler 
recovery from mild impairments. It has been suggested that the 
outcome of brain function remodeling is related to the degree of 
initial damage. Different patterns of functional and structural 
reorganization of brain function exist in patients with different 
levels of deficits, leading to different prognoses. Changes in brain 
functional remodeling are often associated with clinical evaluation 
in patients with a mild degree of impairment and good recovery. 
In contrast, there is no correlation between patients with poor 
recovery and severe impairments (Lin et al., 2019; Jimenez-Marin 
et  al., 2022). As a result, the N-MCID group may not express 
more differences.

There are several limitations to this study. The first is the follow-up 
time. We investigated the changes in FMA within 2 weeks of recovery 

from motor deficits. During the follow-up, there were some subjects 
drop out from the study, which could influence the accuracy of 
research. The period of recovery is 6 months after the stroke. Large-
quantity and long-term longitudinal observations may uncover 
functional reorganization throughout the motor recovery period. 
Secondly, to avoid other redundant distractions, we chose a single 
acupoint for this study. However, this was not consistent with real 
clinical therapeutic protocols. In the future, studies about multiple 
acupoints can be carried out to reveal the mechanisms of acupuncture. 
The third limitation is the subgroup analysis. The focus of this study 
was on motor improvement in patients, but the recovery of motor 
function was related to the degree of initial motor impairment. 
Further subgroup analysis of the degree of initial impairment could 
provide a deeper understanding of stroke rehabilitation.

5. Conclusion

In this study, we  applied a machine learning approach to 
identify the feature ROIs that can predict the classification of the 
MCID for motor improvement after ischemic stroke, and then 
compared the brain functional connectivity and acupuncture 
effects of these brain regions. Motor impairment and recovery 
result from the co-regulation of the bilateral cerebral hemispheres, 

A

A

-1 ROI 1

-2 B-2

B-1 ROI

FIGURE 4

(A1,B1) Present the anatomical position and weights distribution of feature ROl 1 and ROl 2 Red indicates high weight and blue indicates low weight. 
(A2,B2) Plots of FC differences between feature ROl 1 and ROl 2 with the whole brain in the resting and acupuncture states. The blue clusters in the 
former group indicate lower FC between thee brain regions with the ROl, while the red clusters indicate higher FC between these brain regions with 
the ROl compared to the latter group. FC, functional connectivity; ROI, regions of interest; MCID, minimal clinically important difference; N-MCID, 
non-minimal clinically important difference. The FCs of the other ROIs are shown in Supplementary Figure S1.
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and different brain functional response patterns exist in patients 
with different motor outcomes. Acupuncture can modulate the 
bilateral hemispheres through feature ROIs and eliminate 
abnormal functional connectivity to promote motor recovery 
after ischemic stroke. Our study can provide potential 
neuroimaging features for motor recovery and mechanisms of 
acupuncture on functional organization after stroke, and may 
expand research thoughts of machine learning and fMRI in 
clinical applications.
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