
TYPE Original Research

PUBLISHED 02 May 2023

DOI 10.3389/fnins.2023.1130606

OPEN ACCESS

EDITED BY

Yueming Wang,

Zhejiang University, China

REVIEWED BY

Haixin Zhong,

Fudan University, China

Hui Zhang,

Beihang University, China

*CORRESPONDENCE

Xiaojian Li

xj.li@siat.ac.cn

RECEIVED 23 December 2022

ACCEPTED 28 March 2023

PUBLISHED 02 May 2023

CITATION

Li W, Zheng S, Liao Y, Hong R, He C, Chen W,

Deng C and Li X (2023) The brain-inspired

decoder for natural visual image

reconstruction. Front. Neurosci. 17:1130606.

doi: 10.3389/fnins.2023.1130606

COPYRIGHT

© 2023 Li, Zheng, Liao, Hong, He, Chen, Deng

and Li. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

The brain-inspired decoder for
natural visual image
reconstruction

Wenyi Li1,2, Shengjie Zheng1,2, Yufan Liao3, Rongqi Hong1,

Chenggang He1,4, Weiliang Chen1,2, Chunshan Deng1 and

Xiaojian Li1*

1Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain

Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and

Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen,

China, 2University of Chinese Academy of Sciences, Beijing, China, 3Clinical Medicine Institute, Chengdu

University of Traditional Chinese Medicine, Chengdu, China, 4Illinois Institute of Technology, Chicago, IL,

United States

The visual system provides a valuablemodel for studying the workingmechanisms

of sensory processing and high-level consciousness. A significant challenge in this

field is the reconstruction of images from decoded neural activity, which could not

only test the accuracy of our understanding of the visual system but also provide a

practical tool for solving real-world problems. Although recent advances in deep

learning have improved the decoding of neural spike trains, little attention has been

paid to the underlying mechanisms of the visual system. To address this issue,

we propose a deep learning neural network architecture that incorporates the

biological properties of the visual system, such as receptive fields, to reconstruct

visual images from spike trains. Our model outperforms current models and has

been evaluated on di�erent datasets from both retinal ganglion cells (RGCs) and

the primary visual cortex (V1) neural spikes. Our model demonstrated the great

potential of brain-inspired algorithms to solve a challenge that our brain solves.
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1. Introduction

Brain–computer interface clinical studies have made remarkable achievements in recent

decades, and brain activity decoding contributes significantly to the successes (Nishimoto

et al., 2011; Gaziv et al., 2022). Brain activity decoding (or “brain reading”) is a vital theory to

understand the brain’s working mechanism, and the BCI application in practice mentioned

earlier (Kay et al., 2008; Miyawaki et al., 2008; Rubin et al., 2017). Spike trains are the gold

standard of neural activity. They are generated by single neurons that receive and respond

to input stimuli by changing their membrane potential to generate a sequence of related

events. Spike trains probably contain a basic unit of neural computation for a different task

and corresponding features of neural computation at different neural network levels (Zador,

1997; Simoncelli and Olshausen, 2001; Wu et al., 2006). Spike trains of the neural population

were widely used for motor intention decoding in BCI research (Andalib et al., 2019), both

in animals and patients, demonstrating its potential in another form of decoding, such as

images (Hayashi and Kawata, 2018; Ran et al., 2021; Li et al., 2022). The organization of

our visual system is hierarchical, which means that the receptive fields of neurons at one

level are constructed by combining inputs from neurons at a lower level (Grill-Spector and

Malach, 2004). Thus, after several processing stages, small receptive fields tuned to simple

stimuli combine to form larger receptive fields tuned to more complex stimuli (Serre, 2014).

Research has shown that the distribution of the receptive field is asymptotically Gaussian
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(Luo et al., 2016). More specifically, neural spikes in the early

stage, like retinal ganglion and primary visual cortex (V1) neurons,

are tuned mostly on physical features of visual stimuli, such as

luminance, contrast, orientation, and spatial frequency (Dai and

Wang, 2012); while in the late stage, such as in inferior temporal

cortex neurons, preferredmostly on psychological features of visual

stimuli, such as face identity, and emotion (Baron, 1981; Schupp

et al., 2003). Although there are many methods to decode the

brain signal, it is still difficult to decode the spike signal in the

V1 brain region. Moreover, current methods lack a biological

basis. Therefore, we combined receptive field properties into an

end-to-end neural network and trained the neural network using

spike trains from both RGC and V1 neurons. The results showed

that our model with biological theory outperforms current other

models, demonstrating the remarkable potential of a brain-inspired

algorithm.

2. Materials and methods

2.1. Datasets

2.1.1. Datasets from monkey V1
We tested our model on two natural neural spike train datasets

evoked by natural images. The first datasets are macaque V1

datasets which consist of multi-electrode recordings from V1 in

anesthetized macaque using multi-electrode array (namely, Utah

array, USA). At the same time, natural images and gratings were

presented on the screen in front of the monkeys. Natural images

were shown in two sizes, 3–6.7 degrees and windowed to 1 degree,

to quantify surroundmodulation. The receptive field was measured

using small gratings presented at various positions. The receptive

field center of each neuron was defined as the location of the peak of

a 2DGaussian fit to the spatial activity map. The data were collected

in the Laboratory of Adam Kohn at the Albert Einstein College of

Medicine and downloaded from the CRCNS website. Experimental

procedures and stimuli are fully described in the associated article

(Coen-Cagli et al., 2015). The receptive field position relative to the

image center is included in the data files and the ON/OFF receptive

fields of each cell were computed by correlating their responses with

the locations of bright and dark parts in the stimuli at different time

delays (Figure 1) (Tring et al., 2022; Vafaei et al., 2022).

2.1.2. Datasets from salamander retina
The second dataset consists of temporal firing recordings from

49 retinal ganglion cells (RGCs) of salamanders, while videos were

projected onto the retina through a telecentric lens. The video

stimuli comprised 1,800 frames and were made up of a 60-s-long

natural movie clips presented at a frame rate of 30 Hz. The pixel

size was resized to 64*64 pixels. There were 1800 video frames used

as stimuli, and the dataset included the spike trains of 49 RGCs as

responses to these video frames. The training set contained 1,440

(1800*0.8) video frames of 64*64 pixels, and the test set contained

360 (1800*0.2) video frames. These datasets and descriptions can

be found in this article (Onken et al., 2016). Our decoder was used

to reconstruct video frames from the spike trains of a population of

RGCs of salamanders.

2.2. Data process

For the macaque V1 datasets, seven session data from multiple

experiments were used. We used 80% data (1,249) as the training

set and the remaining 20% data as the test set. We intercepted a

small part of the data to ensure that each batch input dimension

is equal. The data of 100 neurons in 105 milliseconds (ms) were

retained every session and time 0 is the onset of the stimulus. The

reconstructed grating images aremodified to 80*80 pixels grayscale,

and the natural images are reduced to 32*32 pixels grayscale.

Moreover, as to the salamander’s retina datasets, we converted the

timestamp to spike trains on a 10 ms scale. We randomly selected

some scenes and disrupted the order to wash out the temporal

correlation within the video.

2.3. Model

In this study, the structure of the auto-encoder is used (Hinton

and Salakhutdinov, 2006). The network structure uses LeakyReLU

as the activation function, with a learning rate of 0.02 that decays

by a factor of 0.9 every 100 epochs. The network is optimized using

an Adam optimizer, and a dropout of 0.5 is applied. The first layer

of the network receives spikes from all neurons as input, and the

second layer is an output layer that matches the image size. The

encoder consists of four layers, with batch sizes of 128, 256, 512, and

512, stride sizes of 2, and padding set to 1 for all layers. The decoder

also contains four transposed convolutional layers with batch sizes

of 512, 256, 128, and 1, stride sizes of 2, and padding set to 1. Gabor

filters were used in the first convolution layer of our model (Luan

et al., 2018) (Figure 2), Research has demonstrated that filters are

often redundantly learned in CNN, and the most fundamental filter

can be replaced by the Gabor filter. Considering the directivity of

raster images and the training complexity of CNNs, the frequency

and orientation of the Gabor filter used in this study are similar

to those found in the primary visual cortex of mammalian vision

systems (Nandy and Banerjee, 2012).

Gabor convolution neural network is a deep neural network

using Gabor orientation filters (GoFs), which can produce feature

maps to enhance directions and scales information (Figure 3). In

addition, GoFs are generally used tomodel receptive fields of simple

cells of the visual cortex. This way, the deep learning model can

be strengthened while learning fewer parameters. Raster images

with directions and scales could be better fitted when convolutional

neural networks are applied (Figure 4).

2.4. Loss function

We designed a new loss function and set receptive field

properties of the weight matrix, which can be adjusted according

to the position of the receptive field. Applying the weight matrix

of the receptive field to the loss function can make the different

definitions in different parts of the reconstructed images and

give higher weight to the area of attention of the receptive field.

Due to the need to measure the structural similarity between

the original image and the reconstructed image, we fused the
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FIGURE 1

Mapping of receptive fields to video frames. (A) Receptive fields of salamander RGCs. (B) The receptive fields of macaque primary visual cortex

neurons. Each yellow colored circle is an outline of receptive field. The red and blue region represent excitatory and inhibitory subregions,

respectively.

FIGURE 2

Comparison between CNN filters and Gabor filters. Latent features illustration of CNN filters (left) and Gabor filters (right).

Structure Similarity Index Measure (SSIM) in the loss function.

SSIM is described in detail in this article (Wang et al., 2004). The

comparison measurements are luminance, contrast, and structure.

They are described as follows:

lluminace(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(1)

ccontrast(x, y) =
2σ x σy + c2

σ 2
x + σ 2

y + c2
(2)

sstructure(x, y) =
σxy + c3

σxσy + c3
(3)

SSIM(x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ (4)

where x represents the reconstructed image and y represents the

target image. µx is the mean of x, σx is the standard deviation of x,

and σxy is the covariance between x and y. α, β , and γ represent the

weights of brightness, contrast, and structural similarity in image

reconstruction, respectively. Generally, these weights are equally

important, so they are set to 1 and c3 = c2/2. The SSIM and MSE

can be described as follows:

SSIM(x, y) =

(

2µxµy + c1
) (

2σ xy + c2
)

(µ 2
x + µ2

y + c1

) (

σ 2
x + σ 2

y + c2

) (5)

MSE =
1

Ih × Iw

H
∑

i=1

W
∑

j=1

(

X1(i, j)− X2(i, j))
2 (6)

The boundedness of SSIM is [0,1], the higher the value is, the more

similar the two images are. In order to minimize the loss function,

we defined SSIM loss as LSSIM = -SSIM(x,y). Our loss function is

designed as follows:

L = µLSSIM + (1− µ)WLMSE (7)
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FIGURE 3

Features with Gabor filters. Illustrations of latent features using Gabor filter with rotated (row, 30-degree step) and scaled (columns, 7, 9, 11, and 13)

images. The color indicates the magnitude of the Gabor filter coe�cients.

FIGURE 4

Overview of the neural network. The proposed network consists of two fully connected layers followed by a Gabor autoencoder.

W is a matrix with receptive field properties in Equation (7)

and the picture’s size determines the W matrix’s size (Figure 5).

We used a Gaussian kernel as the spatial weight matrix. The

Gaussian kernel positions are obtained from the receptive field

positions, which are already included in the dataset. In the data

of this experiment, there are no cases of two receptive field

positions being completely duplicated. Still, in implementation,

the weights of overlapping receptive field positions are added up

to indicate that the reconstruction weight is greater where there

are more receptive fields. The parameter µ in the equation is a

hyperparameter regarding the weights, which can be adjusted to

configure the proportion of SSIM and weighted MSE to achieve

better reconstruction results. The data shown in the table were

obtained with µ = 0.1. When information on the spike trains is

insufficient to reconstruct a high-resolution image, the weighted

loss function can reconstruct images discriminately, where the

receptive field region has a higher weight.

2.5. Model performance evaluation

The performance of our method was compared with the CNN

auto-encoder with the mean square error (MSE), peak signal-

to-noise ratio (PSNR), visual information fidelity, pixel domain

version (VIFP) (Han et al., 2013), and SSIM loss function. MSE

describes the absolute difference of every pixel, the PSNR describes

the global quality, and the PSNR is defined as

PSNR = 10 · log10

(

P2

MSE

)

(8)

where P presents the maximum pixel value (255 for 8-bit images).

The VIFP quantify the information shared between the test and the

reference images, and the SSIM captures the structure similarity, for

evaluating the reconstruction results. It is worth noting that among
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FIGURE 5

Gaussian kernel and receptive field weight matrix. Multiplication of W matrix (right) with Gaussian kernel (left). The W matrix represents the

importance of the di�erent regions of an image. The figure displays a weight matrix of size 80×80.

FIGURE 6

Comparing performance of di�erent reconstruction methods. (A) Original neutral images and reconstructed images. Method 1 and Method 2 are

both based on autoencoder structures, but use MSE and SSIM loss functions, respectively. (B) Reconstruction loss for original images using di�erent

methods. *p < 0.05 compared proposed method and method 2 in all four indicators when using 100 neurons. MSE, Mean-Squared Loss; SSIM,

Structure Similarity Index Measure; PSNR, Peak signal-to-noise ratio; VIFP, visual information fidelity and pixel domain. Error bars represent 95%

confidence interval.

the four metrics, MSE indicates better reconstruction performance

with smaller values, while SSIM, PSNR, and VIFP indicate better

performance with larger values.

2.5.1. Code and datasets available
The code and datasets are available. The code is available at

https://github.com/WYCAS/S2INet. The stimulation and response

of macaque V1 and Salamander retina can be found here,

respectively: http://crcns.org/data-sets/vc/pvc-8, https://datadryad.

org/stash/dataset/doi:10.5061/dryad.4ch10.

3. Results

The performance of our method was evaluated on two open

source datasets, including macaque primary visual cortex and

salamander retina spike trains. We did not use a simulator and

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1130606
https://github.com/WYCAS/S2INet
http://crcns.org/data-sets/vc/pvc-8
https://datadryad.org/stash/dataset/doi:10.5061/dryad.4ch10
https://datadryad.org/stash/dataset/doi:10.5061/dryad.4ch10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1130606

FIGURE 7

Reconstruction of the natural images using di�erent methods from V1 neurons.

TABLE 1 Performance of our method compared with other methods from

macaque V1 spike trains.

Method MSE PSNR VIFP SSIM

Method 1 3635.02 13.0551 0.0538 0.5803

Method 2 10174.72 8.7412 0.0439 0.5359

Proposed 3479.79 13.1003 0.0566 0.5945

The bold values indicates the best-performing value among the three methods.

chose real datasets to train our model. We evaluated our method

on images of gratings that contain four orientations and different

degrees in diameter. Figure 6 shows the reconstruction effects of

our approach. Our model method outperforms the other two

methods. Due to the location of the receptive field, there were other

reconstruction effects in the different regions. The first method

(method 1) was based on a CNN autoencoder with an MSE loss

function, and the second method (method 2) was based on the

SSIM loss function (Zhang et al., 2020).

Furthermore, we tried to reconstruct natural images from the

spike trains (Figure 7). Affected by the amount of reconstruction

information, the resolution of the reconstructed image is reduced

to 32*32 pixels grayscale. Figure 7 shows the reconstructed images

from macaque V1 spike trains compared to other methods. Due to

the influence of input data information and the complex structure

of reconstructed images, the reconstructed images are not clear

in detail. However, our model method outperforms the other

two methods. Especially, method 2 with SSIM loss function has

difficulty in reconstructing images. For comparison with macaque

V1 data, Table 1 shows the average of 756 images by four typical

criteria of reconstructed images. The MSE in the table is obtained

by summing the MSE values of all the pixels.

To further test the generalization capability of our method,

we performed experiments on responses based on RGCs data

(Figure 8). According to the result, our approach has a better

reconstruction effect in detail.

Table 2 shows the performance of our method compared with

the other two methods based on the salamander RGCs data.

Compared to the method described in the study, our method uses

Gabor convolution instead of ordinary convolution. It employs a

loss function with receptive field weights, and our model suggests

that Gabor autoencoder architecture with a weighted loss function

enables precise reconstruction. The proposed method can do well

in presenting the reconstruction details, especially in complex

stripe features of animals or scenes. However, its performance is

still poor for stimuli from complex visual images, This may be due

to each natural image’s short incentives and complex features. The

results show the weighted loss with properties of the receptive field

for our deep image reconstruction model to achieve perceptually

similar reconstructions.

4. Conclusion

Our approach could remarkably decode visual content from

spike trains of RGC and V1 neurons combining the receptive field

into a neural network. The brain-inspired model consists of a fully

connected layer and a Gabor autoencoder. A loss function with a

receptive field weighted matrix was combined with the Gabor auto-

encoder, which is critical for our model. As far as we know, this

is the first time that receptive field properties were combined into

a loss function. The results demonstrated that the brain-inspired

method outperforms current other models.

5. Discussion

We proposed an innovative brain-inspired model to

reconstruct the static image and dynamic video content from
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FIGURE 8

Reconstruction of the video frames using di�erent methods from V1 neurons.

TABLE 2 Reconstructed video frames from RGCs spikes with other

methods.

Method MSE PSNR VIFP SSIM

Method 1 7623.06 9.3023 0.0554 0.7281

Method 2 2234.36 14.6389 0.2183 0.8088

Proposed 2108.21 14.8911 0.2316 0.8174

The bold values indicates the best-performing value among the three methods.

neural spike trains of RGC and V1. The model is end-to-end,

extracting information from the spike train, and reconstructing

images. Our model integrated a loss function with a receptive field

weighted matrix inspired by neural computation in a visual system

into a Gabor auto-encoder. Our model outperforms other neural

networks, demonstrating the great potential of a brain-inspired

model to solve the challenge in AI. We further notice that the effect

of image reconstruction from macaque V1 and salamander RGC

spike trains is different, which is probably caused by hierarchical

processing from RGC to V1 neurons, and the sample size of neural

spike trains. Future research should strive to improve the model by

integrating continuous visual neural signals, which contain logical

continuity of visual information.

The development of deep learning has achieved great success

in various complex tasks, from natural image classification to

natural language processing, and brought AI to the spotlight of

broad research communities and commercial users (Christensen

et al., 2022). The brain-inspired model, including the auto-

encoder and the weighted loss function, demonstrated remarkable

promise for next-generation AI with biological interpretability.

First, brain-inspired decoders can aid researchers in gaining

a deeper understanding of the neural mechanisms involved

in perception and decision-making. By modeling the neural

processes that underlie these cognitive functions, brain-inspired

decoders can assist researchers in developing more precise and

comprehensive models of the brain. Second, these decoders

can facilitate the development of advanced computer vision

systems and enhance the performance of artificial intelligence

(AI) systems. By modeling the neural processes associated with

visual perception, these decoders can improve machines’ abilities

to recognize and interpret visual information accurately and

assist AI systems in more effectively adapting to complex

environments. The brain-inspired model is also probably a key

technology for implementing artificial systems that solve problems

that the brain solves, like robotics control, self-driving, smell-

sensing, dynamic vision sensors, and bio-hybrid systems for

brain repair.
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